108 5 Sorting and Selection

Exercise 5.19. The element uniqueness problem is the task of dgciding whether in
a set of n elements, all elements are pairwise distinct. Argue #fat comparison-based
algorithms require £2(nlogn) comparisons. Why does thisgfiot contradict the fact that
we can solve the problem in linear expected time usipg hashing?

Exercise 5.20 (lower bound for average cageJ. With the notation above, let d, be
the depth of the leaf /. Argue that A = (}/7n!) ¥, dr is the average-case complexity
of a comparison-based sorting algorighfn. Try to show that A > logn!. Hint: prove
first that 3,279 < 1. Then congsider the minimization problem “minimize Y, d,
subject to 37 27F < 1”. Argye‘that the minimum is attained when all d;’s are equal.

all inputs optimally). Give an algorithm for sorting k el-
logk!] element comparisons. (a) For k € {2,3,4}, use merge-
, you are allowed to use seven comparisons. This is difficult. Merge-
otdo the job, as it uses up to eight comparisons. (c) For k € {6,7,8}, use
the case & = 5 as a subroutine.

5.4 Quicksort

Quicksort is a divide-and-conquer algorithm that is complementary to the mergesort
algorithm of Sect. 5.2. Quicksort does all the difficult work before the recursive calls.
The 1dea is to distribute the input elements into two or more sequences that represent
nonoverlapping ranges of key values. Then, it suffices to sort the shorter sequences
recursively and.concatenate the results. To make the duality to mergesort complete,
we would like to split the input into two sequences of equal size. Unfortunately, this
is a nontrivial task. However, we can come close by picking a random splitter ele-
ment. The splitter element is usually called the pivor. Let p denote the pivot element
chosen. Elements are classified into three sequences a, b, and ¢ of elements that are
smaller than, equal to, or larger than p, respectively. Figure 5.5 gives a high-level
realization of this idea, and Figure 5.6 depicts a sample execution. Quicksort has an
expected execution time of O(nlogn), as we shall show in Sect. 5.4.1. In Sect. 5.4.2,
we discuss refinements that have made quicksort the most widely used sorting algo-
rithm in practice.

Function guickSort(s : Sequence of Element) : Sequence of Element
if |s] < 1 then return s // base case
pick p < s uniformly at random /] pivot key
a={ecs:e<p)
b:=(e€s:e=p)
cr={ecs:e>p)
return concatenation of quickSort(a), b, and quickSort(c)

Fig. 5.5. High-level formulation of quicksort for lists

5.4 Quicksort 109

(3,6,8.1,0,7,2,4,5,9)

e T
(1,0,2) (3) (6,8,7,4,5,9)
//1\ /]\\
0y (1) (2) (4,5) (6) (8,7,9)

Fig. 5.6. Execution of quickSort (Fig. 5.5) on (3,6,8,1,0,7,2,4,5,9) using the first element
of a subsequence as the pivot. The first call of quicksort uses 3 as the pivot and generates the
subproblems (1,0,2), (3), and (6,8,7,4,5,9). The recursive call for the third subproblem uses
6 as a pivot and generates the subproblems (4,5), (6), and (8,7,9)

5.4.1 Analysis

To analyze the running time of quicksort for an input sequence s = {e1,...,en), We
focus on the number of element comparisons performed. We allow three-way com-
parisons here, with possible outcomes “smaller”, “equal”, and “larger”. Other op-
erations contribute only constant factors and small additive terms to the execution
time.

Let C(n) denote the worst-case number of comparisons needed for any input
sequence of size n and any choice of pivots. The worst-case performance is easily
determined. The subsequences a, b, and c in Fig. 5.5 are formed by comparing the
pivot with all other elements. This makes n — | comparisons. Assume there are k
elements smaller than the pivot and k' elements larger than the pivot. We obtain
C(0)=C(1)=0and

Cn) <n—1+max{Ck)+C(K):0<k<n—1,0<k <n—k} .
[t is easy to verify by induction that

C(n) < @{-1—) = @(nz) :
The worst case occurs if all elements are different and we always pick the largest or
smallest element as the pivot. Thus C(n) = n(n—1)/2.

The expected performance is much better. We first argue for an O(nlogn) bound
and then show a bound of 2nlnn. We concentrate on the case where all elements are
different. Other cases are easier because a pivot that occurs several times results in
a larger middle sequence b that need not be processed any further. Consider a fixed
element ¢;, and let X; denote the total number of times e; is compared with a pivot
clement. Then ¥, X; is the total number of comparisons. Whenever e; is compared
with a pivot element, it ends up in a smaller subproblem. Therefore, Xi<n—1,
and we have another proof for the quadratic upper bound. Let us call a comparison
“good” for ¢; if ¢; moves to a subproblem of at most three-quarters the size. Any e;

110 5 Sorting and Selection

can be involved in at most log, ;3n good comparisons. Also, the probability that a
pivot which is good for e; is chosen, is at least 1/2; this holds because a bad pivot
must belong to either the smallest or the largest quarter of the elements. So E[X;] <
2log, 3 n, and hence E[Y, X;] = O(nlogn). We shall now give a different argument
and a better bound.

