HOW THINGS WORK

Web Search
Engines: Part 1

David Hawking
CSIRO ICT Centre

¢

n 1995, when the number of
“usefully searchable” Web pages
was a few tens of millions, it was
widely believed that “indexing the
whole of the Web” was already
impractical or would soon become so
due to its exponential growth. A little
more than a decade later, the GYM
search engines—Google, Yahoo!, and
Microsoft—are indexing almost a
thousand times as much data and
between them providing reliable sub-
second responses to around a bil-
lion queries a day in a plethora of
languages.

If this were not enough, the major
engines now provide much higher-
quality answers. For most searchers,
these engines do a better job of rank-
ing and presenting results, respond
more quickly to changes in interesting
content, and more effectively elimi-
nate dead links, duplicate pages, and
off-topic spam.

In this two-part series, we go behind
the scenes and explain how this data
processing “miracle” is possible. We
focus on whole-of-Web search but note
that enterprise search tools and portal
search interfaces use many of the same
data structures and algorithms.

Search engines cannot and should
not index every page on the Web.
After all, thanks to dynamic Web page

m Computer

& Abehind-the-scenes look

NN

explores the data processing
“miracle” that characterizes
Web crawling and searching.

generators such as automatic calen-
dars, the number of pages is infinite.

To provide a useful and cost-effec-
tive service, search engines must reject
as much low-value automated content
as possible. In addition, they can
ignore huge volumes of Web-accessi-
ble data, such as ocean temperatures
and astrophysical observations, with-
out harm to search effectiveness.
Finally, Web search engines have no
access to restricted content, such as
pages on corporate intranets.

What follows is not an inside view
of any particular commercial engine—
whose precise details are jealously
guarded secrets—but a characteriza-
tion of the problems that whole-of-
Web search services face and an
explanation of the techniques avail-
able to solve these problems.

INFRASTRUCTURE

Figure 1 shows a generic search
engine architecture. For redundancy
and fault tolerance, large search
engines operate multiple, geographi-
cally distributed data centers. Within
a data center, services are built up
from clusters of commodity PCs. The
type of PC in these clusters depends
upon price, CPU speed, memory and
disk size, heat output, reliability,
and physical size (labs.google.com/

papers/googlecluster-ieee.pdf). The
total number of servers for the largest
engines is now reported to be in the
hundreds of thousands.

Within a data center, clusters or
individual servers can be dedicated to
specialized functions, such as crawl-
ing, indexing, query processing, snip-
pet generation, link-graph computa-
tions, result caching, and insertion of
advertising content. Table 1 provides
a glossary defining Web search engine
terms.

Large-scale replication is required to
handle the necessary throughput. For
example, if a particular set of hard-
ware can answer a query every 500
milliseconds, then the search engine
company must replicate that hardware
a thousandfold to achieve throughput
of 2,000 queries per second. Distribut-
ing the load among replicated clusters
requires high-throughput, high-relia-
bility network front ends.

Currently, the amount of Web data
that search engines crawl and index is
on the order of 400 terabytes, placing
heavy loads on server and network
infrastructure. Allowing for over-
heads, a full crawl would saturate a
10-Gbps network link for more than
10 days. Index structures for this vol-
ume of data could reach 100 tera-
bytes, leading to major challenges in
maintaining index consistency across
data centers. Copying a full set of
indexes from one data center to
another over a second 10-gigabit link
takes more than a day.

CRAWLING ALGORITHMS

The simplest crawling algorithm
uses a queue of URLs yet to be visited
and a fast mechanism for determining
if it has already seen a URL. This
requires huge data structures—a sim-
ple list of 20 billion URLs contains
more than a terabyte of data.

The crawler initializes the queue
with one or more “seed” URLs. A
good seed URL will link to many
high-quality Web sites—for example,
www.dmoz.org or wikipedia.org.

Crawling proceeds by making an
HTTP request to fetch the page at
the first URL in the queue. When the



crawler fetches the page, it scans
the contents for links to other URLs
and adds each previously unseen URL
to the queue. Finally, the crawler
saves the page content for indexing.
Crawling continues until the queue
is empty.

Real crawlers

In practice, this simple crawling
algorithm must be extended to ad-
dress the following issues.

Speed. If each HTTP request takes
one second to complete—some will
take much longer or fail to respond at
all—the simple crawler can fetch no
more than 86,400 pages per day. At
this rate, it would take 634 years to
crawl 20 billion pages. In practice,
crawling is carried out using hundreds
of distributed crawling machines.

A hashing function determines
which crawling machine is responsi-
ble for a particular URL. If a crawling
machine encounters a URL for which
it is not responsible, it passes it on to
the machine that is responsible for it.

Even hundredfold parallelism is not
sufficient to achieve the necessary
crawling rate. Each crawling machine
therefore exploits a high degree of
internal parallelism, with hundreds or
thousands of threads issuing requests
and waiting for responses.

Politeness. Unless care is taken,
crawler parallelism introduces the risk
that a single Web server will be bom-
barded with requests to such an extent
that it becomes overloaded. Crawler
algorithms are designed to ensure that
only one request to a server is made at
a time and that a politeness delay is
inserted between requests. It is also
necessary to take into account bottle-
necks in the Internet; for example,
search engine crawlers have sufficient
bandwidth to completely saturate net-
work links to entire countries.

