
8
Searching Strings by Substring

8.1 Notation and terminology . 8-1
8.2 The Suffix Array . 8-2

The substring-search problem • The LCP-array and its
construction∞ • Suffix-array construction

8.3 The Suffix Tree . 8-16
The substring-search problem • Construction from
Suffix Arrays and vice versa • McCreight’s algorithm∞

8.4 Some interesting problems . 8-23
Approximate pattern matching • Text Compression •

Text Mining

In this lecture we will be interested in solving the following problem, known as full-text searching

or substring searching.

The substring-search problem. Given a text string T [1, n], drawn from an alphabet of

size σ, retrieve (or just count) all text positions where a query pattern P[1, p] occurs as a

substring of T .

It is evident that this problem can be solved by brute-forcedly comparing P against every substring

of T , thus taking O(np) time in the worst case. But it is equivalently evident that this scan-based

approach is unacceptably slow when applied to massive text collections subject to a massive number

of queries, which is the scenario involving genomic databases or search engines. This suggests the

usage of a so called indexing data structure which is built over T before that searches start. A setup

cost is required for this construction, but this cost is amortized over the subsequent pattern searches,

thus resulting convenient in a quasi-static environment in which T is changed very rarely.
In this lecture we will describe two main approaches to substring searching, one based on arrays

and another one based on trees, that mimic what we have done for the prefix-search problem. The

two approaches hinge on the use of two fundamental data structures: the suffix array (shortly SA)

and the suffix tree (shortly ST). We will describe in much detail those data structures because their

use goes far beyond the context of full-text search.

8.1 Notation and terminology

We assume that text T ends with a special character T [n] = $, which is smaller than any other

alphabet character. This ensures that text suffixes are prefix-free and thus no one is a prefix of

another suffix. We use suffi to denote the i-th suffix of text T , namely the substring T [i, n]. The

following observation is crucial:

If P = T [i, i + p − 1], then the pattern occurs at text position i and thus we can state that P

is a prefix of the i-th text suffix, namely P is a prefix of the string suffi.

c© Paolo Ferragina, 2009-2012 8-1

8-2 Paolo Ferragina

As an example, if P =“siss” and T =“mississippi$”, then P occurs at text position 4 and indeed

it prefixes the suffix suff4 = T [4, 12] =“sissippi$”. For simplicity of exposition, and for historical

reasons, we will use this text as running example; nevertheless we point out that a text may be an

arbitrary sequence of characters, hence not necessarily a single word.

Given the above observation, we can form with all text suffixes the dictionary SUF(T) and state

that searching for P as a substring of T boils down to searching for P as a prefix of some string in

SUF(T). In addition, since there is a bijective correspondence among the text suffixes prefixed by P

and the pattern occurrences in T , then

1. the suffixes prefixed by P occur contiguously into the lexicographically sorted SUF(T),

2. the lexicographic position of P in SUF(T) immediately precedes the block of suffixes

prefixed by P.

An attentive reader may have noticed that these are the properties we deployed to efficiently sup-

port prefix searches. And indeed the solutions known in the literature for efficiently solving the

substring-search problem hinge either on array-based data structures (i.e. the Suffix Array) or on

trie-based data structures (i.e. the Suffix Tree). So the use of these data structures in pattern search-

ing is pretty immediate. What is challenging is the efficient construction of these data structures and

their mapping onto disk to achieve efficient I/O-performance. These will be the main issues dealt

with in this lecture.

Text suffixes Indexes

mississippi$ 1

ississippi$ 2

ssissippi$ 3

sissippi$ 4

issippi$ 5

ssippi$ 6

sippi$ 7

ippi$ 8

ppi$ 9

pi$ 10

i$ 11

$ 12

Sorted Suffixes SA Lcp

$ 12 0

i$ 11 1

ippi$ 8 1

issippi$ 5 4

ississippi$ 2 0

mississippi$ 1 0

pi$ 10 1

ppi$ 9 0

sippi$ 7 2

sissippi$ 4 1

ssippi$ 6 3

ssissippi$ 3 -

FIGURE 8.1: SA and lcp array for the string T =“mississippi$”.

8.2 The Suffix Array

The suffix array for a text T is the array of pointers to all text suffixes ordered lexicographically.

We use the notation SA(T) to denote the suffix array built over T , or just SA if the indexed text is

clear from the context. Because of the lexicographic ordering, SA[i] is the i-th smallest text suffix,

so we have that suffSA[1] < suffSA[2] < · · · < suffSA[n], where < is the lexicographical order between

strings. For space reasons, each suffix is represented by its starting position in T (i.e. an integer).

SA consists of n integers in the range [1, n] and hence it occupies O(n log n) bits.

Searching Strings by Substring 8-3

Another useful concept is the longest common prefix between two consecutive suffixes suffSA[i]

and suffSA[i+1]. We use lcp to denote the array of integers representing the lengths of those lcps.

Array lcp consists of n − 1 entries containing values smaller than n. There is an optimal and non

obvious linear-time algorithm to build the lcp-array which will be detailed in Section 8.2.3. The

interest in lcp rests in its usefulness to design efficient/optimal algorithms to solve various search

and mining problems over strings.

8.2.1 The substring-search problem

We observed that this problem can be reduced to a prefix search over the string dictionary SUF(T),

so it can be solved by means of a binary search for P over the array of text suffixes ordered lex-

icographically, hence SA(T). Figure 8.1 shows the pseudo-code which coincides with the classic

binary-search algorithm specialized to compare strings rather than numbers.

Algorithm 8.1 SubstringSearch(P, SA(T))

1: L = 1, R = n;

2: while (L , R) do

3: M = b(L + R)/2c;
4: if (strcmp(P, suffM) > 0) then

5: L = M + 1;

6: else

7: R = M;

8: end if

9: end while

10: return (strcmp(P, suffL) == 0);

A binary search in SA requires O(log n) string comparisons, each taking O(p) time in the worst

case.

LEMMA 8.1 Given the text T [1, n] and its suffix array, we can count the occurrences of a

pattern P[1, p] in the text taking O(p log n) time and O(log n) memory accesses in the worst case.

Retrieving the positions of these occ occurrences takes additional O(occ) time. The total required

space is n(log n + logσ) bits, where the first term accounts for the suffix array and the second term

for the text.

Figure 8.2 shows a running example, which highlights an interesting property: the comparison

between P and suffM does not need to start from their initial character. In fact one could exploit

the lexicographic sorting of the suffixes and skip the characters comparisons that have already been

carried out in previous iterations. This can be done with the help of three arrays:

• the lcp[1, n − 1] array;

• two other arrays Llcp[1, n − 1] and Rlcp[1, n − 1] which are defined for every triple

(L,M,R) that may arise in the inner loop of a binary search. We define Llcp[M] =

lcp(suffSA[L], suffSA[M]) and Rlcp[M] = lcp(suffSA[M], suffSA[R]), namely Llcp[M] ac-

counts for the prefix shared by the leftmost suffix suffSA[L] and the middle suffix suffSA[M]

of the range currently explored by the binary search; Rlcp[M] accounts for the prefix

shared by the rightmost suffix suffSA[R] and the middle suffix suffSA[M] of that range.

8-4 Paolo Ferragina

=⇒ $

| i$

| ippi$

| issippi$

| ississippi$

| → mississippi$

| pi$

| ppi$

| sippi$

| sissippi$

| ssippi$

=⇒ ssissippi$

Step (1)

$

i$

ippi$

issippi$

ississippi$

mississippi$

=⇒ pi$

| ppi$

| sippi$

| → sissippi$

| ssippi$

=⇒ ssissippi$

Step (2)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

=⇒ ssippi$

=⇒ ssissippi$

Step (3)

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

=⇒ ssippi$

ssissippi$

Step (4)

FIGURE 8.2: Binary search steps for the lexicographic position of the pattern P =“ssi” in “missis-

sippi$”.

We notice that each triple (L,M,R) is uniquely identified by its midpoint M because the execution

of a binary search defines actually a hierarchical partition of the array SA into smaller and smaller

sub-arrays delimited by (L,R) and thus centered in M. Hence we have O(n) triples overall, and these

three arrays occupy O(n) space in total.

We can build arrays Llcp and Rlcp in linear time by exploiting two different approaches. We

can deploy the observation that the lcp[i, j] between the two suffixes suffSA[i] and suffSA[j] can be

computed as the minimum of a range of lcp-values, namely lcp[i, j] = mink=i,..., j−1 lcp[k]. By

associativity of the min we can split the computation as lcp[i, j] = min{lcp[i, k], lcp[k, j]} where

k is any index in the range [i, j], so in particular we can set lcp[L,R] = min{lcp[L,M], lcp[M,R]}.
This implies that the arrays Llcp and Rlcp can be computed via a bottom-up traversal of the triplets

(L,M,R) in O(n) time. Another way to deploy the previous observation is to compute lcp[i, j]

on-the-fly via a Range-Minimum Data structure built over the array lcp (see Section 8.4.1). All of

these approaches take O(n) time and space, and thus they are optimal.

We are left with showing how the binary search can be speeded up by using these arrays. Consider

a binary-search iteration on the sub-array SA[L,R], and let M be the midpoint of this range (hence

M = (L + R)/2). A lexicographic comparison between P and suffSA[M] has to be made in order

to choose the next search-range between SA[L,M] and SA[M,R]. The goal is to compare P and

suffSA[M] without starting necessarily from their first character, but taking advantage of the previous

binary-search steps in order to infer, hopefully in constant time, their lexicographic comparison.

Surprisingly enough this is possible and requires to know, in addition to Llcp and Rlcp, the values

l = lcp(P, suffSA[L]) and r = lcp(P, suffSA[R]) which denote the number of characters the pattern P

shares with the strings at the extremes of the range currently explored by the binary search. At the

first step, in which L = 1 and R = n, these two values can be computed in O(p) time by comparing

character-by-character the involved strings. At a generic step, we assume that l and r are known

inductively, and show below how the binary-search step can preserve their knowledge after that we

move onto SA[L,M] or SA[M,R].

So let us detail the implementation of a generic binary-search step. We know that P lies between

suffSA[L] and suffSA[R], so P surely shares lcp[L,R] characters with these suffixes given that any

string (and specifically, all suffixes) in this range must share this number of characters (given that

they are lexicographically sorted). Therefore the two values l and r are larger (or equal) than k, as

well as it is larger (or equal) to k the number of characters m that the pattern P shares with suffSA[M].

Searching Strings by Substring 8-5

We could then take advantage of this last inequality to compare P with suffSA[M] starting from their

(k + 1)-th character. But actually we can do better because we know r and l, and these values can

be significantly larger than k, thus more characters of P have been already involved in previous

comparisons and so they are known.

We distinguish two main cases. If l = r then all suffixes in the range [L,R] share (at least)

l characters (hence suffSA[M] too) which are equal to P[1, l]. So the comparison between P and

suffSA[M] can start from their (l+ 1)-th character, which means that we are advancing in the scanning

of P. Otherwise (i.e. l , r), a more complicated test has to be done. Consider the case where l > r

(the other being symmetric). Here P shares more characters (i.e. l > r) with suffSA[L] than with

suffSA[R]; moreover, it is surely r = k because P[1, r] is shared by both suffSA[L] and suffSA[R] and k is

the longest shared prefix by these two suffixes, by definition.

So, given that l > r and we do not want to re-scan characters of P that have been already seen

(namely characters in P[1, l]), we define our algorithm in such a way that the order between P and

suffSA[M] can be inferred either comparing characters in P[l + 1, n], or comparing the values l and

Llcp[M] (which give us information about P[1, l]). We can thus distinguish three cases:

• If l < Llcp[M], then P is greater that suffSA[M] and we can set m = l. In fact, by induction,

P > suffSA[L] and their mismatch character lies at position l+1. By definition of Llcp[M]

and the hypothesis, we have that suffSA[L] shares more than l characters with suffSA[M].

So the mismatch between P and suffSA[M] is the same as it is between P and suffSA[L],

hence their comparison gives the same answer— i.e. P > suffSA[M]— and the search can

thus continue in the subrange SA[M,R]. We remark that this case does not induce any

character comparison.