Theorem 5.6. The expected number of comparisons performed by quicksort is
C(n) < 2nlnn < 1.45nlogn .

Proof. Lets' = (e}....,e,) denote the elements of the input sequence in sorted order.
Elements ¢} and ej- are compared at most once, and only if one of them is picked as a
pivot. Hence, we can count comparisons by looking at the indicator random variables
Xij. i < j.where X;; = 1if ef and e; are compared and X;; = 0 otherwise. We obtain

n

B3 3 X

i=1j=i+1

n n n n
:ZZ = Y prob(X;=1).

i=1j=i+1

The middle transformation follows from the linearity of expectations (A.2). The
last equation uses the definition of the expectation of an indicator random variable
E[Xi;] = prob(X;; = 1). Before we can further simplify the expression for C(n), we
need to determine the probability of X;; being 1.

2
Lemma 8.7. For any i < j, prob(X;; = 1) = —.
j—i+1
Proof. Consider the j — i+ 1-element set M = {e}, ..., €’ }. As long as no pivot from

M is selected, ¢} and ¢’ ; are not compared, but all elements from M are passed to the
same recursive calls Eventually, a pivot p from M is selected. Each element in M has
the same chance 1/|M| of being selected. If p = ¢; or p = ¢/; we have X;; = 1. The
probability for this eventis 2/|M|=2/(j—i+). Otherw1se e; and ¢; are passed to
different recursive calls, so that they will never be compared. a

Now we can finish proving Theorem 5.6 using relatively simple calculations:

_ n n n n~i+12
=3 3 pobix,-1)-3 3 2332
i=1 j=it1 a5/l 35
S 2 > | | 2nl
< Z =20y = =2n(H, - 1) < 2n(1 —1) = .
A,zl/g'zk n;::zk n() <2n(l+1Inn—1)=2nlnn

For the last three steps, recall the properties of the n-th harmonic number H, :=
S 1/k<1+Inn(A.12). -

Note that the calculations in Sect. 2.8 for left-to-right maxima were very similar,
although we had quite a different problem at hand.

5.4 Quicksort 111

5.4.2 *Refinements

We shall now discuss refinements of the basic quicksort algorithm. The resulting
algorithm, called gsort, works in-place, and is fast and space-efficient. Figure 5.7
shows the pseudocode, and Figure 5.8 shows a sample execution. The refinements
are nontrivial and we need to discuss them carefully.

Procedure gSort(a : Array of Element: ¢.r : N) /1 Sort the subarray a[f..r]
while r — ¢+ 1 > ng do /1 Use divide-and-conquer.
J = pickPivotPos(a,?,r) /! Pick a pivot element and
swap(all],alj]) /1 bring it to the first position.
pi=alf] /I p is the pivot now.
ii=0 j=r
repeat I a:l¢ i— <j 7]
while a(i] < p do i++ /I Skip over elements
while a[;] > pdo j-- // already in the correct subarray.
if i < j then /1 If partitioning is not yet complete,
swap(ali],a[j]);i++; j-- /I (*) swap misplaced elements and go on.
until / > /1 Partitioning is complete.
if i <({+7)/2then gSort(a,l.j); ¢:=i /I Recurse on
else qSort(a,i,r); ri=j /I smaller subproblem.
endwhile
insertionSort(alt..r]) /I faster for small r — ¢

Fig. 5.7. Refined quicksort for arrays

The function gsort operates on an array a. The arguments £ and r specify the sub-
array to be sorted. The outermost call is gsort(a, I,n). If the size of the subproblem is
smaller than some constant ng, we resort to a simple algorithm3 such as the insertion
sort shown in Fig. 5.1. The best choice for no depends on many details of the ma-
chine and compiler and needs to be determined experimentally; a value somewhere
between 10 and 40 should work fine under a variety of conditions.

The pivot element is chosen by a function pickPivotPos that we shall not specify
further. The correctness does not depend on the choice of the pivot, but the efficiency
does. Possible choices are the first element; a random element; the median (“middle”)
element of the first, middle, and last elements; and the median of a random sample
consisting of k elements, where k is either a small constant, say three, or a number
depending on the problem size, say [\/r —/+1] The first choice requires the least
amount of work, but gives little control over the size of the subproblems; the last
choice requires a nontrivial but still sublinear amount of work, but yields balanced

* Some authors propose leaving small pieces unsorted and cleaning up at the end using a
single insertion sort that will be fast. according to Exercise 5.7. Although this nice trick
reduces the number of instructions executed. the solution shown is faster ‘'on modern ma-
chines because the subarray to be sorted will already be in cache.

