
4
List Ranking

“Pointers are dangerous in
disks!”

4.1 The pointer-jumping technique . 4-2
4.2 Parallel algorithm simulation in a 2-level memory 4-3
4.3 A Divide&Conquer approach . 4-5

A randomized solution • Deterministic coin-tossing∞

This lecture attacks a simple problem over lists, the basic data structure underlying the design of

many algorithms which manage interconnected items. We start with an easy to state, but inefficient

solution derived from the optimal one known for the RAM model; and then discuss more and more

sophisticated solutions that are elegant, efficient/optimal but still simple enough to be coded with

few lines. The treatment of this problem will allow also us to highlight a subtle relation between

parallel computation and external-memory computation, which can be deployed to derive efficient

disk-aware algorithms from efficient parallel algorithms.

Problem. Given a (mono-directional) list L of n items, the goal is to compute the distance

of each of those items from the tail of L.

Items are represented via their ids, which are integers from 1 to n. The list is encoded by means of

an array Succ[1, n] which stores in entry Succ[i] the id j if this latter item is pointed to by item i. If

t is the id of the tail of the list L, then we have Succ[t] = t, and thus the link outgoing from t forms

a self-loop. The following picture exemplifies these ideas by showing a graphical representation

of a list (left), its encoding via the array Succ (right), and the output required by the list-ranking

problem, hereafter encoded in the array Rank[1, n].

This problem can be easily solved in the RAM model by exploiting the constant-time access to

its internal memory. Just compute the array of predecessors as Pred[Succ[i]] = i; and then scan the

list backward, starting from its tail t, setting Rank[t] = 0, and then incrementing the Rank’s value of

FIGURE 4.1: An example of input and output for the List Ranking problem.

c© Paolo Ferragina, 2009-2014 4-1

4-2 Paolo Ferragina

each item as the percolated distance from t. Another way to solve the problem is recursively, without

needing additional working space, by defining the function ListRank(i) which works as follows:

Rank[i] = 0 if i = t, else it sets Rank[i] = ListRank(Succ[i]) + 1; at the end the function returns

the value Rank[i]. The time complexity of both algorithms is O(n), and obviously it is optimal since

all list’s items must be visited to set their n Rank’s values.

If we execute this algorithm over a list stored on disk (via its array Succ), then it could elicit

Θ(n) I/Os because of the arbitrary distribution of links which might induce an irregular pattern of

disk accesses to the entries of arrays Rank and Succ. This I/O-cost is significantly far from the

lower-bound Ω(n/B) which can be derived by the same argument we used above for the RAM

model. Although this lower-bound seems very low, we will come in this lecture very close to it by

introducing a bunch of sophisticated techniques that are general enough to find applications in many

other, apparently dissimilar, contexts.

The moral of this lecture is that, in order to achieve I/O-efficiency on linked data structures,

you need to avoid the percolation of pointers as much as possible; and possibly dig into the wide

parallel-algorithms literature (see e.g. [2]) because efficient parallelism can be turned surprisingly

into I/O-efficiency.

4.1 The pointer-jumping technique

There exists a well-known technique to solve the list-ranking problem in the parallel setting, based

on the so called pointer jumping technique. The algorithmic idea is pretty much simple, it takes n

processors, each dealing with one item of L. Processor i initializes Rank[i] = 0, and then executes

the following two instructions: Rank[i] + = Rank[Succ[i]], Succ[i] = Succ[Succ[i]]. This update

actually maintains the following invariant: Rank[i] measures the distance (number of items) between

i and Succ[i] in the original list. We skip the formal proof that can be derived by induction, and

refer the reader to the illustrative example in Figure 4.2.

In that Figure the red-dashed arrows indicate the new links computed by one pointer-jumping

step, and the table on the right of each list specifies the values of array Rank[1, n] as they are

recomputed after this step. The values in bold are the final/correct values. We notice that distances

do not grow linearly (i.e. 1, 2, 3, . . .) but they grow as a power of two (i.e. 1, 2, 4, . . .), up to the

step in which the next jump leads to reach t. This means that the total number of times the parallel

algorithm executes the two steps above is O(log n), thus resulting an exponential improvement with

respect to the time required by the sequential algorithm. Given that n processors are involved,

pointer-jumping executes a total of O(n log n) operations, which is inefficient if we compare it to the

number O(n) operations executed by the optimal RAM algorithm.