• If l > Llcp[M], this case is similar as the previous one. We can conclude that P is smaller

than suffSA[M] and it is m = Llcp[M]. So the search continues in the subrange SA[L,M],

without additional character comparisons.

• If l = Llcp[M], then P shares l characters with suffSA[L] and suffSA[M]. So the comparison

between P and suffSA[M] can start from their (l+1)-th character. Eventually we determine

m and their lexicographic order. Here some character comparisons are executed, but the

knowledge about P’s characters advanced too.

It is clear that every binary-search step either advances the comparison of P’s characters, or it

does not compare any character but halves the range [L,R]. The first case can occur at most p times,

the second case can occur O(log n) times. We have therefore proved the following.

LEMMA 8.2 Given the three arrays lcp, Llcp and Rlcp built over a text T [1, n], we can count

the occurrences of a pattern P[1, p] in the text taking O(p+ log n) time in the worst case. Retrieving

the positions of these occ occurrences takes additional O(occ) time. The total required space is

O(n).

Proof We remind that searching for all strings having the pattern P as a prefix requires two

lexicographic searches: one for P and the other for P#, where # is a special character larger than

any other alphabet character. So O(p+ log n) character comparisons are enough to delimit the range

SA[i, j] of suffixes having P as a prefix. It is then easy to count the pattern occurrences in constant

time, as occ = j − i + 1, or print all of them in O(occ) time.

8-6 Paolo Ferragina

8.2.2 The LCP-array and its construction∞

Surprisingly enough the longest common prefix array lcp[1, n − 1] can be derived from the input

string T and its suffix array SA[1, n] in optimal linear time.1 This time bound cannot be obtained by

the simple approach that compares character-by-character the n− 1 contiguous pairs of text suffixes

in SA; as this takes Θ(n2) time in the worst case. The optimal O(n) time needs to avoid the re-

scanning of the text characters, so some property of the input text has to be proved and deployed

in the design of an algorithm that achieves this complexity. This is exactly what Kasai et al did in

2001 [8], their algorithm is elegant, deceptively simple, and optimal in time and space.

Sorted Suffixes SA SA positions

abcdef... j − 1 p − 1

abchi... i − 1 p

. . .

. . .

. . .

bcdef... j

. . .

. . .

. . .

bch... k q − 1

bchi... i q

FIGURE 8.3: Relation between suffixes and lcp values in the Kasai’s algorithm. Suffixes are shown

only with their starting characters, the rest is indicated with ... for simplicity.

For the sake of presentation we will refer to Figure 8.3 which illustrates clearly the main algorith-

mic idea. Let us concentrate on two consecutive suffixes in the text T , say suffi−1 and suffi, which

occur at positions p and q in the suffix array SA. And assume that we know inductively the value

of lcp[p − 1], storing the longest common prefix between SA[p − 1] = suff j−1 and the next suffix

SA[p] = suffi−1 in the lexicographic order. Our goal is to show that lcp[q − 1] storing the longest

common prefix between suffix SA[q − 1] = suffk and the next ordered suffix SA[q] = suffi, which

interests us, can be computed without re-scanning these suffixes from their first character but can

start where the comparison between SA[p − 1] and SA[p] ended. This will ensure that re-scanning

of text characters is avoided, precisely it is avoided the re-scanning of suffi−1, and as a result we will

get a linear time complexity.

We need the following property that we already mentioned when dealing with prefix search, and

that we restate here in the context of suffix arrays.

FACT 8.1 For any position x < y it holds lcp(suffSA[y−1], suffSA[y]) ≥ lcp(suffSA[x], suffSA[y]).

Proof This property derives from the observation that suffixes in SA are ordered lexicographi-

cally, so that, as we go farther from SA[y] we reduce the length of the shared prefix.

1Recall that lcp[i] = lcp(suffS A[i], suffS A[i+1]) for i < n.

Searching Strings by Substring 8-7

Let us now refer to Figure 8.3, concentrate on the pair of suffixes suff j−1 and suffi−1, and take their

next suffixes suff j and suffi in T . There are two possible cases: Either they share some characters

in their prefix, i.e. lcp[p − 1] > 0, or they do not. In the former case we can conclude that, since

lexicographically suff j−1 < suffi−1, the next suffixes preserve that lexicographic order, so suff j < suffi

and moreover lcp(suff j, suffi) = lcp[p − 1] − 1. In fact, the first shared character is dropped, given

the step ahead from j − 1 (resp. i − 1) to j (resp. i) in the starting positions of the suffixes, but

the next lcp[p − 1] − 1 shared characters (possibly none) remain, as well as remain their mismatch

characters that drives the lexicographic order. In the Figure above, we have lcp[p − 1] = 3 and the

shared prefix is abc, so when we consider the next suffixes their lcp is bc of length 2, their order is

preserved (as indeed suff j occurs before suffi), and now they lie not adjacent in SA.

FACT 8.2 If lcp(suffSA[y−1], suffSA[y]) > 0 then:

lcp(suffSA[y−1]+1, suffSA[y]+1) = lcp(suffSA[y−1], suffSA[y]) − 1

By Fact 8.1 and Fact 8.2, we can conclude the key property deployed by Kasai’s algorithm:

lcp[q−1] ≥ max{lcp[p−1]−1, 0}. This algorithmically shows that the computation of lcp[q−1]

can take full advantage of what we compared for the computation of lcp[p − 1]. By adding to

this the fact that we are processing the text suffixes rightward, we can conclude that the characters

involved in the suffix comparisons move themselves rightward and, since re-scanning is avoided,

their total number is O(n). A sketch of the Kasai’s algorithm is shown in Figure 8.2, where we make

use of the inverse suffix array, denoted by SA−1, which returns for every suffix its position in SA.

Referring to Figure 8.3, we have that SA−1[i] = p.

Algorithm 8.2 LCP-Build(char *T , int n, char **SA)

1: h = 0;

2: for (i = 1; i ≤ n, i++) do

3: q = SA−1[i];

4: if (q > 1) then

5: k = SA[q − 1];

6: if (h > 0) then

7: h − −;

8: end if

9: while (T [k + h] == T [i + h]) do

10: h++;

11: end while

12: lcp[q − 1] = h;

13: end if

14: end for

Step 4 checks whether suffq occupies the first position of the suffix array, in which case the lcp

with the previous suffix is undefined. The for-loop then scans the text suffixes suffi from left to right,

and for each of them it first retrieves the position of suffi in SA, namely i = SA[q], and its preceding

suffix in SA, namely k = SA[q − 1]. Then it extends their longest common prefix starting from

the offset h determined for suffi−1 via character-by-character comparison. This is the algorithmic

application of the above observations.
As far as the time complexity is concerned, we notice that h is decreased at most n times (once

per iteration of the for-loop), and it cannot move outside T (within each iteration of the for-loop),

8-8 Paolo Ferragina

so h ≤ n. This implies that h can be increased at most 2n times and this is the upper bound to the

number of character comparisons executed by the Kasai’s algorithm. The total time complexity is

therefore O(n).

We conclude this section by noticing that an I/O-efficient algorithm to compute the lcp-array is

still missing in the literature, some heuristics are known to reduce the number of I/Os incurred by

the above computation but an optimal O(n/B) I/O-bound is yet to come, if possible.

8.2.3 Suffix-array construction

Given that the suffix array is a sorted sequence of items, the most intuitive way to construct SA is

to use an efficient comparison-based sorting algorithm and specialize the comparison-function in

such a way that it computes the lexicographic order between strings. Algorithm 8.3 implements

this idea in C-style using the built-in procedure qsort as sorter and a properly-defined subroutine

Suffix cmp for comparing suffixes:

Suffix cmp(char ∗∗p, char ∗∗q){ return strcmp(∗p, ∗q) };

Notice that the suffix array is initialized with the pointers to the real starting positions in memory

of the suffixes to be sorted, and not the integer offsets from 1 to n as stated in the formal description

of SA of the previous pages. The reason is that in this way Suffix cmp does not need to know T ’s

position in memory (which would have needed a global parameter) because its actual parameters

passed during an invocation provide the starting positions in memory of the suffixes to be compared.

Moreover, the suffix array SA has indexes starting from 0 as it is typical of C-language.

Algorithm 8.3 Comparison Based Construction(char *T , int n, char **SA)

1: for (i = 0; i < n; i ++) do

2: SA[i] = T + i;

3: end for

4: qsort(SA, n, sizeof(char *), Suffix cmp);

A major drawback of this simple approach is that it is not I/O-efficient for two main reasons: the

optimal number O(n log n) of comparisons involves now variable-length strings which may consists

of up to Θ(n) characters; locality in SA does not translate into locality in suffix comparisons because

of the fact that sorting permutes the string pointers rather than their pointed strings. Both these

issues elicit I/Os, and turn this simple algorithm into a slow one.

THEOREM 8.1 In the worst case the use of a comparison-based sorter to construct the suffix

array of a given string T [1, n] requires O((n
B

)n log n) I/Os, and O(n log n) bits of working space.

In Section 8.2.3 we describe a Divide-and-Conquer algorithm— the Skew algorithm proposed

by Kärkkäinen and Sanders [7]— which is elegant, easy to code, and flexible enough to achieve

the optimal I/O-bound in various models of computations. In Section 8.2.3 we describe another

algorithm— the Scan-based algorithm proposed by BaezaYates, Gonnet and Sniders [6]— which is

also simple, but incurs in a larger number of I/Os; we nonetheless introduce this algorithm because

it offers the positive feature of processing the input data in passes (streaming-like) thus forces pre-

fetching, allows compression and hence it turns to be suitable for slow disks.

Searching Strings by Substring 8-9

The Skew Algorithm

In 2003 Kärkkäinen and Sanders [7] showed that the problem of constructing suffix-arrays can

be reduced to the problem of sorting a set of triplets whose components are integers in the range

[1,O(n)]. Surprisingly this reduction takes linear time and space thus turning the complexity of

suffix-array construction into the complexity of sorting atomic items, a problem about which we

discussed deeply in the previous chapters and for which we know optimal algorithms for hierarchical

memories and multiple disks. More than this, since the items to be sorted are integers bounded in

value by O(n), the sorting of the triplets takes O(n) time in the RAM model, so this is the optimal

time complexity of suffix-array construction in RAM. Really impressive!

This algorithm is named Skew in the literature, and it works in every model of computation for

which an efficient sorting primitive is available: disk, distributed, parallel. The algorithm hinges on

a divide&conquer approach that executes a 2
3

: 1
3

split, crucial to make the final merge-step easy to

implement. Previous approaches used the more natural 1
2

: 1
2

split (such as [2]) but were forced to

use a more sophisticated merge-step which needed the use of the suffix-tree data structure.

For the sake of presentation we use T [1, n] = t1t2 . . . tn to denote the input string and we assume

that the characters are drawn from an integer alphabet of size σ = O(n). Otherwise we can sort

the characters of T and rename them with integers in O(n), taking overall O(n logσ) time in the

worst-case. So T is a text of integers, taking Θ(log n) bits each; this will be the case for all texts

created during the suffix-array construction process. Furthermore we assume that tn = $, a special

symbol smaller than any other alphabet character, and logically pad T with an infinite number of

occurrences of $.

Given this notation, we can sketch the three main steps of the Skew algorithm:

Step 1. Construct the suffix array SA2,0 limited to the suffixes starting at positions P2,0 = {i :

i mod 3 = 2, or i mod 3 = 0}:

• Build a special string T 2,0 of length (2/3)n which compactly encodes all suffixes

of T starting at positions P2,0.

• Build recursively the suffix-array SA′ of T 2,0.

• Derive the suffix-array SA2,0 from SA′.

Step 2 Construct the suffix array SA1 of the remaining text suffixes starting at positions P1 =

{i : i mod 3 = 1}:

• For every i ∈ P1, represent suffix T [i, n] with a pair 〈T [i], pos(i + 1)〉, where it is

i + 1 ∈ P2,0.

• Assume to have pre-computed the array pos[i + 1] which provides the position of

the (i + 1)-th text suffix T [i + 1, n] in SA2,0.

• Radix-sort the above O(n) pairs.