112 5 Sorting and Selection

- — 3681072459

36810724509 2 01|86 73459

26810734509 10(2|56 7 3 4|89

2081673459 01| |4 3|7 65|89

20186734509 3 4[5 6|7
ji 5 6

Fig. 5.8. Execution of gSort (Fig. 5.7) on (3,6,8,1,0,7,2.4,5,9) using the first element as the
pivot and ng = 1. The left-hand side illustrates the first partitioning step, showing elements
in bold that have just been swapped. The right-hand side shows the result of the recursive
partitioning operations

subproblems with high probability. After selecting the pivot p, we swap it into the
first position of the subarray (= position ¢ of the full array).

The repeat-until loop partitions the subarray into two proper (smaller) subarrays.
It maintains two indices i and j. Initially, i is at the left end of the subarray and j is at
the right end; i scans to the right, and ; scans to the left. After termination of the loop,
we have i = j+ 1 ori= j+2, all elements in the subarray a[¢..] are no larger than
p. all elements in the subarray afi..r] are no smaller than p, each subarray is a proper
subarray, and, if i = j+2, a[i+ 1] is equal to p. So, recursive calls gSort(a,?, j) and
gsort(a,i,r) will complete the sort. We make these recursive calls in a nonstandard
fashion; this is discussed below.

Let us see in more detail how the partitioning loops work. In the first iteration
of the repeat loop, i does not advance at all but remains at ¢, and j moves left to the
rightmost element no larger than p. So j ends at £ or at a larger value; generally, the
latter is the case. In either case, we have i < j. We swap ali] and alj], increment i,
and decrement j. In order to describe the total effect more generally, we distinguish
cases.

If p is the unique smallest element of the subarray, j moves all the way to /, the
swap has no effect, and j = ¢ — 1 and i = ¢+ 1 after the increment and decrement.
We have an empty subproblem ¢..£ — 1 and a subproblem £+ 1..r. Partitioning is
complete, and both subproblems are proper subproblems.

If j moves down to i+ 1, we swap, increment i to £+ 1, and decrement j to
¢. Partitioning is complete, and we have the subproblems ¢..¢ and ¢+ 1..r. Both
subarrays are proper subarrays.

It j stops at an index larger than i + 1, we have ¢ < i < j < r after executing the
line in Fig. 5.7 marked (*). Also, all elements left of i are at most p (and there is at
least one such element), and all elements right of j are at least p (and there is at least
one such element). Since the scan loop for i skips only over elements smaller than
p and the scan loop for j skips only over elements larger than p, further iterations
of the repeat loop maintain this invariant. Also, all further scan loops are guaranteed
to terminate by the claims in parentheses and so there is no need for an index-out-
of-bounds check in the scan loops. In other words, the scan loops are as concise as
possible; they consist of a test and an increment or decrement.

5.4 Quicksort 113

Let us next study how the repeat loop terminates. If we have i < J + 2 after the
scan loops, we have i < j in the termination test. Hence, we continue the loop. If
we have i = j— 1 after the scan loops, we swap, increment i, and decrement J- So
I = j+ 1, and the repeat loop terminates with the proper subproblems /£..j and i..r.
The case i = j after the scan loops can occur only if ali] = p. In this case, the swap
has no effect. After incrementing i and decrementing j, we have i = j+ 2, resulting in
the proper subproblems ¢..j and j + 2..r, separated by one occurrence of p. Finally,
when 7/ > j after the scan loops, then either i goes beyond j in the first scan loop,
or j goes below i in the second scan loop. By our invariant, i must stop at j+ 1 in
the first case, and then j does not move in its scan loop or j must stop at i — 1 in the
second case. In either case, we have i = j + 1 after the scan loops. The line marked
(*) is not executed, so that we have subproblems /.. and i..r, and both subproblems
are proper.

We have now shown that the partitioning step is correct, terminates, and generates
proper subproblems.

Exercise 5.22. Is it safe to make the scan loops skip over elements equal to p? Is this
safe if it is known that the elements of the array are pairwise distinct?

The refined quicksort handles recursion in a seemingly strange way. Recall that
we need to make the recursive calls gSort(a,?, j) and gSort(a,i,r). We may make
these calls in either order. We exploit this flexibility by making the call for the smaller
subproblem first. The call for the larger subproblem would then be the last thing
done in gSort. This situation is known as tail recursion in the programming-language
literature. Tail recursion can be eliminated by setting the parameters (£ and r) to the
right values and jumping to the first line of the procedure. This is precisely what
the while loop does. Why is this manipulation useful? Because it guarantees that
the recursion stack stays logarithmically bounded; the precise bound is [log(n/ng)].
This follows from the fact that we make a single recursive call for a subproblem
which is at most half the size.

Exercise 5.23. What is the maximal depth of the recursion stack without the “smaller
subproblem first” strategy? Give a worst-case example.

*Exercise 5.24 (sorting strings using multikey quicksort [22]). Let s be a se-
quence of n strings. We assume that each string ends in a special character that is
different from all “normal” characters. Show that the function mkqSort(s,1) below
SOrts a sequence s consisting of different strings. What goes wrong if s contains
equal strings? Solve this problem. Show that the expected execution time of mkgSort
1S O(N +nlogn) if N =73,.,]el.