LEMMA 4.1 The parallel algorithm, using n processors and the pointer-jumping technique,

takes O(log n) time and O(n log n) operations to solve the list-ranking problem.

Optimizations are possible to further improve the previous result and come close the optimal

number of operations; for example, by turning off processors, as their corresponding items reach

the end of the list t, could be an idea but we will not dig into these details (see e.g. [2]) because they

pertain to a course on parallel algorithms. Here we are interested in simulating the pointer-jumping

technique in our setting which consists of one single processor and a 2-level memory, and show

that deriving an I/O-efficient algorithm is very simple whenever an efficient parallel algorithm is

available. The simplicity hinges onto an algorithmic scheme which deploys to basic primitives—

Scan and Sort a set of triples— nowadays available in almost all distributed platforms, such as

Apache Hadoop.

List Ranking 4-3

FIGURE 4.2: An example of pointer jumping applied to the list L of Figure . The dotted arrows

indicate one pointer-jumping step applied onto the solid arrows, which represent the current config-

uration of the list.

4.2 Parallel algorithm simulation in a 2-level memory

The key difficulty in using the pointer-jumping technique within the 2-level memory framework is

the arbitrary layout of the list on disk, and the consequent arbitrary pattern of memory accesses to

update Succ-pointers and Rank-values, which might induce many I/Os. To circumvent this problem

we will describe how the two key steps of the pointer-jumping approach can be simulated via a

constant number of Sort and Scan primitives over n triples of integers. Sorting is a basic primitive

which is very much complicated to be implemented I/O-efficiently, and indeed will be the subject

of the entire Chapter 5. For the sake of presentation, we will indicate its I/O-complexity as Õ(n/B)

which means that we have hidden a logarithmic factor depending on the main parameters of the

model, namely M, n, B. This factor is negligible in practice, since we can safely upper bound it with

5, and so we prefer now to hide it in order to avoid jeopardizing the reading of this chapter. On the

other hand, Scan is easy and takes O(n/B) I/Os to process a contiguous disk portion occupied by

the n triples.

We can identify a common algorithmic structure in the two steps of the pointer-jumping tech-

nique: each of them consists of an operation (either copy or sum) between two entries of an array

(either Rank or Succ). For the sake of presentation we will refer to a generic array A, and model

the parallel operation to be simulated on disk as follows:

Assume that a parallel step has the following form: A[ai] op A[bi], where op is the op-

eration executed in parallel over the two array entries A[ai] and A[bi] by all processors

i = 1, 2, . . . , n.

The operation op is a sum and an assignment for the update of the Rank-array (here A = Rank), it

is a copy for the update of the Succ-array (here A = Succ). As far as the array indices are concerned

4-4 Paolo Ferragina

they are, for both steps, ai = i and bi = Succ[i]. The key issue is to show that A[ai] op A[bi] can

be implemented, simultaneously over all i = 1, 2, 3, . . . , n, by using a constant number of Sort and

Scan primitives, thus taking a total of Õ(n/B) I/Os. The simulation consists of 5 steps:

1. Scan the disk and create a sequence of triples having the form 〈ai, bi, 0〉. Every triple

brings information about the source address of the array-entry involved in op (bi), its

destination address (ai), and the value that we are moving (the third component, initial-

ized to 0).

2. Sort the triples according to their second component (i.e. bi). This way, we are ”align-

ing” the triple 〈ai, bi, 0〉 with the memory cell A[bi].

3. Scan in parallel the triples and the array A to create the new triples 〈ai, bi, A[bi]〉. Notice

that not all memory cells of A are referred as second component of any triple, neverthe-

less their coordinated order allows to copy A[bi] into the triple for bi via a coordinated

scan.

