[LVECR Monwin - VRAY

GO R IHM
A C SO RV // 6.7 String Matching 149
- 4914+

Figure 6.19 The Huffman tree for example 6.1.

The Problem Given two strings A and B, find the first occurrence

(if any) of B in A. In other words, find the smallest k such that, for all ,
1<i<m, we have a;,,; =b;.

The most obvious example of this problem is a search for a certain word or pattern in a

text file.' Any text editor must contain commands to find patterns. The problem also has
applications to other areas — including molecular biology, where it is useful to find
certain patterns inside large RNA or DNA molecules.

This problem seems simple at first. We can try to match B inside A by starting at
the first character of A that matches b, and continuing (comparing to b, and so on) until
we either complete the match or find a mismatch. In the latter case, however, we must go
back to the place from which we started and start again. This process is illustrated in Fig.
6.20 by an example that we will use throughout this section. In this example,
A = xyxxyxyxyyxyxyxyyxyxyxx, and B =xyxyyxyxyxx. The first mismatch occurs at ay
since b, #a,. We now must start comparing b to a;, which leads to a mismatch right
away. Next, we start at a3, which is a match, but a,#b,. The next attempt is more
promising: We have a match from a4 to a5, only to have a mismatch at ag. Now, we :
need to backtrack several steps and to compare b, to as (mismatch), then b, to ag¢, and
so on. Eventually, we find a match starting at a;. We may have to backtrack and
compare again a substantial number of times, leading to O (mn) number of comparisons

'At least. that is the most obvious one to me, as I am currently editing a text file.

150 Algorithms Involving Sequences and Sets

A = UVLURUVVVURURCVENNUNLY, B = XUV vy,

] 23456789 1011 121314151617 181920212223
RS SR G U R CHN S U SR SR SR S AN SR S SRR

W -
-

n
-
-
-
-
=

o N
»

10: X

11: X v X vy

12: X

13: _ Xy x yyxywxyuxux

Figure 6.20 An example of a straightforward string matching.

in the worst case. Notice that a lot of the work is redundant. For example, we find twice
that the subpattern xyxy fits inside A starting at @ (lines 6 and 11). In the example of
finding a word in a text file, the number of backtracking steps will be very small, since
most of the time the mismatch will occur early on. This simple algorithm is fairly good
for such applications. In other cases, where the alphabet is small and the patterns have
many repetitions, the number of backtracking steps may be large. The algorithm above
may compare the same subpattern to the same place in the text many times. We would
like to find an algorithm that avoids such worst cases. The problem is to arrange the
information we learn throughout the algorithm such that it can be used efficiently later on
when the same matches occur in other places.

To improve the straightforward algorithm we must first understand the reasons for
its inefficiency. The bad case we discussed was caused by the need to backtrack. A
particular bad case will occur if the pattern is yyyyyx and the text is yyyyyyyyyyyyx. We
will compare the five ys in the pattern to the text, find the mismatch with the x, move one
step to the right, and make four redundant comparisons again and again. (This simple
case is easy to handle, but it illustrates the general problem.) On the other hand, consider
the pattern xyyyyy. To match this pattern in the text, we look for occurrences of x
followed by five ys. If the number of ys is not sufficient, there is no need to backtrack.
We will need to find the next x, and all the matched ys will not help. The straightforward
algorithm, adapted to the pattern Xyvyyy, runs in linear time since no backtracking is
needed.

6.7 String Matching 151

Let’s return now to the original pattern B =xyxvyivyvav, Suppose that a mismatch
occurs when the fifth character of B is scanned (as it is when ay is compared to it in line
4 of Fig. 6.20). The preceding two characters in A must have been .y (since they
matched). But. xv are also the first characters of B. We now want to *‘slide’” B to the
right and compare the current character in A to some character in the middle of B (taking
into account the previous matches). We would like to slide B as far to the right as
possible (to save comparisons) without bypassing potential matches. In this case, we can
slide B two steps to the right. We continue the match by comparing the same character in
A that caused the mismatch (¢ in the example) to b3, since we already know that b, and
b~ matched. (In fact, that is exactly what we did later on, in line 6 of Fig. 6.20, except
that it took us three more redundant comparisons — v in line S, and xy at the beginning of
line 6 — to get there.) Notice that this whole discussion is completely independent of A!
We know the last few characters in A since they have matched B so far.