Function mkqSort(s : Sequence of String, i - N) Sequence of String
assert Ve,e' cs:efl.i—1]=¢[1..i 1]
if [s| < | then return s /l base case
pick p € s uniformly at random /I pivot character
return concatenation of mkqSort({e € s : e[i] < pli]) .i),
mkqSort({e € s : eli] = pli]) i+ 1), and
mkgSort({e € s : eli] > pli]) i)

114 5 Sorting and Selection

Exercise 5.25. Implement several different versions of gSort in your favorite pro-
gramming language. Use and do not use the refinements discussed in this section,
and study the effect on running time and space consumption.

5.5 Selection

Selection refers to a class of problems that are easily reduced to sorting but do not
require the full power of sorting. Let s = (ey,...,e,) be a sequence and call its sorted
version 5’ = (e}, ..., e,). Selection of the smallest element requires determining e/,
selection of the Iargest requires determining e/, and selection of the k-th smallest
requires determining e/. Selection of the median refers to selecting €ln/2|- Selection
of the median and also of quartiles is a basic problem in statistics. It is easy to de-
termine the smallest element or the smallest and the largest element by a single scan
of a sequence in linear time. We now show that the k-th smallest element can also be
determined in linear time. The simple recursive procedure shown in Fig. 5.9 solves
the problem.

This procedure is akin to quicksort and is therefore called quickselect. The key
insight is that it suffices to follow one of the recursive calls. As before, a pivot is
chosen, and the input sequence s is partitioned into subsequences a, b, and ¢ contain-
ing the elements smaller than the pivot, equal to the pivot, and larger than the pivot,
respectively. If |a| >
a suitably adjusted k. If |a| < k < |a| + |b|, the task is solved: the pivot has rank k&
and we return it. Observe that the latter case also covers the situation |s| = k = 1,
and hence no special base case is needed. Figure 5.10 illustrates the execution of
quickselect.

// Find an element with rank k
Function select(s : Sequence of Element; k : N) : Element
assert |s| > k

pick p € s uniformly at random /I pivot key
a:=(e€s:e<p) k
if |a| > k then return select(a, k) " a |
b:=(¢e€s:e=p) k
if |a| + |b| > k then return p N a |1 b={p,....p)]
C‘:<e€¥'e>p> k
return select(c.k —|a] — |b|) | a [6] ¢ 7]

Fig. 5.9. Quickselect

s k‘p a

(3,1.4,5,9,2,6,5,3,5,8) 6|2 (1)

(3,4,5.9.6,5,3,5,8) 46 { 4553,4>
(3.4.5.5,3,5) 415 (3,4,3)

) (9,8)
5) 0

Fig. 5.10. The execution of select((3,1,4.5,9,2.6,5,3,5.8,6),6). The middle element (bold)
of the current s is used as the pivot p

b
2) (3,4.5,9,6,5.3,5,8)
(6
5.

Y 7

5

5.5 Selection 115

As for quicksort, the worst-case execution time of quickselect is quadratic. But
the expected execution time is linear and hence is a logarithmic factor faster than
quicksort.

Theorem 5.8. The quickselect algorithm runs in expected time O(n) on an input of
size n.

Proof. We shall give an analysis that is simple and shows a linear expected execution
time. It does not give the smallest constant possible. Let T'(n) denote the expected
execution time of quickselect. We call a pivot good if neither |a| nor || is larger than
2n/3. Let y denote the probability that a pivot is good; then ¥ > 1/3. We now make
the conservative assumption that the problem size in the recursive call is reduced
only for good pivots and that, even then, it is reduced only by a factor of 2/3. Since

the work outside the recursive call is linear in n, there is an appropriate constant ¢
such that

T (n) §6n+}/1"<~23—n) +(1—=9)T (n).

Solving for T'(n) yields

CcH 2n 2n 2n 4n
T <—4+T—1]1<3 T| —) <3 — 4+ — 4. ..
(n)_}/+ <3)_cn—|— <3>_c<n+3+9+)

2\ 1
< 3¢ — <3 = .
< 3cn2 (3) < Cnl—2/3 9cn

i>0
Exercise 5.26. Modify quickselect so that it returns the k smallest elements.

Exercise 5.27. Give a selection algorithm that permutes an array in such a way that
the k smallest elements are in entries a[1], ..., a[k]. No further ordering is required
except that alk] should have rank k. Adapt the implementation tricks used in the
array-based quicksort to obtain a nonrecursive algorithm with fast inner loops.

Exercise 5.28 (streaming selection).

(a) Develop an algorithm that finds the k-th smallest element of a sequence that
1s presented to you one element at a time in an order you cannot control. You
have only space O(k) available. This models a situation where voluminous data
arrives over a network or at a sensor.

(b) Refine your algorithm so that it achieves a running time O(nlogk). You may
want to read some of Chap. 6 first.