4. Sort the triples according to their first component (i.e. ai). This way, we are aligning

the triple 〈ai, bi, A[bi]〉 with the memory cell A[ai].

5. Scan in parallel the triples and the array A and, for every triple 〈ai, bi, A[bi]〉, update the

content of the memory cell A[ai] according to the semantics of op and the value A[bi].

I/O-complexity is easy to derive since we have 2 Sort and 3 Scan involving n items. Therefore

we can state the following:

THEOREM 4.1 The parallel execution of n operations A[ai]opA[bi] can be simulated in a

2-level memory model by using a constant number of Sort and Scan primitives, thus taking a total

of Õ(n/B) I/Os.

In the case of the parallel pointer-jumping algorithm, this parallel assignment is executed for

O(log n) steps, so we have:

THEOREM 4.2 The parallel pointer-jumping algorithm can be simulated in a 2-level memory

model taking Õ((n/B) log n) I/Os.

This bound turns to be o(n), and thus better than the direct execution of the sequential algorithm

on disk, whenever B = ω(log n). This condition is trivially satisfied in practice because B ≈ 104

bytes and log n ≤ 80 for any real dataset size (being 280 the number of atoms in the Universe1).

Figure 4.3 reports a running example of this simulation over the list on top of the Figure 4.3.

Table on the left indicates the content of the arrays Rank and Succ encoding the list; table on the

right indicates the content of these two arrays after one step of pointer-jumping. The five columns

of triples correspond to the application of the five Scan/Sort phases. This simulation is related

to the update of the array Rank, array Succ can be recomputed similarly. Actually, the update

can be done simultaneously by using a quadruple instead of a triple which brings both the values

of Rank[Succ[i]] and the value of Succ[Succ[i]], thus deploying the fact that both values use the

same source and destination address (namely, i and Succ[i]).

The first column of triples is created as 〈i, Succ[i], 0〉, since ai = i and bi = Succ[i]. The third

column of triples is sorted by the second component, namely Succ[i], and so its third component is

1See e.g. http://en.wikipedia.org/wiki/Large numbers

List Ranking 4-5

FIGURE 4.3: An example of simulation of the basic parallel step via Scan and Sort primitives,

relative to the computation of the array Rank.

obtained by Scanning the array Rank and creating 〈i, Succ[i], Rank[Succ[i]]〉. The fourth column

of triples is ordered by their first component, namely i, so that the final Scan-step can read in

parallel the array Rank and the third component of those triples, and thus compute correctly Rank[i]

as Rank[i] + Rank[Succ[i]] = 1 + Rank[Succ[i]].

The simulation scheme introduced in this section can be actually generalized to every parallel

algorithm thus leading to the following important, and useful, result (see [1]):

THEOREM 4.3 Every parallel algorithm using n processors and taking T steps can be sim-

ulated in a 2-level memory by a disk-aware sequential algorithm taking Õ((n/B) T) I/Os and O(n)

space.

This simulation is advantageous whenever T = o(B), which implies a sub-linear number of I/Os

o(n). This occurs in all cases in which the parallel algorithm takes a low poly-logarithmic time-

complexity. This is exactly the situation of parallel algorithms developed over the so called P-RAM

model of computation which assumes that all processors work independently of each other and they

can access in constant time an unbounded shared memory. This is an ideal model which was very

famous in the ’80s-’90s and led to the design of many powerful parallel techniques, which have

been then applied to distributed as well as disk-aware algorithms. Its main limit was to do not

account for conflicts among the many processors accessing the shared memory, and a simplified

communication among them. Nevertheless this simplified model allowed researchers to concentrate

onto the algorithmic aspects of parallel computation and thus design precious parallel schemes as

the ones described below.

4.3 A Divide&Conquer approach

The goal of this section is to show that the list-ranking problem can be solved more efficiently than

scanning or pointer-jumping a list. The algorithmic solution we describe in this section relies on

4-6 Paolo Ferragina

an interesting application of the Divide&Conquer paradigm, here specialized to work on a (mono-

directional) list of items.

