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This lecture will focus on the very-well known problem of sorting a set of atomic items, the case

of variable-length items (aka strings) will be addressed in the following chapter. Atomic means

that they occupy a constant-fixed number of memory cells, typically they are integers or reals rep-

resented with a fixed number of bytes, say 4 (32 bits) or 8 (64 bits) bytes each.

The sorting problem. Given a sequence of n atomic items S [1, n] and a total ordering ≤
between each pair of them, sort S in increasing order.

We will consider two complemental sorting paradigms: the merge-based paradigm, which underlies

the design of Mergesort, and the distribution-based paradigm which underlies the design of Quick-

sort. We will adapt them to work in the disk model (see Chapter 1), analyze their I/O-complexities

and propose some useful tools that can allow to speed up their execution in practice, such as the

Snow Plow technique and Data compression. We will also demonstrate that these disk-based adap-

tations are I/O-optimal by proving a sophisticated lower-bound on the number of I/Os any external-

memory sorter must execute to produce an ordered sequence. In this context we will relate the

Sorting problem with the so called Permuting problem, typically neglected when dealing with sort-

ing in the RAM model.

The permuting problem. Given a sequence of n atomic items S [1, n] and a permuta-

tion π[1, n] of the integers {1, 2, . . . , n}, permute S according to π thus obtaining the new

sequence S [π[1]], S [π[2]], . . . , S [π[n]].

Clearly Sorting includes Permuting as a sub-task: to order the sequence S we need to determine

its sorted permutation and then implement it (possibly these two phases are intricately intermingled).

So Sorting should be more difficult than Permuting. And indeed in the RAM model we know that

sorting n atomic items takes Θ(n log n) time (via Mergesort or Heapsort) whereas permuting them

takes Θ(n) time. The latter time bound can be obtained by just moving one item at a time according
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to what is indicated in the array π. Surprisingly we will show that this complexity gap does not

exist in the disk model, in that these two problems exhibit the same I/O-complexity under some

reasonable conditions on the input and model parameters n,M, B. This elegant and deep result

was obtained by Aggarwal and Vitter in 1998 [1], and it is surely the result that spurred the huge

amount of algorithmic literature thereafter produced on the I/O-subject. Philosophically speaking,

AV’s result formally proves the intuition that moving items in the disk is the real bottleneck, rather

than finding the sorted permutation. And indeed researchers and software engineers typically speak

about the I/O-bottleneck to characterize this issue in their (slow) algorithms.

We will conclude this lecture by briefly mentioning at two solutions for the problem of sorting

items on D-disks: the disk-striping technique, which is at the base of RAID systems and turns any

efficient/optimal 1-disk algorithm into an efficient D-disk algorithm (typically loosing its optimality,

if any), and the Greed-sort algorithm, which is specifically tailored for the sorting problem on D-

disks and achieves I/O-optimality.

5.1 The merge-based sorting paradigm

We recall the main features of the external-memory model introduced in Chapter 1: it consists of an

internal memory of size M and allows blocked-access to disk by reading/writing B items at once.

Algorithm 5.1 The binary merge-sort: MergeSort(S , i, j)

1: if (i < j) then

2: m = (i + j)/2;

3: MergeSort(S , i,m − 1);

4: MergeSort(S ,m, j);

5: Merge(S , i,m, j);

6: end if

Mergesort is based on the Divide&Conquer paradigm. Step 1 checks if the array to be sorted

consists of at least two items, otherwise it is already ordered and nothing has to be done. If items

are more than two, it splits the input array S into two halves, and then recurses on each part. As

recursion ends, the two halves S [i,m − 1] and S [m, j] are ordered so that Step 5 fuses them in

S [i, j] by invoking procedure Merge. This merging step needs an auxiliary array of size n, so that

MergeSort is not an in-place sorting algorithm (unlike Heapsort and Quicksort) but needs O(n) extra

working space. Given that at each recursive call we halve the size of the input array to be sorted, the

total number of recursive calls is O(log n). The Merge-procedure can be implemented in O( j− i+1)

time by using two pointers, say x and y, that start at the beginning of the two halves S [i,m − 1] and

S [m, j]. Then S [x] is compared with S [y], the smaller is written out in the fused sequence, and its

pointer is advanced. Given that each comparison advances one pointer, the total number of steps

is bounded above by the total number of pointer’s advancements, which is upper bounded by the

length of S [i, j]. So the time complexity of MergeSort(S , 1, n) can be modeled via the recurrence

relation T (n) = 2T (n/2) + O(n) = O(n log n), as well known from any basic algorithm course.1

Let us assume now that n > M, so that S must be stored on disk and I/Os become the most

important resource to be analyzed. In practice every I/O takes 5ms on average, so one could think

1In all our lectures when the base of the logarithm is not indicated, it means 2.
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that every item comparison takes one I/O and thus one could estimate the running time of Mergesort

on a massive S as: 5ms × Θ(n log n). If n is of the order of few Gigabytes, say n ≈ 230 which

is actually not much massive for the current-size of commodity PCs, the previous time estimate

would be of about 5 × 230 × 30 > 108ms, namely more than 1 day of computation. However, if

we run Mergesort on a commodity PC it completes in few hours. This is not surprising because

the previous evaluation totally neglected the existence of the internal memorys, of size M, and

the sequential pattern of memory-accesses induced by Mergesort. Let us therefore analyze the

Mergesort algorithm in a more precise way within the disk model.

First of all we notice that O(z/B) I/Os is the cost of merging two ordered sequences of z items

in total. This holds if M ≥ 2B, because the Merge-procedure in Algorithm 5.1 can keep in internal

memory the 2 pages that contain the two pointers scanning S [i, j] where z = j − i + 1. Every time a

pointer advances into another disk page, an I/O-fault occurs, the page is fetched in internal memory,

and the fusion continues. Given that S is stored contiguously on disk, S [i, j] occupies O(z/B) pages

and this is the I/O-bound for merging two sub-sequences of total size z. Similarly, the I/O-cost for

writing the merged sequence is O(z/B) because it occurs sequentially from the smallest to the largest

item of S [i, j] by using an auxiliary array. As a result the recurrent relation for the I/O-complexity

of Mergesort can be written as T (n) = 2T (n/2) + O(n/B) = O( n
B

log n) I/Os.

But this formula does not explain completely the good behavior of Mergesort in practice, be-

cause it does not account for the memory hierarchy yet. In fact as Mergesort recursively splits the

sequence S , smaller and smaller sub-sequences are generated that have to be sorted. So when a

subsequence of length z fits in internal memory, namely z = O(M), then it will be entirely cached

by the underlying operating system using O(z/B) I/Os and thus the subsequent sorting steps would

not incur in any I/Os. The net result of this simple observation is that the I/O-cost of sorting a

sub-sequence of z = O(M) items is no longer Θ( z
B

log z), as accounted for in the previous recur-

rence relation, but it is O(z/B) I/Os which accounts only the cost of loading the subsequence in

internal memory. This saving applies to all S ’s subsequences of size Θ(M) on which Mergesort is

recursively run, which are Θ(n/M) in total. So the overall saving is Θ( n
B

log M), which leads us to

re-formulate the Mergesort’s complexity as Θ( n
B

log n
M

) I/Os. This bound is particularly interest-

ing because relates the I/O-complexity of Mergesort not only to the disk-page size B but also to

the internal-memory size M, and thus to the caching available at the sorter. Moreover this bounds

suggests three immediate optimizations to the classic pseudocode of Algorithm 5.1 that we discuss

below.