Step 3. Merge the two suffix arrays into one:

• This is done by deploying the decomposition 2
3

: 1
3

which ensures a constant-time

lexicographic comparison between any pair of suffixes (see details below).

The execution of the algorithm is illustrated over the input string T [1, 12] =“mississippi$” whose

suffix array is SA = (12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3). In this example we have: P2,0 = {2, 3, 5, 6, 8, 9, 11, 12}
and P1 = {1, 4, 7, 10}.

Step 1. The first step is the most involved one and constitutes the backbone of the entire recursive

process. It lexicographically sorts the suffixes starting at the text positions P2,0. The resulting

8-10 Paolo Ferragina

array is denoted by SA2,0 and represents a sampled version of the final suffix array SA because it is

restricted to the suffixes starting at positions P2,0.
To efficiently obtain SA2,0, we reduce the problem to the construction of the suffix array for a

string T 2,0 of length about 2n
3

. This text consists of “characters” which are integers smaller than

≈ 2n
3

. Since we are again in the presence of a text of integers, of length proportionally smaller than

n, we can construct its suffix array by invoking recursively the construction procedure.
The key difficulty is how to define T 2,0 so that its suffix array may be used to derive easily

SA2,0, namely the sorted sequence of text suffixes starting at positions in P2,0. The elegant solution

consists of considering the two text suffixes T [2, n] and T [3, n], pad them with the special symbol

$ in order to have multiple-of-three length, and then decompose the resulting strings into triplets of

characters T [2, ·] = [t2, t3, t4][t5, t6, t7][t8, t9, t10] . . . and T [3, ·] = [t3, t4, t5][t6, t7, t8][t9, t10, t11]

The dot expresses the fact that we are considering the smallest integer, larger than n, that allows

those strings to have length which is a multiple of three.
With reference to the previous example, we have:

T [2, ·] = [i s s]
2

[i s s]
5

[i p p]
8

[i $ $]
11

T [3, ·] = [s s i]
3

[s s i]
6

[p p i]
9

[$ $ $]
12

We then construct the string R = T [2, ·] • T [3, ·], and thus we obtain:

R = [i s s]
2

[i s s]
5

[i p p]
8

[i $ $]
11

[s s i]
3

[s s i]
6

[p p i]
9

[$ $ $]
12

The key property on which the first step of the Skew algorithm hinges on, is the following:

Property 8.2 Every suffix T [i, n] starting at a position i ∈ P2,0, can be put in correspondence with

a suffix of R consisting of an integral sequence of triplets. Specifically, if i mod 3 = 0 then the text

suffix coincides exactly with a suffix of R; if i mod 3 = 2, then the text suffix prefixes a suffix of R

which nevertheless terminates with special symbol $.

The correctness of this property can be inferred easily by observing that any suffix T [i, n] starting

at a position in P2,0 is clearly a suffix of either T [2, ·] or T [3, ·], given that i > 0, and i mod 3 is either

0 or 2. Moreover, since i ∈ P2,0, it has the form i = 3 + 3k or i = 2 + 3k, for some k ≥ 0, and thus

T [i, n] occurs within R aligned to the beginning of some triplet.
By the previous running example, take i = 6 = 0 mod 3, the suffix T [6, 12] = ssippi$ occurs

at the second triplet of T [3, ·], which is the sixth triplet of R. Similarly, take i = 8 = 2 mod 3, the

suffix T [8, 12] = ippi$ occurs at the third triplet of T [2, ·], which is the third triplet of R. Notice

that, even if T [8, 12] is not a full suffix of R, we have that T [8, 12] ends with two $s, which will

constitute sort of end-delimiters.
The final operation is then to encode those triplets via integers, and thus squeeze R into a string

T 2,0 of 2n
3

integer-symbols, thus realizing the reduction in length we were aiming for above. This

encoding must be implemented in a way that the lexicographic comparison between two triplets can

be obtained by comparing those integers. In the literature this is called lexicographic naming and

can be easily obtained by radix sorting the triplets in R and associating to each distinct triplet its

rank in the lexicographic order. Since we have O(n) triplets, each consisting of symbols in a range

[0, n], their radix sort takes O(n) time.
In our example, the sorted triplets are labeled with the following ranks:

[$ $ $] [i $ $] [i p p] [i s s] [i s s] [p p i] [s s i] [s s i] sorted triplets

0 1 2 3 3 4 5 5 sorted ranks

R = [i s s] [i s s] [i p p] [i $ $] [[s s i] [s s i] [p p i] [$ $ $] triplets

3 3 2 1 5 5 4 0 T 2,0 (string of ranks)

Searching Strings by Substring 8-11

As a result of the naming of the triplets in R, we get the new text T 2,0 = 33215540 whose length

is 2n
3

. The crucial observation here is that we have a text T 2,0 which is again a text of integers as T ,

taking O(log n) bits per integer (as before), but T 2,0 has length shorter than T , so that we can invoke

recursively the suffix-array construction procedure over it.

It is evident from the discussion above that, since the ranks are assigned in the same order as the

lexicographic order of their triplets, the lexicographic comparison between suffixes of R (aligned to

the triplets) equals the lexicographic comparison between suffixes of T 2,0.

Here Property 8.2 comes into play, because it defines a bijection between suffixes of R aligned to

triplet beginnings, hence suffixes of T 2,0, with text suffixes starting in P2,0. This correspondence is

then deployed to derive SA2,0 from the suffix array of T 2,0.

In our running example T 2,0 = 33215540, the suffix-array construction algorithm is applied re-

cursively thus deriving the suffix-array (8, 4, 3, 2, 1, 7, 6, 5). We can turn this suffix array into SA2,0

by turning the positions in T 2,0 into positions in T . This can be done via simple arithmetic oper-

ations, given the layout of the triplets inT 2,0, and obtains in our running example the suffix array

SA2,0 = (12, 11, 8, 5, 2, 9, 6, 3).

Before concluding the description of step 1, we add two notes. The first one is that, if all symbols

in T 2,0 are different, then we do not need to recurse because suffixes can be sorted by looking just at

their first characters. The second observation is for programmers that should be careful in turning

the suffix-positions in T 2,0 into the suffix positions in T to get the final SA2,0, because they must take

into account the layout of the triplets of R.

Step 2. Once the suffix array SA2,0 has been built (recursively), it is possible to sort lexicographically

the remaining suffixes of T , namely the ones starting at the text positions i mod 3 = 1, in a simple

way. We decompose a suffix T [i, n] as composed by its first character T [i] and its remaining suffix

T [i + 1, n]. Since i ∈ P1, the next position i + 1 ∈ P2,0, and thus the suffix T [i + 1, n] occurs

in SA2,0. We can then encode the suffix T [i, n] with a pair of integers 〈T [i], pos(i + 1)〉, where

pos(i+1) denotes the lexicographic rank in SA2,0 of the suffix T [i+1, n]. If i+1 = n+1 then we set

pos(n+1) = 0 given that the character $ is assumed to be smaller than any other alphabet character.

Given this observation, two text suffixes starting at positions in P1 can then be compared in

constant time by comparing their corresponding pairs. Therefore SA1 can be computed in O(n) time

by radix-sorting the O(n) pairs encoding its suffixes.

In our example, this boils down to radix-sort the pairs:

Pairs/suffixes: 〈m, 4〉 〈s, 3〉 〈s, 2〉 〈p, 1〉
1 4 7 10 starting positions in P1

Sorted pairs/suffixes: 〈m, 4〉 < 〈p, 1〉 < 〈s, 2〉 < 〈s, 3〉
1 10 7 4 SA1

Step 3. The final step merges the two sorted arrays SA1 and SA2,0 in linear O(n) time by resorting

an interesting observation which motivates the split 2
3

: 1
3
. Let us take two suffixes T [i, n] ∈ SA1

and T [j, n] ∈ SA2,0, which we wish to lexicographically compare for implementing the merge-step.

They belong to two different suffix arrays so we have no lexicographic relation known for them, and

we cannot compare them character-by-character because this would incur in a very high cost. We

deploy a decomposition idea similar to the one exploited in Step 2 above, which consists of looking

at a suffix as composed by one or two characters plus the lexicographic rank of its remaining suffix.

This decomposition becomes effective if the remaining suffixes of the compared ones lie in the same

suffix array, so that their rank is enough to get their order in constant time. Elegantly enough this

is possible with the split 2
3

: 1
3
, but it could not be possible with the split 1

2
: 1

2
. This observation is

implemented as follows:

8-12 Paolo Ferragina

1. if j mod 3 = 2 then we compare T [j, n] = T [j]T [j+1, n] against T [i, n] = T [i]T [i+1, n].

Both suffixes T [j+ 1, n] and T [i+ 1, n] occur in SA2,0 (given that their starting positions

are congruent 0 or 2mod 3, respectively), so we can derive the above lexicographic com-

parison by comparing the pairs 〈T [i], pos(i+1)〉 and 〈T [j], pos(j+1)〉. This comparison

takes O(1) time, provided that the array pos is available.2

2. if j mod 3 = 0 then we compare T [j, n] = T [j]T [j + 1]T [j + 2, n] against T [i, n] =

T [i]T [i+ 1]T [i+ 2, n]. Both the suffixes T [j+ 2, n] and T [i+ 2, n] occur in SA2,0 (given

that their starting positions are congruent 0 or 2mod 3, respectively), so we can derive

the above lexicographic comparison by comparing the triples 〈T [i],T [i + 1], pos(i + 2)〉
and 〈T [j],T [j+1], pos(j+2)〉. This comparison takes O(1) time, provided that the array

pos is available.

In our running example we have that T [8, 11] < T [10, 11], and in fact 〈i, 5〉 < 〈p, 1〉. Also we

have that T [7, 11] < T [6, 11] and in fact 〈s, i, 5〉 < 〈s, s, 2〉. In the following figure we depict all

possible pairs of triples which may be involved in a comparison, where (??) and (???) denote the

pairs for rule 1 and 2 above, respectively. Conversely (?) denotes the starting position in T of the

suffix. Notice that, since we do not know which suffix of SA2,0 will be compared with a suffix of SA1

during the merging process, for each of the latter suffixes we need to compute both representations

(??) and (???), hence as a pair and as a triplet.3

SA1 SA2,0

1 10 7 4 12 11 8 5 2 9 6 3 (?)

〈m, 4〉 〈p, 1〉 〈s, 2〉 〈s, 3〉 〈i, 0〉 〈i, 5〉 〈i, 6〉 〈i, 7〉 (??)

〈m, i, 7〉 〈p, i, 0〉 〈s, i, 5〉 〈s, i, 6〉 〈$, $,−1〉 〈p, p, 1〉 〈s, s, 2〉 〈s, s, 3〉 (???)

At the end of the merge step we obtain the final suffix array: SA = (11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3).

From the discussion above it is clear that every step can be implemented via the sorting or the

scanning of a set of n atomic items, which are possibly triplets of integers, taking each triplet

O(log n) bits, so one memory word. Therefore the proposed method can be seen as a algorithmic

reduction of the suffix-array construction problem to the classic problem of sorting n-items. This

problem has been solved optimally in several models of computation, for the case of the two-level

memory model see Chapter 5.

For what concerns the RAM model, the time complexity of the Skew algorithm can be modeled

by the recurrence T (n) = T (2n
3

) + O(n), because Steps 2 and 3 cost O(n) and the recursive call is

executed over the string T 2,0 whose length is (2/3)n. This recurrence has solution T (n) = O(n),

which is clearly optimal. For what concerns the two-level memory model, the Skew algorithm can

be implemented in O(n
B

logM/B
n
M

) I/Os, that is the I/O-complexity of sorting n atomic items.

THEOREM 8.3 The Skew algorithm builds the suffix array of a text string T [1, n] in O(S ort(n))

I/Os and O(n/B) disk pages. If the alphabet Σ has size polynomial in n, the CPU time is O(n).

The Scan-based Algorithm∞

Before the introduction of the Skew algorithm, the best known disk-based algorithm was the one

proposed by Baeza-Yates, Gonnet and Sniders in 1992 [6]. It is also a divide&conquer algorithm

2Of course, the array pos can be derived from SA2,0 in linear time, since it is its inverse.
3Recall that pos(n) = 0, and for the sake of the lexicographic order, we can set pos(j) = −1, for all j > n.