Before going into the technicalities related to this application, let us recall briefly the main ideas

underlying the design of an algorithm, say Adc, based on the Divide&Conquer technique which

solves a problem P, formulated on n input data. Adc consists of three main phases:

Divide. Adc creates a set of k subproblems, say P1,P2, . . . ,Pk, having sizes n1, n2, . . . , nk,

respectively. They are identical to the original problem P but are formulated on smaller

inputs, namely ni < n.

Conquer. Adc is invoked recursively on the subproblems Pi, thus getting the solution si.

Recombine. Adc recombines the solutions si to obtain the solution s for the original problem

P. s is returned as output of the algorithm.

It is clear that the Divide&Conquer technique originates a recursive algorithm Adc, which needs

a base case to terminate. Typically, the base case consists of stopping Adc whenever the input

consists of few items, e.g. n ≤ 1. In these small-input cases the solution can be computed easily and

directly, possibly by enumeration.

The time complexity T (n) of Adc can be described as a recurrence relation, in which the base

condition is T (n) = O(1) for n ≤ 1, and for the other cases it is:

T (n) = D(n) + R(n) +
∑

i=1,...,k

T (ni)

where D(n) is the cost of the Divide step, R(n) is the cost of the Recombination step, and the last

term accounts for the cost of all recursive calls. These observations are enough for these notes; we

refer the reader to Chapter 4 in [3] for a deeper and clean discussion about the Divide&Conquer

technique and the Master Theorem that provides a mathematical solution to recurrence relations,

such as the one above.

We are ready now to specialize the Divide&Conquer technique over the List-Ranking problem.

The algorithm we propose is pretty simple and consists of three main steps:

Divide. We identify a set of items I = {i1, i2, . . . , ih} drawn from the input list L. Set I must

be an independent set, which means that the successor of each item in I does not belong

to I. This condition clearly guarantees that |I| ≤ n/2, because at most one item out of

two consecutive items may be selected. The algorithm will guarantee also that |I| ≥ n/c,

where c > 2.

Conquer. Form the list L∗ = L − I, by pointer-jumping only on the predecessors of the

removed items I. This way, at any recursive call, Rank[x] accounts for the number of

items between x and Succ[x] in the original input list. Solve recursively the list-ranking

problem over L∗. Notice that n/2 ≤ |L∗| ≤ (1− 1/c)n, so that the recursion acts on a list

which is a fractional part of L. This is crucial for the efficiency of the recursive calls.

Recombine. At this point we can assume that the recursive call has computed correctly the

list-ranking of all items in L∗. So, in this phase, we derive the rank of each item x ∈ I

as Rank[x] = Rank[x]+ Rank[Succ[x]], by adopting an update rule which reminds the

one used in pointer jumping. The correctness of Rank-computation is given by two facts:

(i) the independent-set property about I ensures that Succ[x] < I, thus Succ[x] ∈ L∗

and so its Rank is available; (ii) by induction, Rank[Succ[x]] accounts for the distance

of Succ[x] from the tail of L and Rank[x] accounts for the number of items between x

and Succ[x] in the original input list (as observed in Conquer’s step). Figure 4.4 depicts

the starting situation in which all ranks are 1 except the tail’s one, so the update is just

Rank[x] = 1 + Rank[Succ[x]]. In a general recursive step, Rank[x] ≥ 1 and so we

List Ranking 4-7

FIGURE 4.4: An example of reduction of a list due to the removal of the items in an Independent

Set, here specified by the bold nodes. The new list on the bottom is the one resulting from the

removal, the Rank-array is recomputed accordingly to reflect the missing items. Notice that the

Rank-values are 1, 0 for the tail, because we assume that L is the initial list.

have to take care of this when updating its value. As a result all items in L have their

Rank-value correctly computed and, thus, induction is preserved and the algorithm may

return to its invoking caller.

Figure 4.2 illustrates how an independent set (denoted by bold nodes) is removed from the list

L and how the Succ-links are properly updated. Notice that we are indeed pointer-jumping only

on the predecessors of the removed items (namely, the predecessors of the items in I), and that the

other items leave untouched their Succ-pointers.

