
10
Statistical Coding

10.1 Huffman coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Canonical Huffman coding • Bounding the length of
codewords

10.2 Arithmetic Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
Bit streams and dyadic fractions • Compression
algorithm • Decompression algorithm • Efficiency •

Arithmetic coding in practice • Range Coding

10.3 Prediction by Partial Matching∞ . . . . . . . . . . . . . . . . . . . . . . 10-23
The algorithm • The principle of exclusion • Zero
Frequency Problem

The topic of this chapter is the statistical coding of sequences of symbols (aka texts) drawn from

an alphabet Σ. Symbols may be characters, in this case the problem is named text compression, or

they can be genomic-bases thus arising the Genomic-DB compression problem, or they can be bits

and in this case we fall in the realm of classic data compression. If symbols are integers, then we

have the Integer coding problem, addressed in the previous Chapter, which can be solved still with

a statistical coder by just deriving statistical information on the integers occurring in the sequence

S . In this latter case, the code we derive is an optimal prefix-free code for the integers of S , but its

coding/decoding time is larger than the one incurred by the integer encoders of the previous Chapter,

and indeed, this is the reason for their introduction.

Conceptually, statistical compression may be viewed as consisting of two phases: a modeling

phase, followed by a coding phase. In the modeling phase the statistical properties of the input

sequence are computed and a model is built. In the coding phase the model is used to compress the

input sequence. In the first sections of this Chapter we will concentrate only on the second phase,

whereas in the last section we will introduce a sophisticated modeling technique. We will survey

the best known statistical compressors: Huffman coding, Arithmetic Coding, Range Coding, and

finally Prediction by Partial Matching (PPM), thus providing a pretty complete picture of what can

be done by statistical compressors. The net result will be to go from a compression performance

that can be bounded in terms of 0-th order entropy, namely an entropy function depending on the

probability of single symbols (which are therefore considered to occur i.i.d.), to the more precise

k-th order entropy which depends on the probability of k-sized blocks of symbols and thus models

the case e.g. of Markovian sources.

10.1 Huffman coding

First published in the early ’50s, Huffman coding was regarded as one of the best methods for

data compression for several decades, until the Arithmetic coding made higher compression rates

possible at the end of ’60s (see next chapter for a detailed discussion about this improved coder).
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Huffman coding is based upon a greedy algorithm that constructs a binary tree whose leaves are

the symbols in Σ, each provided with a probability P[σ]. At the beginning the tree consists only

of its |Σ| leaves, with probabilities set to the P[σ]s. These leaves constitute a so called candidate

set, which will be kept updated during the construction of the Huffman tree. In a generic step, the

Huffman algorithm selects the two nodes with the smallest probabilities from the candidate set, and

creates their parent node whose probability is set equal to the sum of the probabilities of its two

children. That parent node is inserted in the candidate set, while its two children are removed from

it. Since each step adds one node and removes two nodes from the candidate set, the process stops

after |Σ| − 1 steps, time in which the candidate set contains only the root of the tree. The Huffman

tree has therefore size t = |Σ| + (|Σ| − 1) = 2|Σ| − 1.

FIGURE 10.1: Constructing the Huffman tree for the alphabet Σ = {a, b, c, d, e, f }.

Figure 10.1 shows an example of Huffman tree for the alphabet Σ = {a, b, c, d, e, f }. The first

merge (on the left) attaches the symbols a and b as children of the node x, whose probability is set

to 0.05 + 0.1 = 0.15. This node is added to the candidate set, whereas leaves a and b are removed

from it. At the second step the two nodes with the smallest probabilities are the leaf c and the node

x. Their merging updates the candidate set by deleting x and c, and by adding their parent node y

whose probability is set to be 0.15+ 0.15 = 0.3. The algorithm continues until there is left only one

node (the root) with probability, of course, equal to 1.