Searching Strings by Substring 8-13

whose divide step is strongly unbalanced, thus it executes a quadratic number of suffix comparisons

which induce a cubic time complexity. Nevertheless the algorithm is fast in practice because it

processes the data into passes thus deploying the high throughput of modern disks.

Let ` < 1 be a positive constant, properly fixed to build the suffix array of a text piece of m = `M

characters in internal memory. Then assume that the text T [1, n] is logically divided into pieces of

m characters each, numbered rightward: namely T = T1T2 · · · Tn/m where Th = T [hm + 1, (h + 1)m]

for h = 0, 1, The algorithm computes incrementally the suffix array of T in Θ(n/M) stages,

rather than the logarithmic number of stages of the Skew algorithm. At the beginning of stage h,

we assume to have on disk the array SAh that contains the sorted sequence of the first hm suffixes

of T . Initially h = 0 and thus SA0 is the empty array. In the generic h-th stage, the algorithm loads

the next text piece T h+1 in internal memory, builds SA′ as the sorted sequence of suffixes starting in

T h+1, and then computes the new SAh+1 by merging the two sorted sequences SAh and SA′.

There are two main issues when detailing this algorithmic idea in a running code: how to effi-

ciently construct SA′, since its suffixes start in T h+1 but may extend outside that block of characters

up to the end of T ; and how to efficiently merge the two sorted sequences SAh and SA′, since they

involve suffixes whose length may be up to Θ(n) characters. For the first issue the algorithm does

not implement any special trick, it just compares pairs of suffixes character-by-character in O(n)

time and O(n/B) I/Os. This means that over the total execution of the O(n/M) stages, the algorithm

takes O(n
B

n
m

m log m) = O(n2

B
log m) I/Os to construct SA′.

For the second issue, we note that the merge between SA′ with SAh is executed in a smart way by

resorting the use of an auxiliary array C[1,m + 1] which counts in C[j] the number of suffixes of

SAh that are lexicographically greater than the SA′[j−1]-th text suffix and smaller than the SA′[j]-th

text suffix. Two special cases occur if j = 1,m + 1: in the former case we assume that SA′[0] is

the empty suffix, in the latter case we assume that SA′[m + 1] is a special suffix larger than any

string. Since SAh is longer and longer, we process it streaming-like by devising a method that scans

rightward the text T (from its beginning) and then searches each of its suffixes by binary-search in

SA′. If the lexicographic position of the searched suffix is j, then the entry C[j] is incremented. The

binary search may involve a part of a suffix which lies outside the block T h+1 currently in internal

memory, thus taking O(n/B) I/Os per binary-search step. Over all the n/M stages, this binary search

takes O(
∑n/m−1

h=0
n
B

(hm) log m) = O(n3

MB
log M) I/Os.

Array C is then exploited in the next substep to quickly merge the two arrays SA′ (residing in

internal memory) and SAh (residing on disk): C[j] indicates how many consecutive suffixes of SAh

lexicographically lie after SA′[j−1] and before SA′[j]. Hence a disk scan of SAh suffices to perform

the merging process in O(n/B) I/Os.

THEOREM 8.4 The Scan-based algorithm builds the suffix array of a text string T [1, n] in

O(n3

MB
log M) I/Os and O(n/B) disk pages.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis would classify

this algorithm as not interesting. However, in practical situations it is very reasonable to assume that

each suffix comparison finds in internal memory all the characters used to compare the two involved

suffixes. And indeed the practical behavior of this algorithm is better described by the formula

O(n2

MB
) I/Os. Additionally, all I/Os in this analysis are sequential and the actual number of random

seeks is only O(n/M) (i.e., at most a constant number per stage). Consequently, the algorithm takes

fully advantage of the large bandwidth of modern disks and of the high speed of current CPUs.

As a final notice we remark that the suffix arrays SAh and the text T are scanned sequentially, so

some form of compression can be adopted to reduce the I/O-volume and thus further speed-up the

underlying algorithm.

8-14 Paolo Ferragina

Before detailing a significant improvement to the previous approach, let us concentrate on the

same running example used in the previous section to sketch the Skew algorithm.

1 2 3 4 5 6 7 8 9 10 11 12

T [1, 12] = m i s s i s s i p p i $

Suppose that m = 3 and that, at the beginning of stage h = 1, the algorithm has already pro-

cessed the text block T 0 = T [1, 3] = mis and thus stored on disk the array SA1 = (2, 1, 3)

which corresponds to the lexicographic order of the text suffixes which start in that block: namely,

mississippi$, ississippi$ and ssissippi$. During the stage h = 1, the algorithm loads in

internal memory the next block T 1 = T [4, 6] = sis and lexicographically sorts the text suffixes

which start in positions [4, 6] and extend to the end of T , see figure 8.4.

Text suffixes sissippi$ issippi$ ssippi$

⇓
Lexicographic ordering

⇓
Sorted suffixes issippi$ sissippi$ ssippi$

SA′ 5 4 6

FIGURE 8.4: Stage 1, step 1, of the Scan-based algorithm.

The figure shows that the comparison between the text suffixes: T [4, 12] = sissippi$ and

T [6, 12] = ssippi$ involves characters that lie outside the text piece T [4, 6] loaded in internal

memory, so that their comparison induces some I/Os.

The final step merges SA1 = (2, 1, 3) with SA′ = (5, 4, 6), in order to compute SA2. This step

uses the information of the counter array C. In this specific running example, see Figure 8.5, it

is C[1] = 2 because two suffixes T [1, 12] = mississippi$ and T [2, 12] = ississippi$ are

between the SA′[0]-th suffix issippi$ and the SA′[1]-th suffix sissippi$.

Suffix Arrays SA′ = [5, 4, 6] SA1 = [2, 1, 3]
︸ ︷︷ ︸

Merge via C ⇓ C=[0,2,0,1]

SA2 = [5, 2, 1, 4, 6, 3]

FIGURE 8.5: Stage 1, step 3, of the Scan-based algorithm

The second stage is summarized in Figure 8.6 where the text substring T 2 = T [7, 9] = sip is

loaded in memory and the suffix array SA′ for the suffixes starting at positions [7, 9] is built. Then,

the suffix array SA′ is merged with the suffix array SA2 residing on disk and containing the suffixes

which start in T [1, 6].

The third and last stage is summarized in Figure 8.7 where the substring T 3 = T [10, 12] = pi$

is loaded in memory and the suffix array SA′ for the suffixes starting at positions [10, 12] is built.

Searching Strings by Substring 8-15

Stage 2:

(1) Load into internal memory T 2 = T [7, 9] = sip.

(2) Build SA′ for the suffixes starting in [7, 9]:

Text suffixes sippi$ ippi$ ppi$

⇓
Lexicographic ordering

⇓
Sorted suffixes ippi$ ppi$ sippi$

SA′ 8 9 7

(3) Merge SA′ with SA2 exploiting C:

Suffix Arrays SA′ = [8, 9, 7] SA2 = [5, 2, 1, 4, 6, 3]
︸ ︷︷ ︸

Merge via C ⇓ C=[0,3,0,3]

SA3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]

FIGURE 8.6: Stage 2 of the Scan-based algorithm.

Then, the suffix array SA′ is merged with the suffix array on disk SA3 containing the suffixes which

start in T [1, 9].
The performance of this algorithm can be improved via a simple observation [4]. Assume that,

at the beginning of stage h, in addition to the SAh we have on disk a bit array, called gth, such that

gth[i] = 1 if and only if the suffix T [(hm + 1) + i, n] is Greater Than the suffix T [(hm + 1), n]. The

computation of gt can occur efficiently, but this technicality is left to the original paper [4] and not

detailed here.
During the h-th stage the algorithm loads into internal memory the substring t[1, 2m] = T hT h+1

(so this is double in size with respect to the previous proposal) and the binary array gth+1[1,m − 1]

(so it refers to the second block of text loaded in internal memory). The key observation is that

we can build SA′ by deploying the two arrays above without performing any I/Os, other than the

ones needed to load t[1, 2m] and gth+1[1,m − 1]. This seems surprising, but it descends from the

fact that any two text suffixes starting at positions i and j within T h, with i < j, can be compared

lexicographically by looking first at their characters in the substring t, namely at the strings t[i,m]

and t[j, j + m − i]. These two strings have the same length and are completely in t[1, 2m], hence in

internal memory. If these strings differ, their order is determined and we are done; otherwise, the

order between these two suffixes is determined by the order of the remaining suffixes starting at the

characters t[m + 1] and t[j + m − i + 1]. This order is given by the bit stored in gth+1[j − i], also

available in internal memory.
This argument shows that the two arrays t and gth+1 contain all the information we need to build

SAh+1 working in internal memory, and thus without performing any I/Os.

THEOREM 8.5 The new variant of the Scan-based algorithm builds the suffix array of a string

T [1, n] in O(n2

MB
) I/Os and O(n/B) disk pages.

As an example consider stage h = 1 and thus load in memory the text substring t = T hT h+1 =

8-16 Paolo Ferragina

Stage 3:

(1) Load into internal memory T 3 = T [10, 12] = pi$.

(2) Build SA′ for the suffixes starting in [10, 12]:

Text suffixes pi$ i$ $

⇓
Lexicographic ordering

⇓
Sorted suffixes $ i$ pi$

SA′ 12 11 10

(3) Merge SA′ with SA3 exploiting C:

Suffix Arrays SA′ = [12, 11, 10] SA3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]
︸ ︷︷ ︸

Merge via C ⇓ C=[0,0,4,5]

SA4 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]

FIGURE 8.7: Stage 3 of the Scan-based algorithm.

T [4, 9] = sis sip and the array gt2 = (1, 0). Now consider the positions i = 1 and j = 3 in t, we can

compare the text suffixes starting at these positions by first taking the substrings t[1, 3] = T [4, 6] =

sis with t[3, 5] = T [6, 9] ssi. The strings are different so we obtain their order without accessing

the disk. Now consider the positions i = 3 and j = 4 in t, they would not be taken into account by

the algorithm since the block has size 3, but let us consider them for the sake of explanation. We

can compare the text suffixes starting at these positions by first taking the substrings t[3, 3] = s with

t[4, 4] = s. The strings are not different so we use gt2[j− i] = gt2[1] = 1, hence the remaining suffix

T [4, n] is lexicographically greater than T [5, n] and this can be determined again without any I/Os.

8.3 The Suffix Tree

The suffix tree is a fundamental data structure used in many algorithms processing strings [5]. In its

essence it is a compacted trie that stores all suffixes of an input string, each suffix is represented by

a (unique) path from the root of the trie to one of its leaves. We already discussed compacted tries

in the previous chapter, now we specialize the description in the context of suffix trees and point

out some issues, and their efficient solutions, that arise when the dictionary of indexed strings is

composed by suffixes of one single string.

Let us denote the suffix tree built over an input string T [1, n] as STT (or just ST when the input

is clear from the context) and assume, as done for suffix arrays, that the last character of T is the

special symbol $ which is smaller than any other alphabet character. The suffix tree has the following

properties:

1. Each suffix of T is represented by a unique path descending from root of ST to one of

its leaves. So there are n leaves, one per text suffix, and each leaf is labeled with the

starting position in T of its corresponding suffix.

Searching Strings by Substring 8-17

2. Each internal node of ST has at least two outgoing edges. So there are less than n internal

nodes and less than 2n − 1 edges. Every internal node u spells out a text substring,

denoted by s[u], which prefixes everyone of the suffixes descending from u in the suffix

tree. Typically the value |s[u]| is stored as satellite information of node u, and we use

occ[u] to indicate the number of leaves descending from u.

3. The edge labels are non empty substrings of T . The labels of the edges spurring from

any internal node start with different characters, called branching characters. Edges are

assumed to be ordered alphabetically according to their branching characters. So every

node has at most σ outgoing edges.4

In Figure 8.8 we show the suffix tree built over our exemplar text T [1, 12] = mississippi$.