Excluded content. Before fetching
a page from a site, a crawler must
fetch that site’s robots.txt file to deter-
mine whether the webmaster has spec-
ified that some or all of the site should
not be crawled.

Duplicate content. Identical content
is frequently published at multiple

Local
Servers

1. Gathering

3. Indexing
@

4. Querying

5. Ranking

6. Presenting

Figure 1. Generic search engine architecture. Enterprise search engines must provide
adapters (top left) for all kinds of Web and non-Web data, but these are not required in a

purely Web search.

1 —
Table 1. Web search engine glossary.

Term Definition

URL A Web page address—for example, http://www.computer.org.

Crawling Traversing the Web by recursively following links from a seed.

Indexes Data structures permitting rapid identification of which crawled pages
contain particular words or phrases.

Spamming Publication of artificial Web material designed to manipulate search engine

rankings for financial gain.

Hashing function

A function for computing an integer within a desired range from a string of

characters, such that the integers generated from large sets of strings—for
example, URLs—are evenly distributed.

URLs. Simple checksum comparisons
can detect exact duplicates, but when
the page includes its own URL, a visitor
counter, or a date, more sophisticated
fingerprinting methods are needed.
Crawlers can save considerable
resources by recognizing and elimi-
nating duplication as early as possible
because unrecognized duplicates can
contain relative links to whole fami-
lies of other duplicate content.
Search engines avoid some system-
atic causes of duplication by trans-
forming URLs to remove superfluous
parameters such as session IDs and by

casefolding URLs from case-insensi-
tive servers.

Continuous crawling. Carrying out
full crawls at fixed intervals would
imply slow response to important
changes in the Web. It would also
mean that the crawler would contin-
uously refetch low-value and static
pages, thereby incurring substantial
costs without significant benefit. For
example, a corporate site’s 2002
media releases section rarely, if ever,
requires recrawling.

Interestingly, submitting the query
“current time New York” to the

June 2006

87




HOW THINGS WORK

GYM engines reveals that each of
these engines crawls the www.time-
anddate.com/worldclock site every
couple of days. However, no matter
how often the engines crawl this site,
the search result will always show the
wrong time.

To increase crawling bang-per-
buck, a priority queue replaces the
simple queue. The URLSs at the head
of this queue have been assessed as
having the highest priority for crawl-
ing, based on factors such as change
frequency, incoming link count, click
frequency, and so on. Once a URL is
crawled, it is reinserted at a position
in the queue determined by its
reassessed priority. In this model,
crawling need never stop.

Spam rejection. Primitive spamming
techniques, such as inserting mislead-
ing keywords into pages that are invis-
ible to the viewer—for example, white
text on a white background, zero-point
fonts, or meta tags—are easily de-

lIEEE
Computer
Society
members

-
[
L]
=
£
(-]
=
(-]
e
(-}
——

Join online today!

Computer

tected. In any case, they are ineffective
now that rankings depend heavily upon
link information (www-db.stanford.
edu/pub/papers/google.pdf).

Modern spammers create artificial
Web landscapes of domains, servers,
links, and pages to inflate the link
scores of the targets they have been
paid to promote. Spammers also en-
gage in cloaking, the process of deliv-
ering different content to crawlers than
to site Visitors.

Search engine companies use man-
ual and automated analysis of link
patterns and content to identify spam
sites that are then included in a black-
list. A crawler can reject links to URLs
on the current blacklist and can reject
or lower the priority of pages that are
linked to or from blacklisted sites.

FINAL CRAWLING THOUGHTS
The full story of Web crawling must

include decoding hyperlinks com-

puted in JavaScript; extraction of

on all
conferences
sponsored
by the

|[EEE

indexable words, and perhaps links,
from binary documents such as PDF
and Microsoft Word files; and con-
verting character encodings such as
ASCII, Windows codepages, and
Shift-]JIS into Unicode for consistent
indexing (www.unicode.org/standard/
standard.html).

Engineering a Web-scale crawler is
not for the unskilled or fainthearted.
Crawlers are highly complex parallel
systems, communicating with millions
of different Web servers, among which
can be found every conceivable fail-
ure mode, all manner of deliberate
and accidental crawler traps, and
every variety of noncompliance with
published standards. Consequently,
the authors of the Mercator crawler
found it necessary to write their own
versions of low-level system software
to achieve required performance and
reliability (www.research.compag.
com/SRC/mercator/papers/www/paper.
html).

It is not uncommon to find that a
crawler has locked up, ground to a
halt, crashed, burned up an entire net-
work traffic budget, or unintention-
ally inflicted a denial-of-service attack
on a Web server whose operator is
now very irate.

art two of this two-part series
(Computer, How Things Work,
Aug. 2006) will explain how

search engines index crawled data and
how they processes queries.

David Hawking is a principal research
scientist at CSIRO ICT Centre, Can-
berra, Australia, and Chief Scientist at
funnelback.com. Contact him at david.
hawking@csiro.au.

Computer welcomes your submissions
to this bimonthly column. For
additional information, contact Alf
Weaver, the column editor; at
weaver(@cs.virginia.edu.