5.1.1 Stopping recursion

The first optimization consists of introducing a threshold on the subsequence size, say j − i < cM,

which triggers the stop of the recursion, the fetching of that subsequence entirely in internal-

memory, and the application of an internal-memory sorter on this sub-sequence (see Figure 5.1).

The value of the parameter c depends on the space-occupancy of the sorter, which must be guar-

anteed to work entirely in internal memory. As an example, c is 1 for in-place sorters such as

Insertionsort and Heapsort, it is much close to 1 for Quicksort (because of its recursion), and it is

less than 0.5 for Mergesort (because of the extra-array used by Merge). As a result, we should

write cM instead of M into the I/O-bound above, because recursion is stopped at cM items: thus

obtaining Θ( n
B

log n
cM

). This substitution is useless when dealing with asymptotic analysis, given

that c is a constant, but it is important when considering the real performance of algorithms. In this

setting it is desirable to make c as closer as possible to 1, in order to reduce the logarithmic factor in

the I/O-complexity thus preferring in-place sorters such as Heapsort or Quicksort. We remark that

Insertionsort could also be a good choice (and indeed it is) whenever M is small, as it occurs when

considering the sorting of items over the 2-levels: L1 and L2 caches, and the internal memory. In

this case M would be few Megabytes.



5-4 Paolo Ferragina

5.1.2 Snow Plow

Looking at the I/O-complexity of mergesort, i.e. Θ( n
B

log n
M

), is clear that the larger is M the smaller

is the number of merge-passes over the data. These passes are clearly the bottleneck to the efficient

execution of the algorithm especially in the presence of disks with low bandwidth. In order to

circumvent this problem we can either buy a larger memory, or try to deploy as much as possible

the one we have available. As algorithm engineer we opt for the second possibility and thus propose

two techniques that can be combined together in order to enlarge (virtually) M.

The first technique is based on data compression and builds upon the observation that the runs are

increasingly sorted. So, instead of representing items via a fixed-length coding (e.g. 4 or 8 bytes),

we can use integer compression techniques that squeeze those items in fewer bits thus allowing

us to pack more of them in internal memory. A following lecture will describe in detail several

approaches to this problem (see Chapter ??), here we content ourselves mentioning the names of

some of these approaches: γ-code, δ-code, Rice/Golomb-coding, etc. etc.. In addition, since the

smaller is an integer the fewer bits are used for its encoding, we can enforce the presence of small

integers in the sorted runs by encoding not just their absolute value but the difference between one

integer and the previous one in the sorted run (the so called delta-coding). This difference is surely

non negative (equals zero if the run contains equal items), and smaller than the item to be encoded.

This is the typical approach to the encoding of integer sequences used in modern search engines,

that we will discuss in a following lecture (see Chapter ??).

FIGURE 5.1: When a run fits in the internal memory of size M, we apply qsort over its items. In

gray we depict the recursive calls that are executed in internal memory, and thus do not elicit I/Os.

Above there are the calls based on classic Mergesort, only the call on 2M items is shown.

The second technique is based on an elegant idea, called the Snow Plow and due to D. Knuth

[3], that allows to virtually increase the memory size of a factor 2 on average. This technique scans

the input sequence S and generates sorted runs whose length has variable size longer than M and

2M on average. Its use needs to change the sorting scheme because it first creates these sorted runs,

of variable length, and then applies repeatedly over the sorted runs the Merge-procedure. Although

runs will have different lengths, the Mergewill operate as usual requiring an optimal number of I/Os

for their merging. Hence O(n/B) I/Os will suffice to halve the number of runs, and thus a total of

O( n
B

log n
2M

) I/Os will be used on average to produce the totally ordered sequence. This corresponds

to a saving of 1 pass over the data, which is non negligible if the sequence S is very long.

For ease of description, let us assume that items are transferred one at a time from disk to memory,

instead that block-wise. Eventually, since the algorithm scans the input items it will be apparent

that the number of I/Os required by this process is linear in their number (and thus optimal). The

algorithm proceeds in phases, each phase generates a sorted run (see Figure 5.2 for an illustrative
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FIGURE 5.2: An illustration of four steps of a phase in Snow Plow. The leftmost picture shows the

starting step in which U is heapified, then a picture shows the output of the minimum element in

H , hence the two possible cases for the insertion of the new item, and finally the stopping condition

in which H is empty and U fills entirely the internal memory.

example). A phase starts with the internal-memory filled of M (unsorted) items, stored in a heap data

structure called H . Since the array-based implementation of heaps requires no additional space, in

addition to the indexed items, we can fit in H as many items as we have memory cells available.

The phase scans the input sequence S (which is unsorted) and at each step, it writes to the output

the minimum item within H , say min, and loads in memory the next item from S , say next. Since

we want to generate a sorted output, we cannot store next in H if next < min, because it will be

the new heap-minimum and thus it will be written out at the next step thus destroying the property

of ordered run. So in that case next must be stored in an auxiliary array, called U, which stays

unsorted. Of course the total size of H and U is M over the whole execution of a phase. A phase

stops whenever H is empty and thus U consists of M unsorted items, and the next phase can thus

start (storing those items in a new heap H and emptying U). Two observations are in order: (i)

during the phase execution, the minimum of H is non decreasing and so it is non-decreasing also

the output run, (ii) the items in H at the beginning of the phase will be eventually written to output

which thus is longer than M. Observation (i) implies the correctness, observation (ii) implies that

this approach is not less efficient than the classic Mergesort.

Algorithm 5.2 A phase of the Snow-Plow technique

Require: U is an unsorted array of M items

1: H = build a min-heap over U’s items;

2: Set U = ∅;

3: while (H , ∅) do

4: min = Extract minimum from H ;

5: Write min to the output run;

6: next = Read the next item from the input sequence;

7: if (next < min) then

8: write next in U;

9: else

10: insert next in H ;

11: end if

12: end while

Actually it is more efficient than that on average. Suppose that a phase reads τ items in total

from S . By the while-guard in Step 3 and our comments above, we can derive that a phase ends

when H is empty and |U| = M. We know that the read items go in part in H and in part in U.

But since items are added to U and never removed during a phase, M of the τ items end-up in U.
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Consequently (τ − M) items are inserted in H and eventually written to the output (sorted) run. So

the length of the sorted run at the end of the phase is M + (τ − M) = τ, where the first addendum

accounts for the items in H at the beginning of a phase, whereas the second addendum accounts

for the items read from S and inserted in H during the phase. The key issue now is to compute the

average of τ. This is easy if we assume a random distribution of the input items. In this case we

have probability 1/2 that next is smaller than min, and thus we have equal probability that a read

item is inserted either in H or in U. Overall it follows that τ/2 items go to H and τ/2 items go to

U. But we already know that the items inserted in U are M, so we can set M = τ/2 and thus we

get τ = 2M.

FACT 5.1 Snow-Plow builds O(n/M) sorted runs, each longer than M and actually of length 2M

on average. Using Snow-Plow for the formation of sorted runs in a Merge-based sorting scheme,

this achieves an I/O-complexity of O( n
B

log2
n

2M
) on average.