In the following discussion, we will not assume that there are only two characters
in the text (and pattern), even though, for simplicity, the examples will contain only two
characters. It is possible (and that is the subject of Exercise 6.45) to make the algorithm
even more efficient in this case.

Let’s look at another example by continuing the match. The mismatch at line 6 of
Fig. 6.20 is at the last character of B, b ;. We can now do a lot more sliding. Consider
the subpattern B(10)=b, b, - b ;. We know that B(10) is exactly the same as the
preceding 10 characters in A; that is, B (10)=A [6..15], because they matched. We want
to determine exactly how many steps B can be shifted to the right until there is some
hope of another match. We determine this number by looking for a maximum suffix of
B (10) that is equal to a prefix of B. In this case, that suffix is of length 3 (xyx), as is
illustrated in Fig. 6.21. In the figure, B(10) is shifted, one step at a time, and is
compared to itself, until a prefix matches a suffix. (The last character, b, is ignored
since it is the cause of the mismatch.) Since we know that B[1..3]=B[8..10], we can
continue by comparing a ¢ to b4, and so on, until the complete match occurs. We save
all the comparisons on lines 7 to 12 and half those on line 13. The only difference
between Fig. 6.21 and Fig. 6.20 is that the information in Fig. 6.21 depends only on B.
This 1s important because we can preprocess B once, and find all the relevant information
about it regardless of the text A. We now can take advantage of all the matches done in
line 6 of Fig. 6.20; none of them will be repeated.

Figure 6.21 Matching the pattern against itself.

152 Algorithms Involving Sequences and Sets

The preprocessing of B is the essence of the improved algorithm. We will study all
the repeating patterns of B and devise a way to handle mismatches when they occur
without backtracking. Our scheme is the following. The string A is always scanned
forward; there is no backtracking in A, although the same character of A may be
compared to several characters of B (when there are mismatches). When a mismatch is
encountered, we consult a table to find how far in B we must backtrack. There is an entry
in the table for each character in B corresponding to the amount of backtracking (or the
number of shifts) required when there is a mismatch involving this character. In a
moment, we will show how to construct this table efficiently. We first define the table
precisely and show how we use it for the string-matching problem.

The idea behind the table should be clear now. For each b; we want to find the
largest suffix of B (i — 1) that is equal to a prefix of B(i —1). If the length of this suffix is
j, then the mismatched character in A can be matched against b;,, directly, without going
through all the other redundant matches. We already know that the most recent j
characters in A match the beginning of B. Furthermore, since this suffix is the largest
among those that are equal to a prefix, we know that B cannot fit into A any farther to the
left. The table is called next, and here is a precise definition of the values of its entries:

next (i) = the maximum j (0<j<i—1) such that b;_;jb,_j,, *** b =
B (j), and O if no such j exists.

For convenience we define next (1)=-1 to distinguish this case. It is clear that next (2) is
always equal to O (since there is no j satisfying 0 < j <2—1). The values of the next table
for the pattern B in Fig. 6.21 are given in Fig. 6.22. These values can be computed in a
brute force way, as was done in Fig. 6.22. However, there is an elegant way to compute
all these values in time O (m). Let’s first assume that the values of next are given to us,
and see how to perform the matching. Afterwards, we will describe how to compute
next.