This algorithm makes clear that its I/O-efficiency depends onto the Divide-step. In fact, Conquer-

step is recursive and thus can be estimated as T ((1 − 1
c
)n) I/Os; Recombine-step executes all re-

insertions simultaneously, given that the removed items are not contiguous (by definition of inde-

pendent set), and can be implemented by Theorem 4.1 in Õ(n/B) I/Os.

THEOREM 4.4 The list-ranking problem formulated over a list L of length n, can be solved

via a Divide&Conquer approach taking T (n) = I(n) + Õ(n/B) + T ((1 − 1
c
)n) I/Os, where I(n) is the

I/O-cost of selecting an independent set from L of size at least n/c (and, of course, at most n/2).

Deriving a large independent set is trivial if a scan of the listL is allowed, just pick one every two

items. But in our disk-context the list scanning is I/O-inefficient and this is exactly what we want to

avoid: otherwise we would have solved the list-ranking problem!

In what follows we will therefore concentrate on the problem of identifying a large independent

set within the list L. The solution must deploy only local information within the list, in order to

avoid the execution of many I/Os. We will propose two solutions: one is simple and randomized,

the other one is deterministic and more involved. It is surprising that the latter technique (called

deterministic coin tossing) has found applications in many other contexts, such as data compression,

text similarity, string-equality testing. It is a very general and powerful technique that, definitely,

deserves some attention in these notes.

4-8 Paolo Ferragina

4.3.1 A randomized solution

The algorithmic idea, as anticipated above, is simple: toss a fair coin for each item in L, and then

select those items i such that coin(i) = H but coin(Succ[i]) = T.2

The probability that the item i is selected is 1
4
, because this happens for one configuration (HT) out

of the four possible configurations. So the average number of items selected for I is n/4. By using

sophisticated probabilistic tools, such as Chernoff bounds, it is possible to prove that the number of

selected items is strongly concentrated around n/4. This means that the algorithm can repeat the

coin tossing until |I| ≥ n/c, for some c > 4. The strong concentration guarantees that this repetition

is executed a (small) constant number of times.

We finally notice that the check on the values of coin, for selecting I’s items, can be simulated

by Theorem 4.1 via few Sort and Scan primitives, thus taking I(n) = Õ(n/B) I/Os on average.

So, by substituting this value in Theorem 4.4, we get the following recurrence relation for the I/O-

complexity of the proposed algorithm: T (n) = Õ(n/B) + T (3n
4

). It can be shown by means of the

Master Theorem (see Chapter 4 in [3]) that this recurrence relation has solution Õ(n/B).

THEOREM 4.5 The list-ranking problem, formulated over a list L of length n, can be solved

with a randomized algorithm in Õ(n/B) I/Os on average.

4.3.2 Deterministic coin-tossing∞

The key property of the randomized process was the locality of I’s construction which allowed to

pick an item i by just looking at the results of the coins tossed for i itself and for its successor

Succ[i]. In this section we try to simulate deterministically this process by introducing the so

called deterministic coin-tossing strategy that, instead of assigning two coin values to each item, it

eventually assigns three coin values (hereafter indicated with 0, 1, 2). The final selection process

will then occur by selecting for I the items whose coin value is minimum among its adjacent items

in L. Therefore, here, three possible values and three possible items to be compared.

The pseudo-code of the algorithm follows.

Initialization. Assign to each item i the value coin(i) = i − 1. This way all items take a

different coin value, which is smaller than n. We represent these values in b = dlog ne

bits, and we denote by bitb(i) the binary representation of coin(i) using b bits.

Get 6-coin values. Repeat the following steps until coin(i) < 6, for all i:

• Compute the position π(i) where bitb(i) and bitb(Succ[i]) differ, and denote by

z(i) the bit-value of bitb(i) at that position.

• Compute the new coin-value for i as coin(i) = 2π(i) + z(i) and set the new binary-

length representation as b = dlog be + 1.

Get just 3-coin values. For each element i, such that coin(i) ∈ {3, 4, 5}, do coin(i) = {0, 1, 2} −

{coin(Succ[i]), coin(Pred[i])}.