The presence of the special symbol T [12] = $ ensures that no suffix is a prefix of another suffix of

T and thus every pair of suffixes differs in some character. So the paths from the root to the leaves

of two different suffixes coincide up to their common longest prefix, which ends up in an internal

node of ST .

r

12

$

u

11

$

8

p
p
i
$

x

5

$
i
p
p

2

i
s
s
i
p
p
i
$

ssi

i

1

m
i
s
s
i
s
s
i
p
p
i
$

v

10

$i

9

pi$

p

w

y

7

$
i
p
p

4

s
s
i
p
p
i
$

i
z

6

$
i
p
p

3

s
s
i
p
p
i
$

si

s

FIGURE 8.8: The suffix tree of the string mississippi$

It is evident that we cannot store explicitly the substrings labeling the edges because this would

end up in a total space complexity of Θ(n2). You can convince yourself by building the suffix

tree for the string consisting of all distinct characters, and observe that the suffix tree consists of

one root connected to n leaves with edges representing all suffixes. We can circumvent this space

explosion by encoding the edge labels with pairs of integers which represent the starting position

of the labeling substring and its length. With reference to Figure 8.8 we have that the label of the

edge leading to leaf 5, namely the substring T [9, 12] = ppi$, can be encoded with the integer pair

〈9, 4〉, where 9 is the offset in T and 4 is the length of the label. Other obvious encodings could

be possible — say the pair 〈9, 12〉 indicating the starting and ending position of the label—, but we

will not detail them here. Anyway, whichever is the edge encoding adopted, it uses O(1) space, and

thus the storage of all edge labels takes O(n) space, independently of the indexed string.

4The special character $ is included in the alphabet Σ.

8-18 Paolo Ferragina

FACT 8.3 The suffix tree of a string T [1, n] consists of n leaves, at most n− 1 internal nodes and

at most 2n − 2 edges. Its space occupancy is O(n), provided that a proper edge-label encoding is

adopted.

As a final notation, we call locus of a text substring t the node v whose spelled string is exactly

t, hence s[v] = t. We call extended locus of t′ the locus of its shortest extension that has defined

locus in ST . In other words, the path spelling the string t′ in ST ends within an edge label, say the

label of the edge (u, v). This way s[u] prefixes t′ which in turn prefixes s[v]. Therefore v is the

extended locus of t′. Of course if t′ has a locus in ST then this coincides with its extended locus.

As an example, the node z of the suffix tree in Figure 8.8 is the locus of the substring ssi and the

extended locus of the substring ss.

There are few important properties that the suffix-tree data structure satisfies, they pervade most

algorithms which hinge on this powerful data structure. We summarize few of them:

Property 8.6 Let α be a substring of the text T , then there exists an internal node u such that

s[u] = α (hence u is the locus of α) iff they do exist at least two occurrences of α in T followed by

distinct characters.

As an example, take node x in Figure 8.8, the substring s[x] = issi occurs twice in T at positions

2 and 5, followed by characters i and p, respectively.

Property 8.7 Let α be a substring of the text T that has extended locus in the suffix tree. Then every

occurrence of α is followed by the same character in T .

As an example, take the substring iss that has node x as extended locus in Figure 8.8. This

substring occurs twice in T at positions 2 and 5, followed always by character i.

Property 8.8 Every internal node u spells out a substring s[u] of T which occurs at the positions

occ[u] and is maximal, in the sense that it cannot be extended by one character and yet occur at

these positions.

Now we introduce the notion of lowest common ancestor (shortly, lca) in trees, which is defined

for every pair of leaves and denotes the deepest node being ancestor of both leaves in input. As an

example in Figure 8.8, we have that u is the lca of leaf 8 and 2. Now we turn lca between leaves

into lcp between their corresponding suffixes.

Property 8.9 Given two suffixes T [i, n] and T [j, n], say ` is the length of the longest common prefix

between them. This value can be identified by computing the lowest common ancestor a(i, j) between

the leaves in the suffix tree corresponding to those two suffixes. Therefore, we have s[a(i, j)] =

lcp(T [i, n],T [j, n]).

As an example, take the suffixes T [11, 12] = i$ and T [5, 12] = issippi$, their lcp is the

single character i and the lca between their leaves is the node u, which indeed spells out the string

s[u] = i.

8.3.1 The substring-search problem

The search for a pattern P[1, p] as a substring of the text T [1, n], with the help of the suffix tree ST ,

consists of a tree traversal which starts from its root and proceeds downward as pattern characters

are matched against characters labeling the tree edges (see Figure 8.9). Note that, since the first

character of the edges outgoing from each traversed node is distinct, the matching of P can follow

only one downward path. If the traversal determines a mismatch character, the pattern P does not

Searching Strings by Substring 8-19

occur in T ; otherwise the pattern is fully matched, the extended locus of P is found, and all leaves of

ST descending from this node identify all text suffixes which are prefixed by P. The text positions

associated to these descending leaves are the positions of the occ occurrences of the pattern P in

T . These positions can be retrieved in O(occ) time by visiting the subtree that descends from the

extended locus of P. In fact this subtree has size O(occ) because its internal nodes have (at least)

binary fan-out and consists of occ leaves.

FIGURE 8.9: Two examples of substring searches over the suffix tree built for the text banana$.

The search for the pattern P = anas fails, the other for the pattern P = na is successful.

In the running example of Figure 8.9, the pattern P = na occurs twice in T and in fact the traversal

of ST fully matches P and stops at the node z, from which descend two leaves labeled 3 and 5. And

indeed the pattern P occurs at positions 3 and 5 of T , since it prefixes the two suffixes T [3, 12] and

T [5, 12]. The cost of pattern searching is O(ptσ+occ) time in the worst case, where tσ is the time to

branch out of a node during the tree traversal. This cost depends on the alphabet size σ and the kind

of data structure used to store the branching characters of the edges spurring from each node. We

discussed this issue in the previous Chapter, when solving the prefix-search problem via compacted

tries. There we observed that tσ = O(1) if we use a perfect-hash table indexed by the branching

characters; it is tσ = O(logσ) if we use a plain array and the branching is implemented by a binary

search. In both cases the space occupancy is optimal, in that it is linear in the number of branching

edges, and thus O(n) overall.

FACT 8.4 The occ occurrences of a pattern P[1, p] in a text T [1, n] can be found in O(p + occ)

time and O(n) space by using a suffix tree built on the input text T , in which the branching characters

at each node are indexed via a perfect hash table.

8.3.2 Construction from Suffix Arrays and vice versa

It is not difficult to observe that the suffix array SA of the text T can be obtained from its suffix tree

ST by performing an in-order visit: each time a leaf is encountered, the suffix-index stored in this

leaf is written into the suffix array SA; each time an internal node u is encountered, its associated

value is written into the array lcp.

8-20 Paolo Ferragina

FACT 8.5 Given the suffix tree of a string T [1, n], we can derive in O(n) time and space the

corresponding suffix array SA and the longest-common-prefix array lcp.

Vice versa, we can derive the suffix tree ST from the two arrays SA and lcp in O(n) time as

follows. The algorithm constructs incrementally ST starting from a tree, say ST1, that contains a

root node denoting the empty string and one leaf labeled SA[1], denoting the first suffix of T and

thus this entire string. At step i > 1, we have inductively constructed the partial suffix tree STi−1

which contains all the (i − 1)-smallest suffixes of T , hence the suffixes in SA[1, i − 1]. During step

i, the algorithm inserts in STi−1 the i-th smallest suffix SA[i]. This requires the addition of one leaf

labeled SA[i] and, as we will prove next, at most one single internal node which becomes the father

of the inserted leaf. After n steps, the final tree STn will be the suffix tree of the string T [1, n].

The key issue here is to show how to insert the leaf S A[i] into STi−1 in constant amortized time.

This will be enough to ensure a total time complexity of O(n) for the overall construction process.

The main difficulty consists in the detection of the node u father of the leaf S A[i]. This node u

may already exist in STi−1, in this case S A[i] is attached to u; otherwise, u must be created by

splitting an edge of STi−1. Whether u exists or not is discovered by percolating STi−1 upward (and

not downward!), starting from the leaf S A[i− 1], which is the rightmost one in STi−1 because of the

lexicographic order, and stopping when a node x is reached such that lcp[i] ≤ |s[x]|. Recall that

lcp[i] is the number of characters that the text suffix suffSA[i−1] shares with next suffix suffSA[i] in the

lexicographic order. The leaves corresponding to these two suffixes are of course consecutive in the

in-order visit of ST . At this point if lcp[i] = |s[x]|, the node x is the parent of the leaf labeled SA[i],

we connect them and the new STi is obtained. If instead lcp[i] < |s[x]|, the edge leading to x has to

be split by inserting a node u that has two children: the left child is x and the right child is the leaf

SA[i] (because it is lexicographically larger than SA[i − 1]). This node is associated with the value

lcp[i]. The reader can run this algorithm over the string T [1, 12] = mississippi$ and convince

herself that the final suffix tree ST12 is exactly the one showed in Figure 8.8.

The time complexity of the algorithm derives from an accounting argument which involves the

edges traversed by the upward percolation of ST . Since the suffix suffSA[i] is lexicographically greater

than the suffix suffSA[i−1], the leaf labeled SA[i] lies to the right of the leaf SA[i − 1]. So every time

we traverse an edge, we either discard it from the next traversals and proceed upward, or we split

it and a new leaf is inserted. In particular all edges from SA[i − 1] to x are never traversed again

because they lie to the left of the newly inserted edge (u, SA[i]). The total number of these edges

is bounded by the total number of edges in ST , which is O(n) from Fact 8.3. The total number of

edge-splits equals the number of inserted leaves, which is again O(n).

FACT 8.6 Given the suffix array and the longest-common-prefix array of a string T [1, n], we can

derive the corresponding suffix tree in O(n) time and space.

8.3.3 McCreight’s algorithm∞

A naı̈ve algorithm for constructing the suffix tree of an input string T [1, n] could start with an empty

trie and then iteratively insert text suffixes, one after the other. The algorithm maintains the property

by which each intermediate trie is indeed a compacted trie of the suffixes inserted so far. In the worst

case, the algorithm costs up to O(n2) time, take e.g. the highly repetitive string T [1, n] = an−1$. The

reason for this poor behavior is due to the re-scanning of parts of the text T that have been already

examined during the insertion of previous suffixes. Interestingly enough do exist algorithms that

construct the suffix tree directly, and thus without passing through the suffix- and lcp-arrays, and

still take O(n) time. Nowadays the space succinctness of suffix arrays and the existence of the Skew

algorithm, drive the programmers to build suffix trees passing through suffix arrays (as explained in

Searching Strings by Substring 8-21

the previous section). However, if the average lcp among the text suffixes is small then the direct

construction of the suffix tree may be advantageous both in internal memory and on disk. We refer

the interested reader to [3] for a deeper analysis of these issues.

In what follows we present the classic McCreight’s algorithm [11], introduced in 1976. It is

based on a nice technique that adds some special pointers to the suffix tree that allow to avoid

the rescanning mentioned before. These special pointers are called suffix links and are defined as

follows. The suffix link S L(z) connects the node z to the node z′ such that s[z] = as[z′]. So z′ spells

out a string that is obtained by dropping the first character from s[z]. The existence of z′ in ST is

not at all clear: Of course s[z′] is a substring of T , given that s[z] is, and thus there exists a path in

ST that ends up into the extended locus of s[z′]; but nothing seems to ensure that s[z′] has indeed

a locus in ST , and thus that z′ exists. This property is derived by observing that the existence of

z implies the existence of at least 2 suffixes, say suffi and suff j that have the node z as their lowest

common ancestor in ST , and thus s[z] is their longest common prefix (see Property 8.9). Looking

at Figure 8.8, we can take for node z the suffixes suff3 and suff6 (which are actually children of z).

Now take the two suffixes following those ones, namely suffi+1 and suff j+1 (i.e. suff4 and suff7 in the

figure). They will share s[z′] as their longest common prefix, given that we dropped just their first

character, and thus they will have z′ as their lowest common ancestor. In Figure 8.8, s[z] = ssi,

s[z′] = si and the node z′ does exist and is indicated with y. In conclusion every node z has one

suffix link correctly defined; more subtle is to observe that all suffix links form a tree rooted in the

root of ST : just observe that |s[z′]| < |s[z]| so they cannot induce cycles and eventually end up in the

root of the suffix tree (spelling out the empty string).