5.1.3 From binary to multi-way Mergesort

Previous optimizations deployed the internal-memory size M to reduce the number of recursion

levels by increasing the size of the initial (sorted) runs. But then the merging was binary in that

it fused two input runs at a time. This binary-merge impacted onto the base 2 of the logarithm of

the I/O-complexity of Mergesort. Here we wish to increase that base to a much larger value, and

in order to get this goal we need to deploy the memory M also in the merging phase by enlarging

the number of runs that are fused at a time. In fact the merge of 2 runs uses only 3 blocks of the

internal memory: 2 blocks are used to cache the current disk pages that contain the compared items,

namely S [x] and S [y] from the notation above, and 1 block is used to cache the output items which

are flushed when the block is full (so to allow a block-wise writing to disk of the merged run). But

the internal memory contains a much larger number of blocks, i.e. M/B � 3, which remain unused

over the whole merging process. The third optimization we propose, therefore consists of deploying

all those blocks by designing a k-way merging scheme that fuses k runs at a time, with k � 2. Let

us set k = (M/B) − 1, so that k blocks are available to read block-wise k input runs, and 1 block

is reserved for a block-wise writing of the merged run to disk. This scheme poses a challenging

merging problem because at each step we have to select the minimum among k candidates items

and this cannot be obviously done brute-forcedly by iterating among them. We need a smarter

solution that again hinges onto the use of a min-heap data structure, which contains k pairs (one

per input run) each consisting of two components: one denoting an item and the other denoting the

origin run. Initially the items are the minimum items of the k runs, and so the pairs have the form

〈Ri[1], i〉, where Ri denotes the ith input run and i = 1, 2, . . . , k. At each step, we extract the pair

containing the current smallest item in H (given by the first component of its pairs), write that item

to output and insert in the heap the next item in its origin run. As an example, if the minimum pair

is 〈Rm[x],m〉 then we write in output Rm[x] and insert in H the new pair 〈Rm[x + 1],m〉, provided

that the mth run is not exhausted, in which case no pair replaces the extracted one. In the case that

the disk page containing Rm[x + 1] is not cached in internal memory, an I/O-fault occurs and that

page is fetched, thus guaranteeing that the next B reads from run Rm will not elicit any further I/O.

It should be clear that this merging process takes O(log2 k) time per item, and again O(z/B) I/Os to

merge k runs of total length z.

As a result the merging-scheme recalls a k-way tree with O(n/M) leaves (runs) which can have

been formed using any of the optimizations above (possibly via Snow Plow). Hence the total number

of merging levels is now O(logM/B
n
M

) for a total volume of I/Os equal to O( n
B

logM/B
n
M

). We observe

that sometime we will also write the formula as O( n
B

logM/B
n
B

), as it typically occurs in the literature,

because logM/B M can be written as logM/B(B× (M/B)) = (logM/B B)+1 = Θ(logM/B B). This makes
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no difference asymptotically given that logM/B
n
M
= Θ(logM/B

n
B

).

THEOREM 5.1 Multi-way Mergesort takes O( n
B

logM/B
n
M

) I/Os and O(n log n) comparisons/-

time to sort n atomic items in a two-level memory model in which the internal memory has size M

and the disk page has size B. The use of Snow-Plow or integer compressors would virtually increase

the value of M with a twofold advantage in the final I/O-complexity, because M occurs twice in the

I/O-bound.

In practice the number of merging levels will be very small: assuming a block size B = 4KB

and a memory size M = 4GB, we get M/B = 232/212 = 220 so that the number of passes is 1/20th

smaller than the ones needed by binary Mergesort. Probably more interesting is to observe that one

pass is able to sort n = M items, but two passes are able to sort M2/B items, since we can merge

M/B-runs each of size M. It goes without saying that in practice the internal-memory space which

can be dedicated to sorting is smaller than the physical memory available (typically MBs versus

GBs). Nevertheless it is evident that M2/B is of the order of Terabytes already for M = 128MB and

B = 4KB.

5.2 Lower bounds

At the beginning of this lecture we commented on the relation existing between the Sorting and the

Permuting problems, concluding that the former one is more difficult than the latter in the RAM

model. The gap in time complexity is given by a logarithmic factor. The question we address in this

section is whether this gap does exist also when measuring I/Os. Surprisingly enough we will show

that Sorting is equivalent to Permuting in terms of I/O-volume. This result is amazing because it

can be read as saying that the I/O-cost for sorting is not in the computation of the sorted permutation

but rather the movement of the data on the disk to realize it. This is the so called I/O-bottleneck that

has in this result the mathematical proof and quantification.

Before digging into the proof of this lower bound, let us briefly show how a sorter can be used to

permute a sequence of items S [1, n] in accordance to a given permutation π[1, n]. This will allow

us to derive an upper bound to the number of I/Os which suffice to solve the Permuting problem

on any 〈S , π〉. Recall that this means to generate the sequence S [π[1]], S [π[2]], . . . , S [π[n]]. In

the RAM model we can jump among S ’s items according to permutation π and create the new

sequence S [π[i]], for i = 1, 2, . . . , n, thus taking O(n) optimal time. On disk we have actually two

different algorithms which induce two incomparable I/O-bounds. The first algorithm consists of

mimicking what is done in RAM, paying one I/O per moved item and thus taking O(n) I/Os. The

second algorithm consists of generating a proper set of tuples and then sort them. Precisely, the

algorithm creates the sequence P of pairs 〈i, π[i]〉 where the first component indicates the position

i where the item S [π[i]] must be stored. Then it sorts these pairs according to the π-component,

and via a parallel scan of S and P substitutes π[i] with the item S [π[i]], thus creating the new pairs

〈i, S [π[i]]〉. Finally another sort is executed according to the first component of these pairs, thus

obtaining a sequence of items correctly permuted. The algorithm uses two scan of the data and two

sorts, so it needs O( n
B

logM/B
n
M

) I/Os.

THEOREM 5.2 Permuting n items takes O(min{n, n
B

logM/B
n
M
}) I/Os in a two-level memory

model in which the internal memory has size M and the disk page has size B.

In what follows we will show that this algorithm, in its simplicity, is I/O-optimal. The two upper-

bounds for Sorting and Permuting equal each other whenever n = Ω( n
B

logM/B
n
M

). This occurs when
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B > logM/B
n
M

that holds always in practice because that logarithm term is about 2 or 3 for values

of n up to many Terabytes. So programmers should not be afraid to find sophisticated strategies for

moving their data in the presence of a permutation, just sort them, you cannot do better!

time complexity (RAM model) I/O complexity (two-level memory model)

Permuting O(n) O(min{n, n
B

logM/B
n
M
})

Sorting O(n log2 n) O( n
B

log M
B

n
M

)

TABLE 5.1 Time and I/O complexities of the Permuting and Sorting problems in a two-level memory

model in which M is the internal-memory size, B is the disk-page size, and D = 1 is the number of

available disks. The case of multi-disks presents the multiplicative term n/D in place of n.

5.2.1 A lower-bound for Sorting

There are some subtle issues here that we wish to do not investigate too much, so we hereafter give

only the intuition which underlies the lower-bounds for both Sorting and Permuting.2 We start by

resorting the comparison-tree technique for proving comparison-based lower bounds in the RAM

model. An algorithm corresponds to a family of such trees, one per input size (so infinite in number).

Every node is a comparison between two items. The comparison has two possible results, so the fan-

out of each internal node is two and the tree is binary. Each leaf of the tree corresponds to a solution

of the underlying problem to be solved: so in the case of sorting, we have one leaf per permutation

of the input. Every root-to-leaf path in the comparison-tree corresponds to a computation, so the

longest path corresponds to the worst-case number of comparisons executed by the algorithm. In

order to derive a lower bound, it is therefore enough to compute the depth of the shallowest binary

tree having that number of leaves. The shallowest binary tree with ` leaves is the (quasi-)perfectly

balanced tree, for which the height h is such that 2h ≥ `. Hence h ≥ log2 `. In the case of sorting

` = n! so the classic lower bound h = Ω(n log2 n) is easily derived by applying logarithms at both

sides of the equation and using the Stirling’s approximation for the factorial.