*(c) Refine the algorithm and its analysis further so that your algorithm runs in
average-case time O(n) if k = O(n/logn). Here, “average” means that all or-
ders of the elements in the input sequence are equally likely.

116 5 Sorting and Selection

5.6 Breaking the Lower Bound

The title of this section is, of course, nonsense. A lower bound is an absolute state-
ment. [t states that, in a certain model of computation, a certain task cannot be carried
out faster than the bound. So a lower bound cannot be broken. But be careful. It can-
not be broken within the model of computation used. The lower bound does not
exclude the possibility that a faster solution exists in a richer model of computation.
In fact, we may even interpret the lower bound as a guideline for getting faster. It
tells us that we must enlarge our repertoire of basic operations in order to get faster.

What does this mean in the case of sorting? So far, we have restricted ourselves
to comparison-based sorting. The only way to learn about the order of items was
by comparing two of them. For structured keys, there are more effective ways to
gain information, and this will allow us to break the Q(nlogn) lower bound valid for
comparison-based sorting. For example, numbers and strings have structure; they are
sequences of digits and characters, respectively.

Let us start with a very simple algorithm Ksort that is fast if the keys are small
integers, say in the range 0..K — 1. The algorithm runs in time O(n +K). We use
an array b[0..K — 1] of buckets that are initially empty. We then scan the input and
insert an element with key k into bucket b[k]. This can be done in constant time per
element, for example by using linked lists for the buckets. Finally, we concatenate all
the nonempty buckets to obtain a sorted output. Figure 5.11 gives the pseudocode.
For example, if the elements are pairs whose first element is a key in the range 0..3
and

s = ((3,a),(1.5),(2,¢).(3,d).(0,¢), (0, £), (3.8), (2,h), (1)) ,

we obtain b = [((0,e), (0, 1)), ((1,b),(1,1)), ((2,¢),(2,h)), ((3,a),(3,d),(3.8))]
and output ((0,e), (0, f).(1,b),(1.i),(2,¢),(2,h),(3,a),(3,d),(3,g)). This example
illustrates an important property of Ksort. It is stable, i.e., elements with the same key
inherit their relative order from the input sequence. Here, it is crucial that elements
are appended to their respective bucket.

KSort can be used as a building block for sorting larger keys. The idea behind
radix sort is to view integer keys as numbers represented by digits in the range
0..K — 1. Then KSort is applied once for each digit. Figure 5.12 gives a radix-sorting
algorithm for keys in the range 0..K“ — 1 that runs in time O(d(n + K)). The ele-
ments are first sorted by their least significant digit (LSD radix sort), then by the
second least significant digit, and so on until the most significant digit is used for
sorting. It is not obvious why this works. The correctness rests on the stability of

Procedure KSort(s : Sequence of Element)

— ﬁ
h=1{0).....Q)) : Array [0..K — 1] of Sequence of Element
foreach ¢ < 5 do blkey(e)].pushBack(e) /" { { \y ;
s 1= concatenation of b[0]. ... b[K — 1] \J—& S_’
[IOl bl bl2) bl3] b

Fig. 5.11. Sorting with keys in the range 0..K -

5.6 Breaking the Lower Bound 117

Procedure LSDRadixSort(s : Sequence of Element)

fori:=0tod—1do digits
redefine key(x) as (x div k') mod K Il x]
KSort(s) key(x)

invariant s is sorted with respect to digits i..0
Fig. 5.12. Sorting with keys in 0..K9 — | using least significant digit (LSD) radix sort,

Procedure uniformSort(s : Sequence of Element)
ni=|s|
b={{).....00) :Array [0.n— 1] of Sequence of Element
foreach ¢ < 5 do b[| key(e) - n|] pushBuck(e)
for i:=0ton—1do sort bi] in time O(|b[i]| log [bli]])
§ .= concatenation of b[0].. .. b[n — 1]

Fig. 5.13. Sorting random keys in the range [0, 1)

Ksort. Since KSort is stable, the elements with the same i-th digit remain sorted
with respect to digits i — 1..0 during the sorting process with respect to digit i. For
example, if K = 10, d = 3, and

I

(017.042,666.007,111,911 ;999). we successively obtain
<111,911,042,666,017,007,999> ,
=(007, 111,911,017,042,666,999)
(007,017,042, 11 1,666,911,999)

fl

S

A

§ = , and
s .

|

|

Radix sort starting with the most significant digit (MSD radix sort) is also pos-
sible. We apply KSort to the most significant digit and then sort each bucket recur-
sively. The only problem is that the buckets might be much smaller than K, so that
it would be expensive to apply KSort to small buckets. We then have to switch to
another algorithm. This works particularly well if we can assume that the keys are
uniformly distributed. More specifically, let us now assume that the keys are real
numbers with 0 < key(e) < 1. The algorithm uniformSort in Fig. 5.13 scales these
keys to integers between 0 and n — | — s| — 1, and groups them into n buckets,
where bucket bli] is responsible for keys in the range [i/n.(i+ 1)/n). For example,
if 5= (0.8.0.4,0.7,0.6,0.3), we obtain five buckets responsible for intervals of size
0.2, and

b=[(), (0.3), (0.4), (0.7,0.6), (0.8)] ;

only h[3] = (0.7,0.6) is a nontrivial subproblem. uniformSort is very efficient for
random keys.