Select for the independent set I those items i such that coin(i) is a local minimum, namely it

is smaller than coin(Pred[i]) and coin(Succ[i]), so that coin(i).

2The algorithm works also in the case that we exchange the role of head (H) and tail (T); but it does not work if we

choose the configurations HH or TT. Why?

List Ranking 4-9

Let us first discuss the correctness of the algorithm. At the beginning all coin-values are distinct,

and in the range {0, 1, . . . , n− 1}. By distinctness, the computation of π(i) is sound and 2π(i)+ z(i) ≤

2(b − 1) + 1 = 2b − 1 since coin(i) was represented with b bits and hence π(i) ≤ b − 1. Therefore,

the new value coin(i) can be represented with dlog be + 1 bits, and thus the update of b is correct

too.

A key observation is that the new value of coin(i) is still different of the coin-value of its adjacent

items in L, namely coin(Succ[i]) and coin(Pred[i]). We prove it by contradiction. Let us assume

that coin(i) = coin(Succ[i]) (the other case is similar), then 2π(i)+z(i) = 2π(Succ[i])+z(Succ[i]).

Since z denotes a bit value, the two coin-values are equal iff we have both π(i) = π(Succ[i]) and

z(i) = z(Succ[i]). But if this condition holds, then the two bit sequences bitb(i) and bitb(Succ[i])

cannot differ at bit-position π(i).

Easily it follows the correctness of the step which allows to go from 6-coin values to 3-coin

values, as well as it is immediate the proof that the selected items form an independent set because

of the minimality of coin(i) and distinctness of adjacent coin-values.

As far as the I/O-complexity is concerned, we start by introducing the function log∗ n = min{ j | log(j) n ≤

1}, where log(j) n is the repeated application of the logarithm function for j times to n. As an ex-

ample3 take n = 16 and compute log(0) 16 = 16, log(1) 16 = 4, log(2) 16 = 2, log(3) 16 = 1; thus

log∗ 16 = 3. It is not difficult to convince yourselves that log∗ n grows very much slowly, and indeed

its value is 5 for n = 265536.

In order to estimate the I/O-complexity, we need to bound the number of iterations needed by the

algorithm to reduce the coin-values to {0, 1, . . . , 5}. This number is log∗ n, because at each step the

reduction in the number of possible coin-values is logarithmic (b = dlog be + 1). All single steps

can be implemented by Theorem 4.1 via Sort and Scan primitives, thus taking Õ(n/B) I/Os. So

the construction of the independent set takes I(n) = Õ((n/B) log∗ n) = Õ(n/B) I/Os, by definition of

Õ(). The size of I can be lower bounded as |I| ≥ n/4 because the distance between two consecutive

selected items (local minima) is maximum when the coin-values form a bitonic sequence of the

form . . . , 0, 1, 2, 1, 0,

By substituting this value in Theorem 4.4 we get the following recurrence relation: T (n) =

Õ(n/B) + T (3n
4

). This is exactly the same recurrence relation we got for the randomized algorithm,

with the exception that now the I/O-bound is worst case and deterministic.

THEOREM 4.6 The list-ranking problem, formulated over a list L of length n, can be solved

with a deterministic algorithm in Õ(n/B) worst-case I/Os.

A comment is in order to conclude this chapter. The logarithmic term hidden in the Õ()-notation

has the form (log∗ n)(logM/B n), which can be safely assumed to be smaller than 15 because, in

practice, logM/B n ≤ 3 and log∗ n ≤ 5 for n up to 1 petabyte.

References

[1] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren

Erik Vengroff, Jeffrey Scott Vitter. External-Memory Graph Algorithms. ACM-SIAM

Symposium on Algorithms (SODA), 139-149, 1995.

[2] Joseph JaJa An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

3Recall that logarithms are in base 2 in these lectures.

4-10 Paolo Ferragina

[3] Tomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein. Introduction to

Algorithms. The MIT Press, third edition, 2009.

[4] Jeffrey Scott Vitter. Faster methods for random sampling. ACM Computing Surveys,

27(7):703–718, 1984.