In the two-level memory model the use of comparison-trees is more sophisticated. Here we wish

to account for I/Os, and exploit the fact that the information available in the internal memory can be

used for free. As a result every node corresponds to one I/O, the number of leaves equals still to n!,

but the fan-out of each internal node equals to the number of comparison-results that this single I/O

can generate among the items it reads from disk (i.e. B) and the items available in internal memory

(i.e. M − B). These B items can be distributed in at most
(

M

B

)

ways among the other M − B items

present in internal memory, so one I/O can generate no more than
(

M

B

)

different results for those

comparisons. But this is an incomplete answer because we are not considering the permutations

among those items! However, some of these permutations have been already counted by some

previous I/O, and thus we have not to recount them. These permutations are the ones concerning

with items that have already passed through internal memory, and thus have been fetched by some

previous I/O. So we have to count only the permutations among the new items, namely the ones

2There are two assumptions that are typically introduced in those arguments. One concerns with item indivisibility, so

items cannot be broken up into pieces (hence hashing is not allowed!), and the other concerns with the possibility to only

move items and not create/destroy/copy them, which actually implies that exactly one copy of each item does exist during

their sorting or permuting.
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that have never been considered by a previous I/O. We have n/B input pages, and thus n/B I/Os

accessing new items. So these I/Os generate
(

M

B

)

(B!) results by comparing those new B items with

the M − B ones in internal memory.

Let us now consider a computation with t I/Os, and thus a path in the comparison-tree with t

nodes. n/B of those nodes must access the input items, which must be surely read to generate the

final permutation. The other t − n
B

nodes read pages containing already processed items. Any root-

to-leaf path has this form, so we can look at the comparison tree as having the new-I/Os at the top

and the other nodes at its bottom. Hence if the tree has depth t, its number of leaves is at least
(

M

B

)t × (B!)n/B. By imposing that this number is ≥ n!, and applying logarithms to both members, we

derive that t = Ω( n
B

logM/B
n
M

). It is not difficult to extend this argument to the case of D disks thus

obtaining the following.

THEOREM 5.3 In a two-level memory model with internal memory of size M, disk-page size

B and D disks, a comparison-based sorting algorithm must execute Ω( n
DB

logM/B
n

DB
) I/Os.

It is interesting to observe that the number of available disks D does not appear in the denominator

of the base of the logarithm, although it appears in the denominator of all other terms. If this would

be the case, instead, D would somewhat penalize the sorting algorithms because it would reduce

the logarithm’s base. In the light of Theorem 5.1, multi-way Mergesort is I/O and time optimal on

one disk, so D linearly boosts its performance thus having more disks is linearly advantageous (at

least from a theoretical point of view). But Mergesort is no longer optimal on multi-disks because

the simultaneous merging of k > 2 runs, should take O(n/DB) I/Os in order to be optimal. This

means that the algorithm should be able to fetch D pages per I/O, hence one per disk. This cannot

be guaranteed, at every step, by the current merging-scheme because whichever is the distribution

of the k runs among the D disks, and even if we know which are the next DB items to be loaded

in the heap H , it could be the case that more than B of these items reside on the same disk thus

requiring more than one I/O from that disk, hence preventing the parallelism in the read operation.

In the following Section 5.4 we will address this issue by proposing the disk striping technique,

that comes close to the I/O-optimal bound via a simple data layout on disks, and the Greedsort

algorithm that achieves full optimality by devising an elegant and sophisticated merging scheme.

5.2.2 A lower-bound for Permuting

Let us assume that at any time the memory of our model, hence the internal memory of size M

and the unbounded disk, contains a permutation of the input items possibly interspersed by empty

cells. No more than n blocks will be non empty during the execution of the algorithm, because n

steps (and thus I/Os) is an obvious upper bound to the I/O-complexity of Permuting (obtained by

mimicking on disk the Permuting algorithm for the RAM model). We denote by Pt the number of

permutations generated by an algorithm with t I/Os, where t ≤ n and P0 = 1 since at the beginning

we have the input order as initial permutation. In what follows we estimate Pt and then set Pt ≥ n!

in order to derive the minimum number of steps t needed to realize any possible permutation given

in input. Permuting is different from Sorting because the permutation to be realized is provided in

input, and thus we do not need any computation. So in this case we distinguish three types of I/Os,

which contribute differently to the number of generated permutations:

Write I/O: This may increase Pt by a factor O(n) because we have at most n+1 possible ways

to write the output page among the at most n not-empty pages available on disk. Any

written page is “touched”, and they are no more than n at any instant of the permuting

process.
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Read I/O on an untouched page: If the page was an input page never read before, the read

operation imposes to account for the permutations among the read items, hence B! in

number, and to account also for the permutations that these B items can realize by dis-

tributing them among the M − B items present in internal memory (similarly as done

for Sorting). So this read I/O can increase Pt by a factor O(
(

M−B

B

)

(B!)) = O(
(

M

B

)

(B!)).

The number of input (hence “untouched”) pages is n/B. After a read I/O, they become

“touched”.

Read I/O on a touched page: If the page was already read or written, we already accounted

in Pt for the permutations among its items, so this read I/O can increase Pt only by a

factor O(
(

M

B

)

) due to the shuffling of the B read items with the M − B ones present in

internal memory. The number of touched pages is at most n.

If tr is the number of reads and tw is the number of writes executed by a Permuting algorithm,

where t = tr + tw, then we can bound Pt as follows (here big-Oh have been dropped to ease the

reading of the formulas):

Pt ≤ (
n

B

(

M

B

)

(B!))n/B × (n

(

M

B

)

)tr−n/B × ntw ≤ (n

(

M

B

)

)t(B!)
n
B

In order to generate every possible permutation of the n input items, we need that Pt ≥ n!. We

can thus derive a lower bound on t by imposing that n! ≤ (n
(

M

B

)

)t (B!)
n
B and resolving with respect

to t:

t = Ω(
n log n

B

B log M
B
+ log n

)

We distinguish two cases. If B log M
B
≤ log n, then the above equation becomes t = Ω(

n log n
B

log n
) =

Ω(n); otherwise it is t = Ω(
n log n

B

B log M
B

) = Ω( n
B

log M
B

n
M

). As for sorting, it is not difficult to extend this

proof to the case of D disks.

THEOREM 5.4 In a two-level memory model with internal memory of size M, disk-page size

B and D disks, permuting n items needs Ω(min{ n
D
, n

DB
logM/B

n
DB
}) I/Os.

Theorems 5.2–5.4 prove that the I/O-bounds provided in Table 5.1 for the Sorting and Permuting

problems are optimal. Comparing these bounds we notice that they are asymptotically different

whenever B log M
B
< log n. Given the current values for B and M, respectively few KBs and few

GBs, this inequality holds if n = Ω(2B) and hence when n is more than Yottabytes (= 280). This

is indeed an unreasonable situation to deal with one CPU and few disks. Probably in this context

it would be more reasonable to use a cloud of PCs, and thus analyze the proposed algorithms via a

distributed model of computation which takes into account many CPUs and more-than-2 memory

levels. It is therefore not surprising that researchers typically assume Sorting = Permuting in

the I/O-setting.

5.3 The distribution-based sorting paradigm

Like Mergesort, Quicksort is based on the divide&conquer paradigm, so it proceeds by dividing

the array to be sorted into two pieces which are then sorted recursively. But unlike Mergesort,

Quicksort does not explicitly allocate extra-working space, its combine-step is absent and its divide-

step is sophisticated and impacts onto the overall efficiency of this sorting algorithm. Algorithm 5.3
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reports the pseudocode of Quicksort, this will be used to comment on its complexity and argue for

some optimizations or tricky issues which arise when implementing it over hierarchical memories.