McCreight’s algorithm works in n steps, it starts with the suffix tree ST1 which consists of a root

node, denoting the empty string, and one leaf labeled suff1 = T [1, n] (namely the entire text). In a

generic step i > 1, the current suffix tree STi−1 is the compacted trie built over all text suffixes suff j

such that j = 1, 2, . . . , i − 1. Hence suffixes are inserted in ST from the longest to the shortest one,

and at any step STi−1 indexes the (i − 1) longest suffixes of T .

To ease the description of the algorithm we need to introduce the notation headi which denotes

the longest prefix of suffix suffi which occurs in STi−1. Given that STi−1 is a partial suffix tree, headi

is the longest common prefix between suffi and any of its previous suffixes in T , namely suff j with

j = 1, 2, . . . , i − 1. Given headi we denote by hi the (extended) locus of that string in the current

suffix tree: actually hi is the extended locus in STi−1 because suffi has not yet been inserted. After

its insertion, we will have that headi = s[hi] in STi, and indeed hi is set as the parent of the leaf

associated to the suffix suffi. As an example, consider the suffix suff5 = byabz$ in the partial suffix

trees of Figure 8.10. We have that this suffix shares only the character b with the previous four

suffixes of T , so head5 = b in ST4, and head5 has extended locus in ST4, which is the leaf 2. But,

after its insertion, we get the suffix tree ST5 in which h5 = v in ST5.

Now we are ready to describe the McCreight’s algorithm in detail. To produce STi, we must

locate in STi−1 the (extended) locus hi of headi. If it is an extended locus, then the edge incident

in this node is split by inserting an internal node, which corresponds to hi, and spells out headi,

to which the leaf for suffi is attached. In the naı̈ve algorithm, headi and hi were found tracing a

downward path in STi−1 matching suffi character-by-character. However this induced a quadratic

time complexity in the worst case. Instead McCreight’s algorithm determines headi and hi by using

the information inductively available for string headi−1, and its locus hi−1, and the suffix links which

are already available in STi−1.

FACT 8.7 In STi−1 the suffix link S L(u) is defined for all nodes u , hi−1. It may be the case

that S L(hi−1) is defined too, because that node was already present in STi−1 before the insertion of

suffi−1.

8-22 Paolo Ferragina

r

u

1

$z
ba
yb
ax

4

yabz

ba

head4
2

b
x
a
b
y
a
b
z
$

3

xabyabz$

r

u

1

$z
ba
yb
ax

4

yabz

ba

head4
v

2

$x
ba
yb
ax

5

yabz$

b

3

xabyabz$

ST4 ST5

r

u

1

$z
ba
yb
ax

4

y
a
b
z

7

z$

ba

head7 v

2

$
x
b
a
y
b
a
x

5

y
a
b
z
$

b

3

x
a
b
y
a
b
z
$

6

yabz$

r

u

1

$z
ba
yb
ax

4

y
a
b
z
$

7

z$

ba

head7 v

2

$x
ba
yb
ax

5

y
a
b
z
$

8

z$

b

3

x
a
b
y
a
b
z
$

6

yabz$

ST7 ST8

FIGURE 8.10: Several steps of the McCreight’s algorithm for the string T =abxabyabz$.

Proof Since headi−1 prefixes suffi−1, the second suffix of headi−1 starts at position i and thus

prefixes the suffix suffi. We denote this second suffix with head−
i−1. By definition headi is the longest

prefix shared between suffi and anyone of the previous text suffixes, so that |headi| ≥ |headi−1| − 1

and the string head−
i−1 prefixes headi.

McCreight’s algorithm starts with ST1 that consists of two nodes: the root and the leaf for suff1.

At step 1 we have that head1 is the empty string, h1 is the root, and S L(root) points to the root

itself. At a generic step i > 1, we know headi−1 and hi−1 (i.e. the parent of suffi−1), and we wish to

determine headi and hi, in order to insert the leaf for suffi as a child of hi. These data are found via

the following three sub-steps:

1. if S L(headi−1) is defined, we set w = S L(headi−1) and we go to step 3;

2. Otherwise we need to perform a rescanning whose goal is to find/create the locus w

of head−
i−1 and consequently set the suffix link S L(hi−1) = w. This is implemented

by taking the parent f of headi−1, jumping via its suffix link f ′ = S L(f) (which is

defined according to Fact 8.7), and then tracing a downward path from f ′ starting from

the (|s[f ′]| + 1)-th character of suffi. Since we know that head−
i−1 occurs in T and it

prefixes suffi, this downward tracing to find w can be implemented by comparing only

the branching characters of the traversed edges with head−
i−1. If the landing node of this

traversal is the locus of head−
i−1, then this landing node is the searched w; otherwise the

landing node is the extended locus of head−
i−1, so we split the last traversed edge and

insert the node w such that s[w] = head−
i−1. In all cases we set S L(hi−1) = w;

3. Finally, we locate headi starting from w and scanning the rest of suffi. If the locus of

headi does exist, then we set it to hi; otherwise the scanning of headi stopped within

some edge, and so we split it by inserting hi as the locus of headi. We conclude the

Searching Strings by Substring 8-23

process by installing the leaf for suffi as a child of hi.

Figure 8.10 shows an example of the advantage induced by suffix links. As step 8 we have the

partial suffix tree ST7, head7 = ab, its locus h7 = u, and we need to insert the suffix suff8 = bz$.

Using McCreight’s algorithm, we find that S L(h7) is defined and equal to v, so we reach that node

following the suffix link (without rescanning head−
i−1). Subsequently, we scan the rest of suff8,

namely z$, searching for the locus of head8, but we find that actually head8 = head−7 , so h8 = v and

we can attach there the leaf 8.

From the point of view of time complexity, we observe that the rescanning and the scanning

steps perform two different types of traversals: the former traverses edges by comparing only the

branching characters, since it is rescanning the string head−
i−1 which is already known from the

previous step i − 1; the latter traverses edges by comparing their labels in their entirety because it

has to determine headi. This last type of traversal always advances in T so the cost of the scanning

phase is O(n). The difficulty is to evaluate that the cost of rescanning is O(n) too. The proof comes

from an observation on the structure of suffix links and suffix trees: if S L(u) = v then all ancestors

of u point to a distinct ancestor of v. This comes from Fact 8.7 (all these suffix links do exist), and

from the definition of suffix links (which ensures ancestorship). Hence the tree-depth of v = S L(u),

say d[v], is larger than d[u] − 1 (where −1 is due to the dropping of the first character). Therefore,

the execution of rescanning can decrease the current depth at most by 2 (i.e., one for reaching the

father of hi−1, one for crossing S L(hi−1)). Since the depth of ST is most n, and we loose at most

two levels per SL-jump, then the number of edges traversed by rescanning is O(n), and each edge

traversal takes O(1) time because only the branching character is matched.

The last issue to be considered regards the cost of branching out of a node during the re-scanning

and the scanning steps. Previously we stated that this costs O(1) by using perfect hash-tables built

over the branching characters of each internal node of ST . In the context of suffix-tree construc-

tion the tree is dynamic and thus we should adopt dynamic perfect hash-tables, which is a pretty

involved solution. A simpler approach consists of keeping the branching characters and their asso-

ciated edges within a binary-search tree thus supporting the branching in O(logσ) time. Practically,

programmers relax the requirement of worst-case complexity and use either hash tables with chain-

ing, or dictionary data structures for integer values (such as the Van Emde-Boas tree, whose search

complexity is O(log logσ) time) because characters can be looked at as sequences of bits and hence

integers.

THEOREM 8.10 McCreight’s algorithm builds the suffix tree of a string T [1, n] in O(n logσ)

time and O(n) space.

This algorithm is inefficient in an external-memory setting because it may elicit one I/O per each

tree-edge traversal. Nevertheless, as we observed before, of the distribution of the lcps is skewed

towards small values, then this construction might be I/O-efficient in that the top part of the suffix

tree could be cached in the internal memory, and thus do not elicit any I/Os during the scanning and

re-scanning steps. We refer the reader to [3] for details on this issue.

8.4 Some interesting problems

8.4.1 Approximate pattern matching

The problem of approximate pattern matching can be formulated as: finding all substrings of a text

T [1, n] that match a pattern P[1, p] with at most k errors. In this section we restrict our discussion

to the simplest type of errors, the ones called mismatches or substitutions (see Figure 8.11). This

way the text substrings which ”k-mismatch” the searched pattern P have length p and coincide with

8-24 Paolo Ferragina

the pattern in all but at most k characters. The following figure provides an example by considering

two DNA strings formed over the alphabet of four nucleotide bases {A,T,G,C}. The reason for this

kind of strings is that Bio-informatics is the context which spurred interest around the approximate

pattern-matching problem.

C C G T A C G A T C A G T A

C C G A A C T

⇑ ⇑

FIGURE 8.11: An example of matching between T (top) and P (bottom) with k = 2 mismatches.

The naı̈ve solution to this problem consists of trying to match P with every possible substring

of T , having length p, counting the mismatches and returning the positions were their number is at

most k. This would take O(pn) time, independently of k. The inefficiency comes from the fact that

each pattern-substring comparison starts from the beginning of P, thus taking O(p) time. In what

follows we describe a sophisticated solution which hinges on an elegant data structure that solves

an apparently un-related problem formulated over an array of integers, and called Range Minimum

Query (shortly, RMQ). This data structure is the backbone of many other algorithmic solutions in

problems arising in Data Mining, Information Retrieval, and so on.

The following Algorithm 8.4 solves the k-mismatches problem in O(nk) time by making the

following basic observation. If P occurs in T with j ≤ k mismatches, then we can align the pattern

P with a substring of T so that j or j − 1 substrings coincide and j characters mismatch. Actually

equal substrings and mismatches interleave each other. As an example consider again Figure 8.11,

the pattern occurs at position 1 in the text T with 2 mismatches, and in fact two substrings of P

match their corresponding substrings of T . This means that if we could compare pattern and text

substrings for equality in constant time, then we could execute the naı̈ve-approach taking O(nk)

time, instead of O(np) time. To be operational, this observation can be rephrased as follows: if

T [i, i + `] = P[j, j + `] is one of these matching substrings, then ` is the longest common prefix

between the pattern and the text suffixes starting at the matching positions i and j. Algorithm 8.4

deploys this rephrasing to code a solution which takes O(nk) time provided that lcp-computations

take O(1) time.

If we run the Algorithm 8.4 over the strings showed in Figure 8.11, we perform two lcp-

computations and find that P occurs at text position 1 with 2-mismatches:

• lcp(T [1, 14], P[1, 7]) = lcp(CCGTACGATCAGTA, CCGTACG) = CCG.

• lcp(T [5, 14], P[5, 7]) = lcp(ACGATCAGTA, ACG) = AC.

How do we compute lcp(T [i + j − 1, n], P[j, p]) in constant time? We know that suffix trees and

suffix arrays have built-in some lcp-information, but we similarly recall that these data structures

were built on one single string, namely the text T . Here we are talking of suffixes of P and T

together. Nonetheless we can easily circumvent this difficulty by constructing the suffix array, or

the suffix tree, over the string X = T#P, where # is a new character not occurring elsewhere. This

way each computation of the form lcp(T [i + j − 1, n], P[j, p]) can now be turned into an lcp-

computation between suffixes of X, precisely lcp(T [i + j − 1, n], P[n + 1 + j, n + 1 + p]). We

are therefore left with showing how these lcp-computations can be performed in constant time,

whichever is the pair of compared suffixes. This is the topic of the next subsection.

Searching Strings by Substring 8-25

Algorithm 8.4 Approximate-pattern matching based on LCP-computations

matches = {}
for i = 1 to n do

m = 0, j = 1;

while m ≤ k and j ≤ p do

` = lcp(T [i + j − 1, n], P[j, p];

j = j + `;

if j ≤ p then

m = m + 1; j = j + 1;

end if

end while

j = 1;

if m ≤ k then

matches = matches ∪ {T [i, i + p − 1]};
end if

end for

return matches;

Lowest Common Ancestor, Range Minimum Query and Cartesian Tree

Let us start from an example, by considering the suffix tree STX and the suffix array SAX built on

the string X = CCGT ACGATCAGT A. This string is not in the form X = T#P because we wish to

stress the fact that the considerations and the algorithmic solutions proposed in this section apply to

any string X, not necessarily the ones arising from the Approximate Pattern-Matching problem.