In order to derive the Huffman code for the symbols in Σ, we assign binary labels to the tree

edges. The typical labeling consists of assigning 0 to the left edge and 1 to the right edge spurring

from each internal node. But this is one of the possible many choices. In fact a Huffman tree can

originate 2|Σ|−1 labeled trees, because we have 2 labeling choices (i.e. 0-1 or 1-0) for the two edges

spurring from each one of the |Σ| − 1 internal nodes. Given a labeled Huffman tree, the Huffman

codeword for a symbol σ is derived by taking the binary labels encountered on the downward path

that connects the root to the leaf associated to σ. This codeword has a length L(σ) bits, which

corresponds to the depth of the leaf σ in the Huffman tree. The Huffman code is prefix-free because

every symbol is associated to a distinct leaf and thus no codeword is the prefix of another codeword.

We observe that the choice of the two nodes having minimum probability may be not unique,

and the actual choices available may induce codes which are different in the structure but, nonethe-

less, they have all the same optimal average codeword length. In particular these codes may offer
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a different maximum codeword length. Minimizing this value is useful to reduce the size of the

compression/decompression buffer, as well as the frequency of emitted symbols in the decoding

process. Figure 10.2 provides an illustrative example of these multiple choices.

FIGURE 10.2: An example of two Huffman codes having the same average codeword length 22
10

,

but different maximum codeword length.

A strategy to minimize the maximum codeword length is to choose the two oldest nodes among

the ones having same probability and belonging to the current candidate set. Oldest nodes means

that they are leaves or they are internal nodes that have been merged farther in the past than the

other nodes in the candidate set. This strategy can be implemented by using two queues: the first

one contains the symbols ordered by increasing probability, the second queue contains the internal

nodes in the order they are created by the Huffman algorithm. It is not difficult to observe that the

second queue is sorted by increasing probability too. In the presence of more than two minimum-

probability nodes, the algorithm looks at the nodes in the first queue, after which it looks at the

second queue. Figure 10.2 shows on the left the tree resulting by this algorithm and, on the right,

the tree obtained by using an approach that makes an arbitrary choice.

The compressed file originated by Huffman algorithm consists of two parts: the preamble which

contains an encoding of the Huffman tree, and thus has size Θ(|Σ|), and the body which contains

the codewords of the symbols in the input sequence S . The size of the preamble is usually dropped

from the evaluation of the length of the compressed file; even if this might be a significant size

for large alphabets. So the alphabet size cannot be underestimated, and it must be carefully taken

into account. In the rest of the section we will concentrate on the evaluation of the size in bits for

the compressed body, and then turn to the efficient encoding of the Huffman tree by proposing the

elegant Canonical Huffman version which offers space succinctness and very fast decoding speed.

Let LC =
∑

σ∈Σ L(σ) P[σ] be the average length of the codewords produced by a prefix-free code

C, which encodes every symbol σ ∈ Σ in L(σ) bits. The following theorem states the optimality of

Huffman coding:

THEOREM 10.1 If C is an Huffman code, then LC is the shortest possible average length

among all prefix-free codes C′, namely it is LC ≤ LC′ .
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To prove this result we first observe that a prefix-free code can be seen as a binary tree (more

precisely, we should say binary trie), so the optimality of the Huffman code can be rephrased as

the minimality of the average depth of the corresponding binary tree. This latter property can be

proved by deploying the following key lemma, whose proof is left to the reader who should observe

that, if the lemma does not hold, then a not minimum-probability leaf occurs at the deepest level

of the binary tree; in which case it can be swapped with a minimum-probability leaf (therefore not

occurring at the deepest level) and thus reduce the average depth of the resulting tree.

LEMMA 10.1 Let T be a binary tree whose average depth is minimum among the binary trees

with |Σ| leaves. Then the two leaves with minimum probabilities will be at the greatest depth of T ,

children of the same parent node.

Let us assume that the alphabet Σ consists of n symbols, and symbols x and y have the smallest

probability. Let TC be the binary tree generated by a code C applied onto this alphabet; and let us

denote by RC the reduced tree which is obtained by dropping the leaves for x and y. Thus the parent,

say z, of leaves x and y is a leaf of RC with probability P[z] = P[x] + P[y]. So the tree RC is a tree

with n − 1 leaves corresponding to the alphabet Σ − {x, y} ∪ {z} (see Figure 10.3).

FIGURE 10.3: Relationship between a tree T and its corresponding reduced tree R.

LEMMA 10.2 The relation between the average depth of the tree T with the one of its reduced

tree R is given by the formula LT = LR + (P[x] + P[y]), where x and y are the symbols having the

smallest probability.