Algorithm 5.3 The binary quick-sort: QuickSort(S , i, j)

1: if (i < j) then

2: r = pick the position of a “good pivot”;

3: swap S [r] with S [i];

4: p = Partition(S , i, j);

5: QuickSort(S , i, p − 1);

6: QuickSort(S , p + 1, j);

7: end if

The key idea is to partition the input array S [i, j] in two pieces such that one contains items which

are smaller (or equal) than the items contained in the latter piece. This partition is order preserving

because no subsequent steps are necessary to recombine the ordered pieces after the two recursive

calls. Partitioning is typically obtained by selecting one input item as a pivot, and by distributing

all the other input items into two sub-arrays according to whether they are smaller/greater than the

pivot. Items equal to the pivot can be stored anywhere. In the pseudocode the pivot is forced to

occur in the first position S [i] of the array to be sorted (steps 2–3): this is obtained by swapping the

real pivot S [r] with S [i] before that procedure Partition(S , i, j) is invoked. We notice that step 2

does not detail the selection of the pivot, because this will be the topic of a subsequent section.

There are two issues for achieving efficiency in the execution of Quicksort: one concerns with

the implementation of Partition(S , i, j), and the other one with the ratio between the size of the two

formed pieces because the more balanced they are, the more Quicksort comes closer to Mergesort

and thus to the optimal time complexity of O(n log n). In the case of a totally unbalanced partition,

in which one piece is possibly empty (i.e. p = i or p = j), the time complexity of Quicksort is

O(n2), thus recalling in its cost the Insertion sort. Let us comment these two issues in detail in the

following subsections.

5.3.1 From two- to three-way partitioning

The goal of Partition(S , i, j) is to divide the input array into two pieces, one contains items which

are smaller than the pivot, and the other contains items which are larger than the pivot. Items equal to

the pivot can be arbitrarily distributed among the two pieces. The input array is therefore permuted

so that the smaller items are located before the pivot, which in turn precedes the larger items. At

the end of Partition(S , i, j), the pivot is located at S [p], the smaller items are stored in S [i, p − 1],

the larger items are stored in S [p + 1, j]. This partition can be implemented in many ways, taking

O(n) optimal time, but each of them offers a different cache usage and thus different performance in

practice. We present below a tricky algorithm which actually implements a three-way distribution

and takes into account the presence of items equal to the pivot. They are detected and stored aside

in a “special” sub-array which is located between the two smaller/larger pieces.

It is clear that the central sub-array, which contains items equal to the pivot, can be discarded from

the subsequent recursive calls, similarly as we discard the pivot. This reduces the number of items

to be sorted recursively, but needs a change in the (classic) pseudo-code of Algorithm 5.3, because

Partition must now return the pair of indices which delimit the central sub-array instead of just the

position p of the pivot. The following Algorithm 5.4 details an implementation for the three-way

partitioning of S [i, j] which uses three pointers that move rightward over this array and maintain
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the following invariant: P is the pivot driving the three-way distribution, S [c] is the item currently

compared against P, and S [i, c − 1] is the part of the input array already scanned and three-way

partitioned in its elements. In particular S [i, c − 1] consists of three parts: S [i, l − 1] contains items

smaller than P, S [l, r − 1] contains items equal to P, and S [r, c − 1] contains items larger than P. It

may be the case that anyone of these sub-arrays is empty.

Algorithm 5.4 The three-way partitioning: Partition(S , i, j)

1: P = S [i]; l = i; r = i − 1;

2: for (c = r; c ≤ j; c++) do

3: if (S [c] == P) then

4: swap S [c] with S [r];

5: r++;

6: else if (S [c] < P) then

7: swap S [c] with S [l];

8: swap S [l] with S [r];

9: r++; l++;

10: end if

11: end for

12: return 〈l, r − 1〉;

Step 1 initializes P to the first item of the array to be partitioned (which is the pivot), l and r

are set to guarantee that the smaller/greater pieces are empty, whereas the piece containing items

equal to the pivot consists of the only item P. Next the algorithm scans S [i+ 1, j] trying to maintain

the invariant above. This is easy if S [c] > P, because it suffices to extend the part of the larger

items by advancing r. In the other two cases (i.e. S [c] ≤ P) we have to insert S [c] in its correct

position among the items of S [i, r − 1], in order to preserve the invariant on the three-way partition

of S [i, c]. The cute idea is that this can be implemented in O(1) time by means of at most two swaps,

as described graphically in Figure 5.3.

The three-way partitioning algorithm takes O(n) time and offers two positive properties: (i)

stream-like access to the array S which allows the pre-fetching of the items to be read; (ii) the

items equal to the pivot can then be eliminated from the following recursive calls.

5.3.2 Pivot selection

The selection of the pivot is crucial to get balanced partitions, reduce the number of recursive calls,

and achieve optimal O(n log n) time complexity. The pseudo-code of Algorithm 5.3 does not detail

the way the pivot is selected because this may occur in many different ways, each offering pros/cons.

As an example, if we choose the pivot as the first item of the input array (namely r = i), the selection

is fast but it is easy to instantiate the input array in order to induce un-balanced partitions: just take

S to be an increasing or decreasing ordered sequence of items. Worse than this, it is the observation

that any deterministic choice incurs in this drawback.

One way to circumvent bad inputs is to select the pivot randomly among the items in S [i, j]. This

prevents the case that a given input is bad for Quicksort, but makes the behavior of the algorithm

un-predictable in advance and dependant on the random selection of the pivot. We can show that

the average time complexity is the optimal O(n log n), with an hidden constant small and equal to

1.45. This fact, together with the in-place nature of Quicksort, makes this approach much appealing

in practice (cfr qsort below).
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FIGURE 5.3: The two cases and the corresponding swapping. On the arrow we specify the value of

the moved item with respect to the pivot.

THEOREM 5.5 The random selection of the pivot drives Quicksort to compare no more than

1.45n log n items, on average.

Proof The proof is deceptively simple if attacked from the correct angle. Let us denote by Xu,v

the random variable indicating whether items S [u] and S [v] are compared by Partition during a

recursive call of Quicksort. Say u < v and denote by pu,v the probability that this event occurs. The

average number of comparisons executed by Quicksort can then be computed as E[
∑

u,v Xu,v] =
∑

u

∑

v>u 1 × pu,v + 0 × (1 − pu,v) =
∑n

u=1

∑n
v=u+1 pu,v by linearity of expectation. To estimate pu,v

we concentrate on the random choice of the pivot S [r] and distinguish three cases. If S [r] < S [u]

or S [r] > S [v], then the two items S [u] and S [v] are not compared to each other and they are

passed to the same recursive call of Quicksort. So the problem presents itself again on a smaller

subset of items containing both S [u] and S [v]. In the case that r = u or r = v, the two items are

compared by Partition. In all other cases the pivot has a value between S [u] and S [v], so these

two items go to two different partitions (hence two different recursive calls of Quicksort) and will

never be compared. As a result, to compute pu,v we have to consider as interesting pivot-selections

the ones for which S [u] ≤ S [r] ≤ S [v]. They are v − u + 1 in number, and among them only two

choices induce a comparison between S [u] and S [v], namely the ones for which r = u or r = v. So

pu,v = 2/(v − u + 1). Substituting in the formula above we get:

E[
∑

u,v

Xu,v] =

n
∑

u=1

n
∑

v>u

2

v − u + 1
≤ 2

n
∑

u=1

n
∑

k=1

1

k
≤ 2n ln n

where the last inequality comes from the properties of the n-th harmonic number. The statement

of the theorem then follows by observing that ln n ≤ 1.45 log2 n.