The key observation, whose correctness spurs immediately from Figure 8.12, is that there is a

strong relation between the lcp-problem over X’s suffixes and the computation of lowest common

ancestors (lca) in the suffix tree STX . Consider the problem of finding the longest common prefix

between suffixes X[i, x] and X[j, x]) where x = |X|. It is not difficult to convince yourself that the

node u = lca(X[i, x], X[j, x]) in the suffix tree STX spells out their lcp, and thus the value |s[u]|
stored in node u is exactly the lcp-value we are searching for. Notice that this property holds

independently of the lexicographic sortedness of the edge labels, and thus of the suffix tree leaves.

Equivalently, the same value can be derived by looking at the suffix array SAX . In particular take

the lexicographic positions ip and jp where those two suffixes occur in SAX , say SAX[ip] = i and

SAX[jp] = j (we are assuming for simplicity that ip < jp). It is not difficult to convince yourself

that the minimum value in the sub-array lcp[ip, j − 1]5 is exactly equal to |s[u]| since the values

contained in that sub-array are the values stored in the suffix-tree nodes of the subtree that descends

from u. Actually the order of these values is the one given by the in-order visit of u’s descendants.

Anyway, this order is not important for our computation which actually takes the smallest value,

because it is interested in the shallowest node (namely the root u) of that subtree.

Figure 8.12 provides a running example which clearly shows these two strong properties, which

actually do not depend on the order of the children of suffix-tree nodes. As a result, we have two

approaches to compute lcpin constant time, either through lca-computations over STX or through

RMQ-computations over lcpX . For the sake of presentation we introduce an elegant solution for the

latter, which actually induces in turn an elegant solution for the former, given that their are strongly

related.

5Recall that lcp[q] stores the length of the longest common prefix between suffix SA[i] and its next suffix SA[i + 1].

8-26 Paolo Ferragina

FIGURE 8.12: An example of suffix tree (unordered), suffix array, lcp-array for the string X =

CCGTACGATCAGTA. The figure highlights that the computation of lcp(X[2, 16], X[10, 16]) boils

down to finding the depth of the lca-node in STX between the leaf 2 and the leaf 10, as well as to

solve a range minimum query on the sub-array lcp[6, 8] since SAX[6] = 10 and SAX[9] = 2.

In general terms the RMQ problem can be stated as follows:

The range-minimum-query problem. Given an array A[1, n] of elements drawn from an

ordered universe, build a data structure RMQA that is able to compute efficiently the position

of a smallest element in A[i, j], for any given queried range (i, j). We say ”a smallest”

because the array may contain many minimum elements.

We underline that this problem asks for the position of a minimum element in the queried sub-

array, rather than its value. This is more general because the value of the minimum can be obviously

retrieved from its position in A by accessing this array, which is available.

In this lecture we aim for constant-time queries [1]. The simplest solution achieves this goal via

a table that stores the index of a minimum entry for each possible range (i, j). Such table requires

O(n2) space and O(n2) time to be built. A better solution hinges on the following observation: any

range (i, j) can be decomposed into two (possibly overlapping) ranges whose size is a power of two,

namely (i, i + 2L) and (j − 2L, j) where L = blog(j − i + 1)c. This allows us to sparsify the previous

quadratic-sized table by storing only ranges whose size is a power of two. This way, for each posi-

tion i we store the answers to the queries RMQA(i, i + 2L), thus occupying a total space of O(n log n)

without impairing the time complexity of the query which is still constant and corresponds to return

RMQA(i, j) = argmini, j{RMQA(i, i + 2L), RMQA(j − 2L, j)}.
In order to get the optimal O(n) space occupancy, we need to dig into the structure of the

RMQ-problem and make a twofold reduction which goes back-and-forth from RMQ-computations

Searching Strings by Substring 8-27

to lca-computations: namely, we reduce (1) the RMQ-computation over the lcp-array to an lca-

computation over Cartesian Trees (that we define next); we then reduce (2) the lca-computation

over Cartesian Trees to an RMQ-computation over a binary array. This last problem will then be

solved in O(n) space and constant query time. Clearly reduction (2) can be applied to any tree, and

thus can be applied to Suffix Trees in order to solve lca-queries over them.

First reduction step: from RMQ to lca. We transform the RMQA-problem “back” into an lca-

problem over a special tree which is known as Cartesian Tree and is built over the entries of the

array A[1, n]. The Cartesian Tree CA is a binary tree of n nodes, each labeled with one of A’s

entries (i.e. value and position in A). The labeling is defined recursively as follows: the root of

CA is labeled by the minimum entry in A[1, n], say this is 〈A[m],m〉. Then the left subtree of the

root is recursively defined as the Cartesian Tree of the subarray A[1,m − 1], and the right subtree is

recursively defined as the Cartesian Tree of the subarray A[m + 1, n]. Tree CA can be constructed in

O(n) time as follows: Suppose that we have already built the tree Ci for the array A[1, i], then we

insert the element A[i + 1] in two steps (see Figure 8.13):

1. we climb the rightmost path of Ci and determine the first node u whose associated entry

A[j] is smaller than A[i + 1];

2. we make the node corresponding to A[i + 1] the right son of u, and turn the previous

right subtree of u into the left subtree of A[i + 1].

FIGURE 8.13: Example of Cartesian Tree built over the array A[1, 3] = {1, 4, 3}, and the insertion

of the value 2. Observe that nodes of CA store only A’s values, their positions in A are dropped to

ease the presentation.

The following Figure 8.14 shows the Cartesian tree built on the lcp-array depicted in Figure 8.12.

Given the construction process, we can state that ranges in the lcp-array correspond to subtrees of

the Cartesian tree. Therefore computing RMQA(i, j) boils down to compute an lca-query between

the nodes of CA associated to the entries i and j. Differently of what occurred for lca-queries on

STX , where the arguments were leaves of that suffix tree, the queried nodes in the Cartesian Tree

may be internal nodes, and actually it might occur that one node is ancestor of the other node.

For example, executing RMQlcp(6, 8) equals to executing lca(6, 8) over the Cartesian Tree Clcp of

Figure 8.14. The result of this query is the node 〈lcp[7], 7〉 = 〈1, 7〉. Notice that we have another

minimum value in lcp[6, 8] at lcp[6] = 1; the answer provided by the lca is one of the existing

minima in the queried-range.

8-28 Paolo Ferragina

FIGURE 8.14: Cartesian tree built on the lcp-array of Figure 8.12. On the bottom part are reported

the Euler Tour of the Cartesian Tree and the array D of the depths of the nodes according to the

Euler-Tour order.

Second reduction step: from lca to RMQ. We transform the lca-problem over the Cartesian Tree

Clcp “back” into an RMQ-problem over a special binary array ∆[1, 2e], where e is the number of

edges in the Cartesian Tree (of course e = O(n)). It seems strange this “circular” sequence of

reductions that now has turned us back into an RMQ-problem. But the current RMQ-problem, unlike

the original one, is formulated on a binary array and thus admits an optimal solution in O(n) space.

To build the binary array ∆[1, 2e] we need first to build the array D[1, 2e] which is obtained as

follows. Take the Euler Tour of Cartesian Tree CA, visiting the tree in pre-order and writing down

each node everytime the visit passes through it. A node can be visited multiple times, precisely it is

visited/written as many times as its number of incident edges; except for the root which is written

the number of incident edges plus 1.

Given the Euler Tour of the Cartesian Tree CA, we build the array D[1, 2e] which stores the depths

of the visited nodes in the order stated by the Euler Tour (see Figure 8.14). Given D and the way

the Euler Tour is built, we can conclude that query lca(i, j) in CA boils down to compute the node

of minimum depth in the sub-array D[i′, j′] where i′ (resp. j′) is the position of the first (resp. last)

occurrence of the node i (resp. j) in the Euler Tour. In fact, the range D[i′, j′] corresponds to the part

of the Euler Tour that starts at node i and ends at node j. The node of minimum depth encountered

in this Euler sub-Tour is properly the lca(i, j).

So we reduced an lca-query over the Cartesian Tree into an RMQ-query over node depths. In

our running example on Figure 8.14 this reduction transforms the query lca(6, 8) into a query

RMQD(11, 13), which is highlighted by a red rectangle. Turning nodes into ranges can be done in

constant time by simply storing two integers per node of the Cartesian Tree, denoting their first/last

occurrence in the Euler Tour, thus taking O(n) space.

We are again “back” to an RMQ-query over an integer array. But the current array D is special

Searching Strings by Substring 8-29

because its consecutive entries differ by 1 given that they refer to the depths of consecutive nodes

in an Euler Tour. And in fact, two consecutive nodes in the Euler Tour are connected by an edge

and thus one node is the parent of the other, and hence their depths differ by one unit. The net result

of this property is that we can solve the RMQ-problem over D[1, 2e] in O(n) space and O(1) time as

follows. (Recall that e = O(n).) Solution is based on two data structures which are detailed next.

First, we split the array D into 2e
d

subarrays Dk of size d = 1
2

log e each. Next, we find the

minimum element in each subarray Dk, and store its position at the entry M[k] of a new array whose

size is therefore 2e
d

. We finally build on the array M the sparse-table solution indicated above which

takes superlinear space (in the size of M) and solves RMQ-queries in constant time. The key point

here is that M’s size is sublinear in e, and thus in n, so that the overall space taken by array M and

its sparse-table is O((e
log e

) ∗ log e
log e

) = O(e) = O(n).

The second data structure is built to efficiently answer RMQ-queries in which i and j are in the

same block Dk. It is clear that we cannot tabulate all answers to all such possible pairs of indexes

because this would end up in Θ(n2) space occupancy. So the solution we describe here spurs from

two simple, deep observations whose proof is immediate and left to the reader:

Binary entries: Every block Dk can be transformed into a pair that consists of its first element

Dk[1] and a binary array ∆k[i] = Dk[i] − Dk[i − 1] for i = 2, . . . , d. Entries of ∆k are

either −1 or +1 because of the unit difference between adjacent entries of D.

Minimum location: The position of the minimum value in Dk depends only on the content of

the binary sequence ∆k and does not depend on the starting value Dk[1].

Nicely, the possible configurations that every block Dk can assume are infinite, given that infinite

is the number of ways we can instantiate the input array A on which we want to issue the RMQ-

queries; but the possible configurations of the image ∆k is finite and equal to 2d. This suggests

to apply the so called Four Russians trick to the binary arrays by tabulating all possible binary

sequences ∆k and, for each of them, storing the position of the minimum value. Since the blocks

∆k have length d =
log e

2
, the total number of possible binary sequences is 2d = O(2

log e

2) = O(
√

e) =

O(
√

n). Moreover, since both query-indexes i and j can take at most d =
log e

2
possible values, being

internal in a block Dk, we can have at most O(log2 e) queries of this third type. Consequently, we

build a lookup table T [io, jo,∆k] that is indexed by the possible query-offsets io and jo within the

block Dk and its binary configuration ∆k. Table T stores at that entry the position of the minimum

value in Dk. We also assume that, for each k, we have stored ∆k so that the binary representation ∆k

of Dk can be retrieved in constant time. Each of these indexing parameters takes O(log e) = O(log n)

bits of space, hence one memory word, and thus can be managed in O(1) time and space. In

summary, the whole table T consists of O(
√

n(log n)2) = o(n) entries. The time needed to build T is

O(n). The power of transforming Dk into ∆k is evident now, every entry of T [io, jo,∆k] is actually

encoding the answer for an infinite number of blocks Dk, namely the ones that can be turned to the

same binary configuration ∆k.