Proof It is enough to write down the equalities for LT and LR, by summing the length of all root-

to-leaf paths multiplied by the probability of the landing leaf. So we have LT =
(

∑

σ,x,y P[σ] L(σ)
)

+

(P[x]+P[y])(LT (z)+1), where z is the parent of x and y and thus LT (x) = LT (y) = LT (z)+1. Similarly,

we can write LR =
(

∑

σ,x,y P[σ]L(σ)
)

+ L(z)(P[x] + P[y]). So the thesis follows.

The optimality of Huffman code (claimed in the previous Theorem 10.1) can now be proved by

induction on the number n of symbols in Σ. The base n = 2 is obvious, because any prefix-free

code must assign at least one bit to |Σ|’s symbols; therefore Huffman is optimal because it assigns

the single bit 0 to one symbol and the single bit 1 to the other.

Let us now assume that n > 2 and, by induction, assume that Huffman code is optimal for an

alphabet of n − 1 symbols. Take now |Σ| = n, and let C be an optimal code for Σ and its underlying
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distribution. Our goal will be to show that LC = LH , so that Huffman is optimal for n symbols too.

Clearly LC ≤ LH because C was assumed to be an optimal code for Σ. Now we consider the two

reduced trees, say RC and RH , which can be derived from TC and TH , respectively, by dropping the

leaves x and y with the smallest probability and leaving their parent z. By Lemma 10.1 (for the

optimal C) and the way Huffman works, this reduction is possible for both trees TC and TH . The

two reduced trees define a prefix-code for an alphabet of n − 1 symbols; so, given the inductive

hypothesis, the code defined by RH is optimal for the ”reduced” alphabet Σ ∪ {z} − {x, y}. Therefore

LRH
≤ LRC

over this ”reduced” alphabet. By Lemma 10.2 we can write LH = LRH
+ P[x] + P[y]

and, according to Lemma 10.1, we can write LC = LRC
+ P[x] + P[y]. So it turns out that LH ≤ LC

which, combined with the previous (opposite) inequality due to the optimality of C, gives LH = LC .

This actually means that Huffman is an optimal code also for an alphabet of n symbols, and thus

inductively proves that it is an optimal code for any alphabet size.

We remark that this statement does not mean that C = H, and indeed do exist optimal prefix-free

codes which cannot be obtained via the Huffman algorithm (see Figure 10.4). Rather, the previous

statement indicates that the average codeword length of C and H is equal. The next fundamental

theorem provides a quantitative upper-bound to this average length.

FIGURE 10.4: Example of an optimal code not obtainable by means of the Huffman algorithm.

THEOREM 10.2 Let H be the entropy of the source emitting the symbols of an alphabet Σ, of

size n, hence H =
∑n

i=1 P[σi] log2
1

P[σi]
. The average codeword length of the Huffman code satisfies

the inequalities H ≤ LH < H + 1.

This theorem states that the Huffman code can loose up to 1 bit per compressed symbol with

respect to the entropy H of the underlying source. This extra-bit is a lot or a few depending on the

value of H . Clearly H ≥ 0, and it is equal to zero whenever the source emits just one symbol with

probability 1 and all the other symbols with probability 0. Moreover it is also H ≤ log2 |Σ|, and it

is equal to this upper bound for equiprobable symbols. As a result if H � 1, the Huffman code is

effective and the extra-bit is negligible; otherwise, the distribution is skewed, and the bit possibly

lost by the Huffman code makes it inefficient. On the other hand Huffman, as any prefix-free code,

cannot encode one symbol in less than 1 bit, so the best compression ratio that Huffman can obtain
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is ≥ 1
log2 |Σ|

. If Σ is ASCII, hence |Σ| = 256, Huffman cannot achieve a compression ratio for any

sequence S which is less than 1/8 = 12, 57%.

In order to overcome this limitation, Shannon proposed in its famous article of 1948 a sim-

ple blocking scheme which considers an extended alphabet Σk whose symbols are substrings of

k-symbols. This way, the new alphabet has size |Σ|k and thus, if we use Huffman on the symbol-

blocks, the extra-bit lost is for a block of size k, rather than a single symbol. This actually means

that we are loosing a fractional part of a bit per symbol, namely 1/k, and this is indeed negligible

for larger and larger values of k.