The next question is how we can enforce the average behavior. The natural answer is to sample

more than one pivot. Typically 3 pivots are randomly sampled from S and the central one (i.e.
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the median) is taken, thus requiring just two comparisons in O(1) time. Taking more than 3 pivots

makes the selection of a “good one” more robust, as proved in the following theorem [2].

THEOREM 5.6 If Quicksort partitions around the median of 2s+1 randomly selected elements,

it sorts n distinct elements in
2nHn

H2s+2−Hs+1
+O(n) expected comparisons, where Hz is the z-th harmonic

number
∑z

i=1
1
i
.

By increasing s, we can push the expected number of comparisons close to n log n+O(n), however

the selection of the median incurs a higher cost. In fact this can be implemented either by sorting the

s samples in O(s log s) time and taking the one in the middle position s+ 1 of the ordered sequence;

or in O(s) worst-case time via a sophisticated algorithm (not detailed here). Randomization helps

in simplifying the selection still guaranteeing O(s) time on average. We detail this approach here

because its analysis is elegant and its structure general enough to be applied not only for the selection

of the median of an unordered sequence, but also for selecting the item of any rank k.

Algorithm 5.5 Selecting the k-th ranked item: RandSelect(S , k)

1: r = pick a random item from S ;

2: S < = items of S which are smaller than S [r];

3: S > = items of S which are larger than S [r];

4: n< = |S <|;
5: n= = |S | − (|S <| + |S >|);
6: if (k ≤ n<) then

7: return RandSelect(S <, k);

8: else if (k ≤ (n< + n=)) then

9: return S [r];

10: else

11: return RandSelect(S >, k − n< − n=);

12: end if

Algorithm 5.5 is randomized and selects the item of the unordered S having rank k. It is interest-

ing to see that the algorithmic scheme mimics the one used in the Partitioning phase of Quicksort:

here the selected item S [r] plays the same role of the pivot in Quicksort, because it is used to par-

tition the input sequence S in three parts consisting of items smaller/equal/larger than S [r]. But

unlike Quicksort, RandSelect recurses only in one of these three parts, namely the one containing

the k-th ranked item. This part can be determined by just looking at the sizes of those parts, as done

in Steps 6 and 8. There are two specific issues that deserve a comment. We do not need to recurse

on S = because it consists of items equal to S [r]. If recursion occurs on S >, we need to update the

rank k because we are dropping from the original sequence the items belonging to the set S < ∪ S =.

Correctness is therefore immediate, so we are left with computing the average time complexity of

this algorithm which turns to be the optimal O(n), given that S is unsorted and thus all of its n items

have to be examined to find the one having rank k among them.

THEOREM 5.7 Selecting the k-th ranked item in an unordered sequence of size n takes O(n)

average time in the RAM model, and O(n/B) I/Os in the two-level memory model.

Proof Let us call “good selection” the one that induces a partition in which n< and n> are not
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larger than 2n/3. We do not care of the size of S = since, if it contains the searched item, that item

is returned immediately as S [r]. It is not difficult to observe that S [r] must have rank in the range

[n/3, 2n/3] in order to ensure that n< ≤ 2n/3 and n> ≤ 2n/3. This occurs with probability 1/3,

given that S [r] is drawn uniformly at random from S . So let us denote by T̂ (n) the average time

complexity of RandSelect when run on an array S [1, n]. We can write

T̂ (n) ≤ O(n) +
1

3
× T̂ (2n/3) +

2

3
× T̂ (n),

where the first term accounts for the time complexity of Steps 2-5, the second term accounts

for the average time complexity of a recursive call on a “good selection”, and the third term is a

crude upper bound to the average time complexity of a recursive call on a “bad selection” (that is

actually assumed to recurse on the entire S again). This is not a classic recurrent relation because

the term T̂ (n) occurs on both sides; nevertheless, we observe that this term occurs with different

constants in the front. Thus we can simplify the relation by subtracting those terms, so getting
1
3
T̂ (n) ≤ O(n)+ 1

3
T̂ (2n/3), which gives T̂ (n) = O(n)+ T̂ (2n/3) = O(n). If this algorithm is executed

in the two-level memory model, the equation becomes T̂ (n) = O(n/B) + T̂ (2n/3) = O(n/B) given

that the construction of the three subsets can be done via a single pass over the input items.

We can use RandSelect in many different ways within Quicksort. For example, we can select the

pivot as the median of the entire array S (setting k = n/2) or the median among an over-sampled

set of 2s + 1 pivots (setting k = s + 1, where s � n/2), or finally, it could be subtly used to select

a pivot that generates a balanced partition in which the two parts have different sizes both being

a fraction of n, say αn and (1 − α)n with α < 0.5. This last choice k = bαnc seems meaningless

because the three-way partitioning still takes O(n) time but increases the number of recursive calls

from log2 n to log1−α n. But this observation neglects the sophistication of modern CPUs which

are parallel, pipelined and superscalar. These CPUs execute instructions in parallel, but if there

is an event that impacts on the instruction flow, their parallelism is broken and the computation

slows down significantly. Particularly slow are branch mispredictions, which occur in the execution

of Partition(S , i, j) whenever an item smaller than or equal to the pivot is encountered. If we

reduce these cases, then we reduce the number of branch-mispredictions, and thus deploy the full

parallelism of modern CPUs. Thus the goal is to properly set α in a way that the reduced number

of mispredictions balances the increased number of recursive calls. The right value for α is clearly

architecture dependent, recent results have shown that a reasonable value is 0.1.

5.3.3 Bounding the extra-working space

QuickSort is frequently named as an in-place sorter because it does not use extra-space for ordering

the array S . This is true if we limit ourself to the pseudocode of Algorithm 5.3, but it is no longer

true if we consider the cost of managing the recursive calls. In fact, at each recursive call, the OS

must allocate space to save the local variables of the caller, in order to retrieve them whenever the

recursive call ends. Each recursive call has a space cost of Θ(1) which has to be multiplied by

the number of nested calls Quicksort can issue on an array S [1, n]. This number can be Ω(n) in

the worst case, thus making the extra-working space Θ(n) on some bad inputs (such as the already

sorted ones, pointed out above).

We can circumvent this behavior by restructuring the pseudocode of Algorithm 5.3 as specified

in Algorithm 5.6. This algorithm is cryptic at a first glance, but the underlying design principle is

pretty smart and elegant. First of all we notice that the while-body is executed only if the input

array is longer than n0, otherwise Insertion-sort is called in Step 13, thus deploying the well-known

efficiency of this sorter over very small sequences. The value of n0 is typically chosen of few tens

of items. If the input array is longer than n0, a modified version of the classic binary Quicksort
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Algorithm 5.6 The binary quick-sort with bounded recursive-depth: BoundedQS(S , i, j)

1: while ( j − i > n0) do

2: r = pick the position of a “good pivot”;

3: swap S [r] with S [i];

4: p = Partition(S , i, j);

5: if (p ≤ i+ j

2
) then

6: BoundedQS(S , i, p − 1);

7: i = p + 1;

8: else

9: BoundedQS(S , p + 1, j);

10: j = p − 1;

11: end if

12: end while

13: InsertionSort(S , i, j);

is executed that mixes one single recursive call with an iterative while-loop. The ratio underlying

this code re-factoring is that the correctness of classic Quicksort does not depend on the order of

the two recursive calls, so we can reshuffle them in such a way that the first call is always executed

on the smaller part of the two/three-way partition. This is exactly what the IF-statement in step 5

guarantees. In addition to that, the pseudo-code above drops the recursive call onto the larger part

of the partition in favor of another execution of the body of the while loop in which we properly

changed the parameters i and j to reflect the new extremes of that larger part. This “change” is

well-known in the literature of compilers with the name of elimination of tail recursion. The net

result is that the recursive call is executed on a sub-array whose size is no more than the half of the

input array. This guarantees an upper bound of O(log2 n) on the number of recursive calls, and thus

on the size of the extra-space needed to manage them.