Theorem 5.9. If the keys are independent uniformly distributed random values in
0, 1), uniformSort sorts n keys in expected time O(n) and worst-case time O(nlog n).

118 5 Sorting and Selection

Proof. We leave the worst-case bound as an exercise and concentrate on the average
case. The total execution time 7" is O(n) for setting up the buckets and concatenating
the sorted buckets, plus the time for sorting the buckets. Let 7; denote the time for
sorting the i-th bucket. We obtain

E[T] = O(n) +E

ST

i<n

= O(n)+ Y E[T;] = O(n) + nE[Ty) .

i<n

The second equality follows from the linearity of expectations (A.2), and the third
equality uses the fact that all bucket sizes have the same distribution for uniformly
distributed inputs. Hence, it remains to show that E[Ty] = O(1). We shall prove the
stronger claim that E[Ty] = O(1) even if a quadratic-time algorithm such as insertion
sort is used for sorting the buckets. The analysis is similar to the arguments used to
analyze the behavior of hashing in Chap. 4.

Let By = |b[0]|. We have E[Tp] = O(E[B]]). The random variable By obeys a
binomial distribution (A.7) with n trials and success probability 1/n, and hence

1\ N A1 '
prob(Bo =)= (1) (=) (1--) <2-=2<(5),
I n n il n 1! I

where the last inequality follows from Stirling’s approximation to the factorial (A.9).
We obtain

E[B}] = ¥ i’prob(By = i) < 3 2 (i)i

i<n isn !

X2 ()

i<5 i>6

<o(l)+ey <%>F2 =0(1) ,

i>6

and hence E[T] = O(n) (note that the split at i = 6 allows us to conclude that e/i<
1/2). 0

*Exercise 5.29. Implement an efficient sorting algorithm for elements with keys in
the range 0..K — 1 that uses the data structure of Exercise 3.20 for the input and out-
put. The space consumption should be n+ O(n/B + KB) for n elements, and blocks
of size B.

3.7 *External Sorting

Sometimes the input is so huge that it does not fit into internal memory. In this
section, we shall learn how to sort such data sets in the external-memory model
introduced in Sect. 2.2. This model distinguishes between a fast internal memory
of size M and a large external memory. Data is moved in the memory hierarchy in

5.7 *External Sorting 119

make_things_ as_simple as _possible_bu t_no_simpler

l_formRuns ? 2 formRuns < > formRuns < > SformRuns (

__aeghikmnst __aaeilmpsss __aaeilmpsss __eilmnoprst
merge merge
__ aaaeeghiiklmmnpsssst _____bbeeiillmnoopprssstu
merge

aaabbeeeeghiiiiklllmmmnnooppprsssssssttu

Fig. 5.14. An example of two-way mergesort with initial runs of length 12

blocks of size B. Scanning data is fast in external memory and mergesort is based
on scanning. We therefore take mergesort as the starting point for external-memory
sorting.

Assume that the input is given as an array in external memory. We shall describe
a nonrecursive implementation for the case where the number of elements 7 is di-
visible by B. We load subarrays of size M into internal memory, sort them using our
favorite algorithm, for example gSort, and write the sorted subarrays back to exter-
nal memory. We refer to the sorted subarrays as runs. The run formation phase takes
n/B block reads and n/B block writes, i.e., a total of 2n /B 1/Os. We then merge pairs
of runs into larger runs in [log(n/M)] merge phases, ending up with a single sorted
run. Figure 5.14 gives an example for n = 48 and runs of length 12.

How do we merge two runs? We keep one block from each of the two input runs
and from the output run in internal memory. We call these blocks buffers. Initially,
the input buffers are filled with the first B elements of the input runs, and the output
buffer is empty. We compare the leading elements of the input buffers and move the
smaller element to the output buffer. If an input buffer becomes empty, we fetch the
next block of the corresponding input run; if the output buffer becomes full, we write
it to external memory.

Each merge phase reads all current runs and writes new runs of twice the length.
Therefore, each phase needs n/B block reads and n /B block writes. Summing over

all phases, we obtain (2n/B)(1 + [logn/M]) /Os. This technique works provided
that M > 3B.

5.7.1 Multiway Mergesort

In general, internal memory can hold many blocks and not just three. We shall de-
scribe how to make full use of the available internal memory during merging. The
idea is to merge more than just two runs; this will reduce the number of phases.
In k-way merging, we merge k sorted sequences into a single output sequence. In
each step we find the input sequence with the smallest first element. This element
is removed and appended to the output sequence. External-memory implementation
1s easy as long as we have enough internal memory for & input buffer blocks, one
output buffer block, and a small amount of additional storage.