The matching proceeds as follows. The characters in A are compared to those in B
until there is a mismatch. At that point, say at b;, the next table is consulted and the same
character in A is compared against b, (since the first next (i) characters already
match). If this is a mismatch too, then the next comparison is against b, (et (iy+1)+1» and
so on. The only exception to this rule is when the mismatch is against b ; in this case,

next= -1 0 O 1 20 1 2 3 4 3

Figure 6.22 The values of next.

6.7 String Matching 153

we want to proceed in A. This case can be determined by the special value of next (1),
which is —1. The program for string matching is given in Fig. 6.23.

Algorithm String_Match (A, n, B, m) :
Input: A (a string of size n), and B (a string of size m).
{ We assume that nexr has been computed; see Fig. 6.25 }
Output: Srart (the first index such that B is a substring of A starting
at A [Start).

begin
J=1i=1;
Start := 0 ;

while Start = 0 and i < ndo
if B{jl=Ali] then

Ji=j+1;
=i+ 1
else
Jo=next[jl+1;
if j = 0 then
j = 1 ’.
=i+ 1

if j=m+ [then Start := i -m
end

Figure 6.23 Algorithm String Match.

It remains to find an algorithm to compute the values of the next table. We use
induction. As we mentioned, next (2) =0, which takes care of the base case. We assume
that the values of next for 1, 2, ..., i — | have been computed, and we consider next (i). At
best, next(i) can be next(i—1)+1, which will happen if b,_, =bpexi(i-1+1- In other
words, the largest suffix that is equal to a prefix is extended by b;_;. This is the easy
case. The difficult case is when b;_; #b,,,,;-1,+;- We need to find a new suffix that is
equal to a prefix. However, we already know how to fit the largest suffix of B (i —2): It
fits in byby - byyi-r) (see Fig. 6.24). But having b; | #b,ei-1):1 is exactly the
same as having a regular mismatch at b,,,_;+;! And we already know what to do
about that. If there is a mismatch at index j, we go to next(j). So, we have a mismatch
at index next (i —1)+1, and we go to next (next (i — 1)+ 1). That is, we try to match b,_,
10 byovttnevrii-1+1)+1- 1f they match, we set next (i) = next (next (i — 1)+ 1)+ 1. Otherwise,
we continue in the same fashion until we either get a match or we return to the beginning.

O Example 6.2

Let B =xvxyyxyxvxx (the same as in Fig. 6.21), and consider next(11). We first look at
next (10), which is 4, and compare b, to bs. If they had been the same, then the largest

154 Algorithms Involving Sequences and Sets

: j=_
next(j)+1 next(i-1)+1

Figure 6.24 Computing next(i).

prefix that is equal to a suffix would have been 5, but they are not. So, we have a
mismatch at b5, and we look at next (5) which is 2. We now compare b |, to by, and they
happen to be the same. Hence, next (1 1)=23, which can easily be verified by hand. l

The algorithm for computing the nexr table is difficult to understand, but it is not difficult
to implement. The program is given in Fig. 6.25.

Algorithm Compute_Next (B, m) ;
Input: B (a string of size m).
Output: next (an array of size m).

begin
next(1) :=-1;
next(2):=0;
fori:=3tomdo
ji=next(i—-1)+1;
while b, | # b; and j >0 do
ji=next(j)+1;
next (i) :=j
end

Figure 6.25 Algorithm Compute_Next.

Complexity A character of A may be compared against many characters of B. If
there is a mismatch, then the same character of A is compared against the character of B
pointed to by the next table. If there is another mismatch, then we continue comparing
against the same character of A until there is either a match or we reach the beginning of
B. Nevertheless, we claim that the running time of this algorithm is still O (n). How
many times can we backtrack for one character from A, say a;? Let’s assume that the
first mismatch involved b,. Since each backtrack leads us to a smaller index in B, we can
backtrack only k times. However, to reach b, we must have gone forward k times
without any backtracking! If we assign the costs of backtracking to the forward moves,
then we at most double the cost of the forward moves. But there are exactly n forward
moves. so the number of comparisons is O (1).