THEOREM 5.8 BoundedQS sorts n atomic items in the RAM model taking O(n log n) average

time, and using O(log n) additional working space.

We conclude this section by observing that the C89 and C99 ANSI standards define a sorting

algorithm, called qsort, whose implementation encapsulates most of the algorithmic tricks detailed

above.3 This witnesses further the efficiency of the distribution-based sorting scheme over the 2-

levels: cache and DRAM.

5.3.4 From binary to multi-way Quicksort

Distribution-based sorting is the dual of merge-based sorting in that the first proceeds by splitting

sequences according to pivots and then ordering them recursively, while the latter merges sequences

which have been ordered recursively. Disk-efficiency was obtained in Multi-way Mergesort by

managing (fusing) multiple sequences together. The same idea is applied to design the Multi-way

Quicksort which splits the input sequence into k = Θ(M/B) sub-sequences by using k − 1 pivots.

3Actually qsort is based on a different two-way partitioning scheme that uses two iterators, one moves forward and the

other one moves backward over S ; a swap occurs whenever two un-sorted items are encountered. The asymptotic time

complexity does not change, but practical efficiency can spur from the fact that the number of swaps is reduced since

equal items are not moved.
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Given that k � 1 the selection of those pivots is not a trivial task because it must ensure that the k

partitions they form, are balanced and thus contain Θ(n/k) items each. Section 5.3.2 discussed the

difficulties underlying the selection of one pivot, so the case of selecting many pivots is even more

involved and needs a sophisticated analysis.

We start with denoting by s1, . . . , sk−1 the pivots used by the algorithm to split the input sequence

S [1, n] in k parts, also called buckets. For the sake of clarity we introduce two dummy pivots

s0 = −∞ and sk = +∞, and denote the i-th bucket by Bi = {S [ j] : si−1 < S [ j] ≤ si}. We wish to

guarantee that |Bi| = Θ(n/k) for all the k buckets. This would ensure that logk
n
M

partitioning phases

are enough to get sub-sequences shorter than M, which can thus be sorted in internal-memory

without any further I/Os. Each partitioning phase can be implemented in O(n/B) I/Os by using a

memory organization which is the dual of the one employed for Mergesort: namely, 1 input block

(used to read from the input sequence to be partitioned) and k output blocks (used to write into the

k partitions under formation). By imposing k = Θ(M/B), we derive that the number of partitioning

phases is logk
n
M
= Θ(logM/B

n
M

) so that the Multi-way Quicksort takes the optimal I/O-bound of

Θ( n
B

logM/B
n
M

), provided that each partitioning step distributes evenly the input items among the k

buckets.

To find efficiently k good pivots, we deploy a fast and simple randomized strategy based on

oversampling, whose pseudocode is given in Algorithm 5.7 below. Parameter a ≥ 0 controls the

amount of oversampling and thus impacts onto the robustness of the selection process as well as on

the cost of Step 2. The latter cost is O((ak) log(ak)) if we adopt an optimal in-memory sorter, such

as Heapsort or Mergesort, to sort the Θ(ak) sampled items.

Algorithm 5.7 Selection of k − 1 good pivots via oversampling

1: Take (a + 1)k − 1 samples at random from the input sequence;

2: Sort them into an ordered sequence A;

3: For i = 1, . . . , k − 1, pick the pivot si = A[(a + 1)i];

4: return the pivots si;

The main idea is to select Θ(ak) candidate pivots from the input sequence and then pick k among

them, namely the ones which are evenly spaced and thus (a + 1) far apart from each other. We are

arguing that those Θ(ak) samples provide a faithful picture of the distribution of the items in the

entire input sequence, so that the balanced selection si = A[(a + 1)i] should provide us with “good

pivots”. The larger is a the closer toΘ(n/k) should be the size of all buckets, but the higher would be

the cost of sorting the samples. At the extreme case of a = n/k, the samples could not be sorted in

internal memory! On the other hand, the closer a is to zero the faster would be the pivot selection but

more probable is to get unbalanced partitions. As we will see in the following Lemma 5.1, choosing

a = Θ(log k) is enough to obtain balanced partitions with a pivot-selection cost of O(k log2 k) time.

We notice that the buckets will be not perfectly balanced but quasi-balanced, since they include no

more than 4n
k
= O(n/k) items; the factor 4 will nonetheless leave unchanged the aimed asymptotic

time complexity.

LEMMA 5.1 Let k ≥ 2 and a+ 1 = 12 ln k. A sample of size (a+ 1)k − 1 suffices to ensure that

all buckets receives less than 4n/k elements, with probability at least 1/2.

Proof We provide an upper bound of 1/2 to the probability of the complement event stated in

the Lemma, namely that there exists one bucket whose size is larger than 4n/k. This corresponds
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to a failure sampling, which induces an un-balanced partition. To get this probability estimate

we will introduce a cascade of events that are implied by this one and thus have larger and larger

probabilities to occur. For the last one in the sequence we will be able to fix an explicit upper-bound

of 1/2. Given the implications, this upper bound will also hold for the original event. And so we

will be done.

Let us start by considering the sorted version of the input sequence S , which hereafter we denote

by S ′. We logically split S ′ in k/2 segments of length 2n/k each. The event we are interested in is

that there exists a bucket Bi with at least 4n/k items assigned to it. As illustrated in Figure 5.4 this

large bucket completely spans at least one segment, say t2 in the Figure below, because the former

contains ≥ 4n/k items whereas the latter contains 2n/k items.

FIGURE 5.4: Splitting of the sorted sequence S ′ into segments.

By definition of the buckets, the pivots si−1 and si which delimit Bi fall outside t2. Hence, by

Algorithm 5.7, less that (a + 1) samples fall in the segment overlapped by Bi. In the figure it is t2,

but it might be any segment of S ′. So we have that:

P(∃Bi : |Bi| ≥ 4n/k) ≤ P(∃t j : t j contains < (a + 1) samples)

≤ k

2
× P(a specific segment contains < (a + 1) samples) (5.1)

where the last inequality comes from the union bound, given that k/2 is the number of segments

constituting S ′. So we will hereafter concentrate on providing an upper bound to the last term.

The probability that one sample ends in a given segment is equal to
(2n/k)

n
= 2

k
because they are

assumed to be drawn uniformly at random from S (and thus from S ′). So let us call X the number

of those samples, we are interested in computing P(X < a + 1). We start by observing that E[X] =

((a + 1)k − 1) × 2
k
= 2(a + 1) − 2

k
. The Lemma assumes that k ≥ 2, so E[X] ≥ 2(a + 1) − 1 which is

≥ 3
2
(a + 1) for all a ≥ 1.

Since we are interested in P(X < a + 1), we resort the Chernoff bound:

P(X < (1 − δ)E[X]) ≤ e−
δ2

2
E[X]

From above we know that E[X] ≥ 3
2
(a + 1), and thus a + 1 ≤ (2/3)E[X] = (1 − 1

3
)E[X]. As a result,

we can write

P(X < a + 1) ≤ P(X < (1 − 1

3
)E[X])

≤ e−E[X]/18 ≤ e−(a+1)/12 = e− ln k =
1

k
(5.2)
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where we used the lemma’s assumption that a + 1 = 12 ln k. By plugging this value in Eqn 5.1,

we get the statement of the Lemma.