So why not taking longer and longer blocks as symbols of the new alphabet Σk? This would

improve the coding of the input text, because of the blocking, but it would increase the encoding

of the Huffman tree which constitutes the preamble of the compressed file: in fact, as k increases,

the number of leaves/symbols also increases as |Σ|k. The compressor should find the best trade-off

between these two quantities, by possibly trying several values for k. This is clearly possible, but

yet it is un-optimal; Section 10.2 will propose a provably optimal solution to this problem.

10.1.1 Canonical Huffman coding

Let us recall the two main limitations incurred by the Huffman code:

- It has to store the structure of the tree and this can be costly if the alphabet Σ is large, as

it occurs when coding blocks of symbols, possibly words as symbols.

- Decoding is slow because it has to traverse the whole tree for each codeword, and every

edge of the path (bit of the codeword) may elicit a cache miss.

There is an elegant variant of the Huffman code, denoted as Canonical Huffman, that alleviates

these problems by introducing a special restructuring of the Huffman tree that allows extremely fast

decoding and a small memory footprint. This will be the topic of this subsection.

The Canonical Huffman code works as follows:

1. Compute the codeword length L(σ) for each symbol σ ∈ Σ according to the classical

Huffman’s algorithm.

2. Construct the array num which stores in the entry num[`] the number of symbols having

Huffman codeword of `-bits.

3. Construct the array symb which stores in the entry symb[`] the list of symbols having

Huffman codeword of `-bits.

4. Construct the array f c which stores in the entry f c[`] the first codeword of all symbols

encoded with ` bits;

5. Assign consecutive codewords to the symbols in symb[`], starting from the codeword

fc[`].

Figure 10.5 provides an example of an Huffman tree which satisfies the Canonical property. The

num array is actually useless, so that the Canonical Huffman needs only to store fc and symb

arrays, which means at most max2 bits to store fc (i.e. max codewords of length at most max),

and at most (|Σ| + max) log2 (|Σ| + 1) bits to encode table symb. Consequently the key advantage of

Canonical Huffman is that we do not need to store the tree-structure via pointers, with a saving of

Θ(|Σ| log2 (|Σ| + 1) bits.

The other important advantage of the Canonical Huffman algorithm is with the decoding proce-

dure which does not need to percolate the Huffman tree, but it only operates on the two available

arrays, thus inducing at most one cache-miss per decoded symbol. The pseudo-code is summarized

in the following 6 lines:
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FIGURE 10.5: Example of canonical Huffman coding.

v = next_bit();

l = 1;

while( v < fc[l] )

v = 2v + next_bit();

l++;

return symb[ l, v-fc[l] ];

A running example of the decoding process is given un Figures 10.6–10.7. Let us assume that

the compressed sequence is 01. The function next bit() reads the incoming bit to be decoded,

namely 0. At the first step (Figure 10.6), we have ` = 1, v = 0 and fc[1] = 2; so the while condition

is satisfied (because v = 0 < 2 = fc[1]) and therefore ` is incremented to 2 and v gets the next bit

1, thus assuming the value v = 01 = 1. At the second step (Figure 10.7), the while condition is no

longer satisfied because v = 1 < fc[2] is false and the loop has to stop. The decoded codeword has

length ` = 2 and, since v − fc[2] = 0, the algorithm returns the first symbol of symb[2] = D.

A subtle comment is in order at this point, the value fc[1] = 2 seems impossible, because we

cannot represent the value 2 with a codeword consisting of one single bit. This is a special value

for two reasons: first, it indicates that no codeword of length 1 does exist in this Canonical Huffman

code; second, when ` = 1, v will be surely ≤ 1 because it consists of only one bit. Therefore

v ≤ fc[1], so that the decoding procedure will correctly fetch another bit.