120 5 Sorting and Selection

For each sequence, we need to remember which element we are currently con-
sidering. To find the smallest element out of all k sequences, we keep their current
clements in a priority queue. A priority queue maintains a set of elements support-
ing the operations of insertion and deletion of the minimum. Chapter 6 explains how
priority queues can be implemented so that insertion and deletion take time O(logk)
for k elements. The priority queue tells us at each step, which sequence contains
the smallest element. We delete this element from the priority queue, move it to the
output buffer. and insert the next element from the corresponding input buffer into
the priority queue. If an input buffer runs dry, we fetch the next block of the corre-
sponding sequence, and if the output buffer becomes full, we write it to the external
memory.

How large can we choose k? We need to keep k+ 1 blocks in internal memory
and we need a priority queue for k keys. So we need (k+1)B+O(k) <M or k =
O(M/B). The number of merging phases is reduced to [log, (n/M)], and hence the
total number of I/Os becomes

22 (1+ [mgM/B%D . 5.1)

The difference from binary merging is the much larger base of the logarithm. In-
terestingly, the above upper bound for the I/O complexity of sorting is also a lower
bound [5]. i.e., under fairly general assumptions, no external sorting algorithm with
tewer I/O operations is possible.

In practice, the number of merge phases will be very small. Observe that a single
merge phase suffices as long as n < M?/B. We first form M /B runs of length M each
and then merge these runs into a single sorted sequence. If internal memory stands
for DRAM and “external memory” stands for hard disks, this bound on 7 is no real
restriction, for all practical system configurations.

Exercise 5.30. Show that a multiway mergesort needs only O(nlogn) element com-
parisons.

Exercise 5.31 (balanced systems). Study the current market prices of computers,
internal memory, and mass storage (currently hard disks). Also, estimate the block
size needed to achieve good bandwidth for I/0. Can you find any configuration where
multiway mergesort would require more than one merging phase for sorting an input
that fills all the disks in the system? If so, what fraction of the cost of that system

would you have to spend on additional internal memory to go back to a single merg-
ing phase?

5.7.2 Sample Sort

The most popular internal-memory sorting algorithm is not mergesort but quicksort.
So it is natural to look for an external-memory sorting algorithm based on quicksort.
We shall sketch sample sort. In expectation, it has the same performance guarantees
as multiway mergesort (5.1). Sample sort is easier to adapt to parallel disks and

5.7 *External Sorting 121

parallel processors than merging-based algorithms. Furthermore, similar algorithms
can be used for fast external sorting of integer keys along the lines of Sect. 5.6.

Instead of the single pivot element of quicksort, we now use k — 1 splitter el-
ements sy,. .., sy to split an input sequence into k output sequences, or buckets.
Bucket i gets the elements e for which s;_; < e < s;. To simplify matters, we define
the artificial splitters sy = oo and s; = oo and assume that all elements have differ-
ent keys. The splitters should be chosen in such a way that the buckets have a size
of roughly n/k. The buckets are then sorted recursively. In particular, buckets that fit
into the internal memory can subsequently be sorted internally. Note the similarity
to MSD-radix sort described in Sect. 5.6.

The main challenge is to find good splitters quickly. Sample sort uses a fast, sim-
ple randomized strategy. For some integer a, we randomly choose (a+ 1)k — 1 sam-
ple elements from the input. The sample § is then sorted internally, and we define the
splitters as s; = S[(a+1)i] for 1 <i <k—1,i.e., consecutive splitters are separated by
a samples, the first splitter is preceded by a samples, and the last splitter is followed
by a samples. Taking @ = 0 results in a small sample set, but the splitting will not
be very good. Moving all elements to the sample will result in perfect splitters, but
the sample will be too big. The following analysis shows that setting a = O(logk)
achieves roughly equal bucket sizes at low cost for sampling and sorting the sample.

The most I/O-intensive part of sample sort is the k-way distribution of the input
sequence to the buckets. We keep one buffer block for the input sequence and one
buffer block for each bucket. These buffers are handled analogously to the buffer
blocks in k-way merging. If the splitters are kept in a sorted array, we can find the
right bucket for an input element e in time O(log k) using binary search.

Theorem 5.10. Sample sort uses

O (1+ [l 1))

expected I/O steps for sorting n elements. The internal work is O(nlogn).

We leave the detailed proof to the reader and describe only the key ingredient
of the analysis here. We use k = ©(min(n/M,M/B)) buckets and a sample of size
O(klogk). The following lemma shows that with this sample size, it is unlikely that
any bucket has a size much larger than the average. We hide the constant factors

behind O(-) notation because our analysis is not very tight in this respect.

Lemma S.11. Let k > 2 and a+ 1 = 12Ink. A sample of size (a+ 1)k — 1 suffices to
ensure that no bucket receives more than 4n/k elements with probability at least 1 /2.