At this point we are ready to design an algorithm that, using the three data structures illustrated

above, answers a query RMQD(i, j) in constant time. If i, j are inside the same block Dk then the

answer is retrieved in two steps: first we compute the offsets io and jo with respect to the beginning

of Dk and determine the binary configuration ∆k from k; then we use this triple to access the proper

entry of T . Otherwise the range (i, j) spans at least two blocks and can thus be decomposed in three

parts: a suffix of some block Di′ , a consecutive sequence of blocks Di′+1 · · ·D j′−1, and finally the

prefix of block D j′ . The minimum for the suffix of Di′ and the prefix of D j′ can be retrieved from T ,

given that these ranges are inside two blocks. The minimum of the range spanned by Di′+1 · · ·D j′−1

is stored in M. All this information can be accessed in constant time and the final minimum-position

can be retrieved by comparing these three minimum values, in constant time too.

8-30 Paolo Ferragina

THEOREM 8.11 Range-minimum queries over an array A[1, n] of elements drawn from an

ordered universe can be answered in constant time using a data structure that occupies O(n) space.

Given the stream of reductions we illustrated above, we can conclude that Theorem 8.11 applies

also to computing lca in generic trees: it is enough to take the input tree in place of the Cartesian

Tree.

THEOREM 8.12 Lowest-common-ancestor queries over a generic tree of size n can be an-

swered in constant time using a data structure that occupies O(n) space.

8.4.2 Text Compression

Data compression will be the topic of one of the following chapters; nonetheless in this section

we address the problem of compressing a text via the simple algorithm which is at the core of the

well known gzip compressor, named LZ77 from the initials of its inventors (Abraham Lempel and

Jacob Ziv [9]) and from the year of its publication (1977). We will show that there exists an optimal

implementation of the LZ77-algorithm taking O(n) time and using suffix trees.

Given a text string T [1, n], the algorithm LZ77 produces a parsing of T into substrings that are

defined as follows. Assume that it has already parsed the prefix T [1, i − 1] (at the beginning this

prefix is empty), then it decomposes the remaining text suffix T [i, n] in three parts: the longest

substring T [i, i + ` − 1] which starts at i and repeats before in the text T , the next character T [i + `],

and the remaining suffix T [i + ` + 1, n]. The next substring to add to the parsing of T is T [i, i + `],

and thus corresponds to the shortest string that is new in T [1, i− 1]. Parsing then continues onto the

remaining suffix T [i + ` + 1, n], if any.

Compression is obtained by succinctly encoding the triple of integers 〈d, `,T [i + `]〉, where d is

the distance (in characters) from i to the previous copy of T [i, i+ `− 1]; ` is the length of the copied

string; T [i + `] is the appended character. By saying ”previous copy” of T [i, i + ` − 1], we mean

that its copy starts before position i but it might extend after this position, hence it could be d < `;

furthermore, the previous copy can be any previous occurrence of T [i, i + ` − 1], although space-

efficiency issues suggest us to take the closest copy (and thus the smallest d). Finally we observe

that the reason for adding the character T [i + `] to the emitted triple is that this character behaves

like an escape-mechanism; in fact it is useful when no-copy is possible and thus ` = 0 (this occurs

when a new character is met in T).6

Before digging into an efficient implementation of the LZ77-algorithm let us consider our exam-

ple string T = mississippi. Its LZ77-parsing is computed as follows:

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8
p

9
p

10

i
11

Output: < 0, 0,m >

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8
p

9
p

10

i
11

6We are not going to discuss the integer-encoding issue, since it will be the topic of a next chapter, we just mention here

that efficiency is obtained in gzip by taking the rightmost copy and by encoding the values d and ` via a Huffman coder.

Searching Strings by Substring 8-31

Output: < 0, 0, i >

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8
p

9
p

10

i
11

Output: < 0, 0, s >

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8
p

9
p

10

i
11

Output: < 1, 1, i >

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8
p

9
p

10

i
11

Output: < 3, 3, p >

m
1

i
2

s
3

s
4

i
5

s
6

s
7

i
8
p

9
p

10

i
11

Output: < 1, 1, i >

We can compute the LZ77-parsing in O(n) time via an elegant algorithm that deploys the suffix

tree ST . The difficulty is to find πi, the longest substring that occurs at position i and repeats before

in the text T . Say d is the distance of the previous occurrence. Given our notation above we have

that ` = |πi|. Of course πi is a prefix of suffi and a prefix of suffi−d; actually, it is the longest common

prefix of these two suffixes, and by maximality, there is no other previous suffix suff j (with j < i)

that shares a longer prefix with suffi. By properties of suffix trees, the lowest-common-ancestor of

leaves i and j spells out πi. However we cannot compute lca(i, j) by issuing a query to the data

structure of Theorem 8.12 because we do not know j, which is exactly the information we wish

to compute. Similarly we cannot trace a downward path from the root of ST trying to match suffi

because all suffixes of T are indexed in the suffix tree and thus we could detect a longer copy which

follows position i, instead of preceding it.

To circumvent these problems we preprocess ST via a post-order visit that computes for every

internal node u its minimum leaf min(u). Clearly min(u) is the leftmost position from which we can

copy the substring s[u]. Given this information we can determine easily πi, just trace a downward

path from the root of ST scanning suffi and stopping as soon as the reached node v is such that

min(v) = i. At this point we take u as the parent of v and set πi = s[u], and d = i − min(u). Clearly,

the chosen copy of πi is the farthest one and not the closest one: this does not impact in the number

of phrases in which T is parsed by LZ77, but possibly influences the magnitude of these distances

and thus their succinct encoding. Devising an LZ77-parser that efficiently determines the closest

copy of each πi is non trivial and needs much more sophisticated data structures.

Take T = mississippi as the string to be parsed (see above) and consider its suffix tree ST in

Figure 8.8. Assume that the parsing is at the suffix suff2 = ississippi. Its tracing down ST stops

immediately at the root of the suffix tree because the node to be visited next would be u, for which

min(u) = 2 which is not smaller than the current suffix position. Then consider the parsing at suffix

suff6 = ssippi. We trace down ST and actually exhaust suff6, so reaching the leaf 6, for which

min is 3. So the selected node is its parent z, for which s[z] = ssi. The emitted triple is correctly

< 3, 3, p >.

8-32 Paolo Ferragina

The time complexity of this implementation of the LZ77-algorithm is O(n) because the traversal

of the suffix tree advances over the string T , and this may occur only n times. Branching out

of suffix-tree nodes can be implemented in O(1) time via perfect hash tables, as observed for the

substring-search problem. The construction of the suffix tree costs O(n) time, by using one of the

algorithms we described in the previous sections. The computation of the values min(u), over all

nodes u, takes O(n) time via a post-order visit of ST .

THEOREM 8.13 The LZ77-parsing of a string T [1, n] can be computed in O(n) time and space.

Each substring of the parsing is copied from its farthest previous occurrence.

8.4.3 Text Mining

In this section we briefly survey two examples of uses of suffix arrays and lcp-arrays in the solution

of sophisticated text mining problems.

Let us consider the following question: Check whether there exists a substring of T [1, n] that

repeats at least twice and has length L. Solving this problem in a brute-force way would mean to

take every text substring of length L, and count its number of occurrences in T . These substrings

are Θ(n), searching each of them takes O(nL) time, hence the overall time complexity of this trivial

algorithm would be O(n2L). A smarter and faster, actually optimal, solution comes from the use

either of the suffix tree or of the lcp-array lcp, built on the input text T s.

The use of suffix tree is simple. Let us assume that such a string does exist, and it occurs at

positions x and y of T . Now take the two leaves in the suffix tree which correspond to suffx and suffy

and compute their lowest common ancestor, say a(x, y). Since T [x, x+ L− 1] = T [y, y+ L− 1], it is

that |s[a(x, y)]| ≥ L. We write ”greater or equal” because it could be the case that a longer substring

is shared at positions x and y, in fact L is just fixed by the problem. The net result of this argument

is that it does exist an internal node in the suffix tree whose label is greater or equal than L; a visit

of the suffix tree is enough to search for any node such this one, thus taking O(n) time.

The use of the suffix array is a little bit more involved, but follows a similar argument. Recall that

suffixes in SA are lexicographically ordered, so the longest common prefix shared by suffix SA[i] is

with its adjacent suffixes, namely either with suffix SA[i − 1] or with suffix SA[i + 1]. The length

of these lcps is stored in the entries lcp[i − 1, i]. Now, if the repeated substring of length L does

exist, and it occurs e.g. at text positions x and y, then we have lcp(T [x, n],T [y, n]) ≥ L. These

two suffixes not necessarily are contiguous in SA (this is the case when the substring occurs more

than twice), nonetheless all suffixes occurring among them in SA will surely share a prefix of length

L, because of their lexicographic order. Hence, if suffix T [x, n] occurs at position q of the suffix

array, i.e. SA[q] = x, then we have that either lcp[q − 1] ≥ L or lcp[q] ≥ L, depending on the fact

that T [y, n] < T [x, n] or vice versa, respectively. Hence we can solve the question stated above by

scanning lcp and searching for an entry ≥ L. This takes O(n) optimal time.

Let us now ask a more sophisticated question: Check whether there exists a text substring that

repeats at least C times and has length L. This is the typical query in a text mining scenario,

where we are interested not just in a repetitive event but in an event occurring with some statistical

evidence. We can again solve this problem by trying all possible substrings and counting their

occurrences. Again, a faster solution comes from the use either of the suffix tree or of the array

lcp. Following the argument provided in the solution of the previous question we note that, if a

substring of length L occurs (at least) C times, then it does exist (at least) C text suffixes that share

(at least) L characters. So it does exist a node u in the suffix tree such that |s[u]| ≥ L and the number

of descending leaves occ[u] ≥ C. Equivalently, it does exist a sub-array in lcp of length ≥ C − 1

that consists of entries ≥ L. Both approaches provide an answer to the above question in O(n) time.

Searching Strings by Substring 8-33

Let us conclude this section by asking a query closer to a search-engine scenario: Given two

patterns P and Q, and a positive integer k, check whether there exists an occurrence of P whose

distance from an occurrence of Q in an input text T is at most k. This is also called proximity

search over a text T which is given in advance to be preprocessed. The solution passes through

the use of any search data structure, being it a suffix tree or a suffix array built over T , plus some

sorting/merging steps. We search for P and Q in T and derive their occurrences, say O. Both

suffix arrays and suffix trees return these occurrences unsorted. Therefore we sort them, in order to

produce the ordered list of occurrences of P and Q. At this point it is easy to determine whether the

question above admits a positive answer; if it does, then there do exist two consecutive occurrences

of P and Q whose distance is at most k. To detect this situation it is enough to scan the sorted

Sequence O and check, for every consecutive pair of positions which are occurrences of P and Q,

whether the difference is at most k. This takes overall O(|P|+ |Q|+ |O| log |O|) time, which is clearly

advantageous whenever the set O of candidate occurrences is small, and thus the queries P and Q

sufficiently selective.

References

[1] Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In Procs

of the Latin American Symposium on Theoretical Informatics (LATIN), 88-94, 2000.

[2] Martin Farach-Colton, Paolo Ferragina, S. Muthukrishnan. On the sorting-complexity

of suffix tree construction. Journal of the ACM, 47(6): 987-1011, 2000.

[3] Paolo Ferragina. String search in external memory: algorithms and data structures.

Handbook of Computational Molecular Biology, edited by Srinivas Aluru. Chapman &

Hall/CRC Computer and Information Science Series, chapter 35, Dicembre 2005.

[4] Paolo Ferragina and Travis Gagie and Giovanni Manzini. Lightweight data indexing

and compression in external memory. Algorithmica: Special issue on selected papers of

LATIN 2010, 63(3): 707-730, 2012.

[5] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Com-

putational Biology. University Press, 1997.

[6] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text:

PAT trees and PAT arrays. In B. Frakes and R. A. Baeza-Yates, editors, Information

Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82, Prentice-Hall, 1992.

[7] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction.

In Procs of the International Colloquium on Automata, Languages and Programming

(ICALP), Lecture Notes in Computer Science vol. 2791, Springer, 943–955, 2003.

[8] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-

time longest-common-prefix computation in suffix arrays and its applications. In Procs

of the Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Computer

Science vol. 2089, Springer, 181–192, 2001.

[9] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data Compres-

sion. IEEE Transactions on Information Theory, 23(3): 337-343, 1977.

[10] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[11] Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal

of the ACM, 23(2): 262-272, 1976.