The correctness of the decoding procedure can be inferred informally from Figure 10.8. The

while-guard v < fc[`] actually checks whether the current codeword v is to the left of fc[`] and

thus it is to the left of all symbols which are encoded with ` bits. In the figure this corresponds to

the case v = 0 and ` = 4, hence v = 0000 and fc[4] = 0001. If this is the case, since the Canonical

Huffman tree is skewed to the left, the codeword to be decoded has to be longer and thus a new bit

is fetched by the while-body. In the figure this corresponds to fetch the bit 1, and thus set v = 1 and

` = 5, so v = 00001. In the next step the while-guard is false, v ≥ fc[`] (as indeed fc[5] = 00000),

and thus v lies to the right of fc[`] and can be decoded by looking at the symbols symb[5].

The only issue it remains to detail is how to get a Canonical Huffman tree, whenever the under-

lying symbol distribution does not induce one with such a property. Figure 10.5 actually derived an

Huffman tree which was canonical, but this is not necessarily the case. Take for example the distri-

bution: P[a] = P[b] = 0.05, P[c] = P[g] = 0.1, P[d] = P[ f ] = 0.2, P[e] = 0.3, as shown in Figure

10.9. The Huffman algorithm on this tree generates a non Canonical tree, which can be turned into
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FIGURE 10.6: First Step of decoding 01 via the Canonical Huffman of Figure 10.5.

FIGURE 10.7: Second Step of decoding 01 via the Canonical Huffman of Figure 10.5.

a Canonical one by means of the following few lines of pseudo-code, in which max indicates the

longest codeword length assigned by the Huffman algorithm:

fc[max]=0;

for(l= max-1; l>=1; l--)

fc[l]=(fc[l+1] + num[l+1])/2;

There are two key remarks to be done before digging into the proof of correctness of the algo-

rithm. First, fc[`] is the value of a codeword consisting of ` bits, so the reader should keep in

mind that fc[5] = 4 means that the corresponding codeword is 00100, which means that the binary

representation of the value 4 is padded with zeros to have length 5. Second, since the algorithm sets

fc[max] = 0, the longest codeword is a sequence of max zeros, and so the tree built by the Canonical

Huffman is totally skewed to the left. If we analyze the formula that computes fc[`] we can guess

the reason of its correctness. The pseudo-code is reserving num[`+1] codewords of length `+1 bits

to the symbols in symb[` + 1] starting from the value fc[` + 1]. The first unused codeword of ` + 1
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FIGURE 10.8: Tree of codewords.

bits is therefore given by the value fc[`+ 1]+ num[`+ 1]. So the formula then divides this value by

2, which corresponds to dropping the last (` + 1)-th bit from the binary encoding of that number. It

can be proved that the resulting sequence of `-bits can be taken as the first-codeword fc[`] because

it does not prefix any other codeword already assigned. The ”reason” can be derived graphically by

looking at the binary tree which is being built by Canonical Huffman. In fact, the algorithm is taking

the parent of the node at depth `+ 1, whose binary-path represents the value fc[`+ 1]+ num[`+ 1].

Since the tree is a fully binary and we are allocating leaves in the tree from left to right, this node is

always a left child of its parent, so its parent is not an ancestor of any (` + 1)-bit codeword assigned

before.

In Figure 10.9 we notice that fc[1] = 2 which is an impossible codeword because we cannot

encode 2 in 1 bit; nevertheless this is the special case mentioned above that actually encodes the

fact that no codeword of that length exists, and thus allows the decoder to find always v < fc[1]

after having read just one single bit, and thus execute next bit() to fetch another bit from the

input and thus consider a codeword of length 2.

10.1.2 Bounding the length of codewords

If the codeword length exceeds 32 bits the operations can become costly because it is no longer

possible to store codewords as a single machine word. It is therefore interesting to survey how

likely codeword overflow might be in the Huffman algorithm.

Given that the optimal code assigns a codeword length L(σ) ≈ log2 1/P[σ] bits to symbol σ,

one could conclude that P[σ] ≈ 2−33 in order to have L(σ) > 32, and hence conclude that this bad

situation occurs only after about 233 symbols have been processed. This first approximation is an

excessive upper bound, as the tree in Figure 10.10 allows to argue.