5.4 Sorting with multi-disks∞

The bottleneck in disk-based sorting is obviously the time needed to perform an I/O operation. In

order to mitigate this problem, we can use D disks working in parallel so to transfer DB items per

I/O. On the one hand this increases the bandwidth of the I/O subsystem, but on the other hand, it

makes the design of I/O-efficient algorithms particularly difficult. Let’s see why.

The simplest approach to manage parallel disks is called disk striping and consists of looking

at the D disks as one single disk whose page size is B′ = DB. This way we gain simplicity in

algorithm design by just using as-is any algorithm designed for one disk, now with a disk-page of

size B′. Unfortunately, this simple approach pays an un-negligible price in terms of I/O-complexity:

O(
n

B′
logM/B′

n

M
) = O(

n

DB
logM/DB

n

M
)

This bound is not optimal because the base of the logarithm is D times smaller than what indicated

by the lower bound proved in Theorem 5.3. The ratio between the bound achieved via disk-striping

and the optimal bound is 1 − logM/B D, which shows disk striping to be less and less efficient as the

number of disks increases D −→ M/B. The problem resides in the fact that we are not deploying

the independency among disks by using them as a monolithic sub-system.

On the other hand, deploying this independency is tricky and it took several years before design-

ing fully-optimal algorithms running over multi-disks and achieving the bounds stated in Theorem

5.3. The key problem with the management of multi-disks is to guarantee that every time we ac-

cess the disk sub-system, we are able to read or write D pages each one coming from or going

to a different disk. This is to guarantee a throughput of DB items per I/O. In the case of sorting,

such a difficulty arises both in the case of distributed-based and merge-based sorters, each with its

specialties given the duality of those approaches.

Let us consider the multi-way Quicksort. In order to guarantee a D-way throughput in reading

the input items, these must be distributed evenly among the D disks. For example they could be

striped circularly as indicated in Figure 5.5. This would ensure that a scan of the input items takes

O(n/DB) optimal I/Os.

FIGURE 5.5: An example of striping a sequence of items among D = 4 disks, with B = 2.
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This way the subsequent distribution phase can read the input sequence at that I/O-speed. Nonethe-

less problems occur when writing the output sub-sequences produced by the partitioning process. In

fact that writing should guarantee that each of these sub-sequences is circularly striped among the

disks in order to maintain the invariant for the next distribution phase (to be executed independently

over those sub-sequences). In the case of D disks, we have D output blocks that are filled by the

partitioning phase. So when they are full these D blocks must be written to D distinct disks to en-

sure full I/O-parallelism, and thus one I/O. Given the striping of the runs, if all these output blocks

belong to the same run, then they can be written in one I/O. But, in general, they belong to different

runs so that conflicts may arise in the writing process because blocks of different runs could have to

be written onto the same disks. An example is given in Figure 5.6 where we have illustrated a situ-

ation in which we have three runs under formation by the partitioning phase of Quicksort, and three

disks. Runs are striped circularly among the 3 disks and shadowed blocks correspond to the prefixes

of the runs that have been already written on those disks. Arrows point to the next free-blocks of

each run where the partitioning phase of Quicksort can append the next distributed items. The figure

depicts an extremely bad situation in which all these blocks are located on the same disk D2, so that

an I/O-conflict may arise if the next items to be output by the partitioning phase go to these runs.

This practically means that the I/O-subsystem must serialize the write operation in D = 3 distinct

I/Os, hence loosing all the I/O-parallelism of the D-disks. In order to avoid these difficulties, there

are known randomized solutions that ensure optimal I/Os in the average case [6].

FIGURE 5.6: An example of an I/O-conflict in writing D = 3 blocks belonging to 3 distinct runs.

In what follows we sketch a deterministic multi-disk sorter, known as Greed Sort [5], which solves

the difficulties above via an elegant merge-based approach which consists of two stages: first, items

are approximately sorted via an I/O-efficient Multi-way Merger that deals with R = Θ(
√

M/B)

sorted runs in an independent way (thus deploying disks in parallel), and then it completes the

sorting of the input sequence by using an algorithm (aka ColumnSort, due to T. Leighton in 1985)

that takes a linear number of I/Os when executed over short sequences of length O(M
3
2 ). Correctness

comes from the fact that the distance of the un-sorted items from their correct sorted position, after

the first stage, is smaller than the size of the sequences manageable by Columsort. Hence the second

stage can correctly turn the approximately-sorted sequence into a totally-sorted sequence by a single

pass.

How to get the approximately sorted runs in I/O-efficient way is the elegant algorithmic contribu-

tion of GreedSort. We sketch its main ideas here, and refer the interested reader to the corresponding

paper [5] for further details. We assume that sorted runs are stored in a striped way among the D

disks, so that reading D consecutive blocks from each of them takes one I/O. As we discussed for
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Quicksort, also in this Merge-based approach we could incur in I/O-conflicts when reading these

runs. GreedSort avoids this problem by operating independently on each disk: in a parallel read

operation, GreedSort fetches the two best available blocks from each disk. These two blocks are

called “best” because they contain the smallest minimum item, say m1, and the smallest maximum

item, say m2, currently present in blocks stored on that disk (possibly these two blocks are the same).

It is evident that this selection can proceed independently over the D disks, and it needs a proper

data structure that keeps track of minimum/maximum items in disk-blocks. Actually [5] shows that

this data structure can fit in internal memory, thus not incurring any further I/Os for this selection

operations.

FIGURE 5.7: Example taken from the GreedSort’s paper [5].

Figure 5.7 shows an example on disk j, which contains the blocks of several runs because of the

striping-based storage. The figure assumes that run 1 contains the block with the smallest minimum

item (i.e. 1) and run 2 contains the block with the smallest maximum item (i.e. 7). All the other

blocks which come from run 1 contain items larger than 8 (i.e. the maximum of the first block),

and all the other blocks which come from run 2 contain items larger than 7. All blocks coming

form other runs have minimum larger than 1 and maximum larger than 7. Greedsort then merges

these blocks creating two new sorted blocks: the first one is written to output (it contains the items

{1, 2, 3, 4}), the second one is written back to the run of the smallest minimum m1, namely run 1

(it contains the items {5, 6, 7, 8}). This last write back into run 1 does not disrupt that ordered sub-

sequence, because the second block contains surely items smaller than the maximum of the block

of m1.

We notice that the items written in output are not necessarily the four smallest items of all runs.

In fact it could exist a block in another run (different from runs 1 and 2) which contains a value

within [1, 4], say 2.5, and whose minimum is larger than 1 and whose maximum is larger than 7. So

this block is compatible with the selection we did above from run 1 and 2, but it contains items that

should be stored in the first block of the sorted sequence. So the selection of the “two-best blocks”

proceeds independently over all disks until all runs have been examined and written in output. The

final sequence produced by this merging process is not sorted, but if we read it in a striped-way

along all D disks, then it results approximately sorted as stated in the following lemma (proved in

[5]).
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LEMMA 5.2 A sequence is called L-regressive if any pair of un-sorted records, say . . . y . . . x . . .

with y > x, has distance less than L in the sequence. The previous sorting algorithm creates an output

that is L-regressive, with L = RDB = D
√

MB.

The application of ColumnSort over the L-regressive sequence, by sliding a window of 2L items

which moves L steps forward at each phase, allows to produce a merged sequence which is totally

sorted. In fact L = D
√

MB ≤ DB
√

M ≤ M3/2 and thus ColumnSort is effective in producing the

entirely sorted sequence. We notice that at this point this sorted sequence is striped along all D

disks, thus the invariant for the next merging phase is preserved and the merge can thus start over

a number of runs that has been reduced by a factor R. The net result is that each merging takes

O(n/DB) I/Os, the total number of merging stages is logR
n
M
= O(logM/B

n
M

), and thus the optimal

I/O-bound follows.
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