To obtain this tree, we construct the function F(i) that gives the frequency of symbol i in an

input sequence and induces the tree structure shown in Figure 10.10. Of course F(i) has to be an

increasing function and it should be such that F(i + 1) < F(i + 2) and
∑i

j=1 F( j) < F(i + 2) in

order to induce the Huffman algorithm to join F(i + 1) with x rather than with leaf i + 2 (or all the

other leaves i + 3, i + 4, . . .). It is not difficult to observe that F(i) may be taken to be the Fibonacci

sequence, possibly with different initial conditions, such as F(1) = F(2) = F(3) = 1. The following

two sequences show F’s values and their cumulative sums for the modified Fibonacci sequence:

F = (1, 1, 1, 3, 4, 7, . . .) and
∑l+1

i=1 F(i) = (2, 3, 6, 10, 17, 28, . . .). In particular it is F(33) = 3.01 ∗ 106
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FIGURE 10.9: From Huffman tree to a Canonical Huffman Tree.

FIGURE 10.10: Example of a skewed Huffman tree.
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and
∑33

i=1 F(i) = 1.28 ∗ 107. The cumulative sum indicates how much the text has to be read in order

to force a codeword of length l. Thus, the pathological case can occur just after 10 Mb; considerably

less than the preceding estimation!

They do exist methods to reduce the codeword lengths still guaranteeing a good compression

performance. One approach consists of scaling the frequency counts until they form a good ar-

rangement. An appropriate scaling rule is

ĉi =

⌈

ci

∑L+2
i=1 F′(i) − 1 − |Σ|

(
∑|Σ|

i=1
ci)/cmin

⌉

where ci is the actual frequency count of the i−th symbol in the actual sequence, cmin is the minimum

frequency count, ĉi is the scaled approximate count for i-th symbol, L is the maximum bit length

permitted in the final code and
∑L+2

i=1 F(i) represents the length of the text which may induce a code

of length L + 1.

Although simple to implement, this approach could fail in some situations. An example is when

32 symbols have to be coded in codewords with no more than L = 5 bits. Applying the scaling rule

we obtain
∑L+2

i=1 F(i)−1−|Σ| = 28−1−32 = −5 and consequently negative frequency counts ĉi. It is

nevertheless possible to build a code with 5 bits per symbol, just take the fixed-length one! Another

solution, which is more time-consuming but not subject to the previous drawback, is the so called

iterative scaling process. We construct a Huffman code and, if the longest codeword is larger than

L bits, all the counts are reduced by some constant ratio (e.g. 2 or the golden ratio 1.618) and a new

Huffman code is constructed. This process is continued until a code of maximum codeword length

L or less is generated. In the limit, all symbols will have their frequency equal to 1 thus leading to

a fixed-length code.

10.2 Arithmetic Coding

The principal strength of this coding method, introduced by Elias in the ’60s, is that it can code

symbols arbitrarily close to the 0-th order entropy, thus resulting much better tha Huffman on skewed

distributions. So in Shannon’s sense it is optimal.

For the sake of clarity, let us consider the following example. Take an input alphabet Σ = {a, b}

with a skewed distribution: P[a] = 99
100

and P[b] = 1
100

. According to Shannon, the self information

of the symbols is respectively i(a) = log2
1
pa
= log2

100
99

' 0, 015 bits and i(b) = log2
1
pb
=

log2
100
99

' 6, 67 bits. Hence the 0-th order entropy of this source is H0 = P[a] i(a) + P[b] i(b) '

0, 08056 bits. In contrast a Huffman coder, like any prefix-coders, applied to texts generated by this

source must use at least one bit per symbol thus having average length LH = P[a] L(a)+P[b] L(b) =

P[a] + P[b] = 1 � H0. Consequently Huffman is far from the 0-th order entropy, and clearly, the

more skewed is the symbol distribution the farthest is Huffman from optimality.

The problem is that Huffman replaces each input symbol with a codeword, formed by an integral

number of bits, so the average length of a text T compressed by Huffman is Ω(|T |) bits. Therefore

Huffman cannot achieve a compression ratio better than 1
log2 |Σ|

, the best case is when we substitute

one symbol (i.e. log2 |Σ|) with 1 bit. This is 1/8 = 12.5% in the case that Σ are the characters of the

ASCII code.

To overcome this problem, Arithmetic Coding relaxes the request to be a prefix-coder by adopting

a different strategy:

• the compressed output is not a concatenation of codewords associated to the symbols of

the alphabet.

• rather, a bit of the output can represent more than one input symbols.