Proof. As in our analysis of quicksort (Theorem 5.6), it is useful to study the sorted
version s" = (¢, ... e} of the input. Assume that there is a bucket with at least 47 Jk
elements assigned to it. We estimate the probability of this event.

We split s’ into k/2 segments of length 2n/k. The j-th segment 7; contains ele-
ments e’zj.”/kﬂ to gl2(j+l)n/k' If 4n/k elements end up in some bucket, there must be

some segment #; such that all its elements end up in the same bucket. This can only

122 5 Sorting and Selection

happen if fewer than a + 1 samples are taken from ¢;, because otherwise at least one
splitter would be chosen from #; and its elements would not end up in a single bucket.
Let us concentrate on a fixed j.

We use a random variable X to denote the number of samples taken from tj.
Recall that we take (a + 1)k — 1 samples. For each sample i, | <i< (a+1)k— 1,
we define an indicator variable X; with X; = 1 if the i-th sample is taken from ti
and X; = 0 otherwise. Then X = Yi<i<(at+1)k—1 Xi- Also, the X;’s are independent,
and prob(X; = 1) = 2/k. Independence allows us to use the Chernoff bound (A.5) to
estimate the probability that X < @+ 1. We have

:2(a+1)~%2 3(“;1) .

E[X], and so we can use (A.5) with & = 1/3.

E[X] = ((a+ Dk—1)-

Eal]

Hence X < a+ 1 implies X < (1—1/3
Thus

~—

prob(X < a+ 1) < e~ (VIEXY/2 < o=(a+1)/12 _ ~Ink _ % '

The probability that an insufficient number of samples is chosen from a fixed ¢ ;18
thus at most 1/k, and hence the probability that an insufficient number is chosen
from some ¢; is at most (k/2) - (1/k) = 1/2. Thus, with probability at least 1/2, each
bucket receives fewer than 4n/k elements. O

Exercise 5.32. Work out the details of an external-memory implementation of sam-
ple sort. In particular, explain how to implement multiway distribution using 2 /B+
k+ 1 1/O steps if the internal memory is large enough to store k + 1 blocks of data
and O(k) additional elements.

Exercise 5.33 (many equal keys). Explain how to generalize multiway distribution
so that it still works if some keys occur very often. Hint: there are at least two differ-
ent solutions. One uses the sample to find out which elements are frequent. Another
solution makes all elements unique by interpreting an element e at an input position
i as the pair (e,i).

“Exercise 5.34 (more accurate distribution). A larger sample size improves the
quality of the distribution. Prove that a sample of size O((k/€?)log(k/ em)) guar-
antees. with probability (at least 1 — 1 /m), that no bucket has more than (1 + £)n/k
elements. Can you get rid of the € in the logarithmic factor?

5.8 Implementation Notes

Comparison-based sorting algorithms are usually available in standard libraries, and
S0 you may not have to implement one yourself. Many libraries use tuned implemen-
tations of quicksort.

Canned non-comparison-based sorting routines are less readily available. Fig-
ure 5.15 shows a careful array-based implementation of Ksort. It works well for

5.8 Implementation Notes 123

Procedure KSortArray(a,b : Array [1..n] of Element)

¢=1(0,...,0) :Array [0..K — 1] of N /I counters for each bucket
fori:=1tondo clkey(ali])]++ /I Count bucket sizes
C:=0

for k:=0te K—1do (C,clk]) :=(C+c[k],C) Il Store ¥, clk] in c[k].
for i:=1tondo // Distribute ali]

blclkey(ali))]]:=ali]
clkey(ali])]++

Fig. 5.15. Array-based sorting with keys in the range 0..K — 1. The input is an unsorted array
a. The output is b, containing the elements of g in sorted order. We first count the number of
inputs for each key. Then we form the partial sums of the counts. Finally, we write each input
element to the correct position in the output array

small to medium-sized problems. For large K and n, it suffers from the problem that
the distribution of elements to the buckets may cause a cache fault for every element.

To fix this problem, one can use multiphase algorithms similar to MSD radix sort.
The number K of output sequences should be chosen in such a way that one block
from each bucket is kept in the cache (see also [134]). The distribution degree K can
be larger when the subarray to be sorted fits into the cache. We can then switch to a
variant of uniformSort (see Fig. 5.13).

Another important practical aspect concerns the type of elements to be sorted.
Sometimes we have rather large elements that are sorted with respect to small keys.
For example, you may want to sort an employee database by last name. In this sit-
uation, it makes sense to first extract the keys and store them in an array together
with pointers to the original elements. Then, only the key—pointer pairs are sorted.
If the original elements need to be brought into sorted order, they can be permuted
accordingly in linear time using the sorted key—pointer pairs.

Multiway merging of a small number of sequences (perhaps up to eight) deserves

special mention. In this case, the priority queue can be kept in the processor registers
[160, 206].

5.8.1 C/C++

Sorting is one of the few algorithms that is part of the C standard library. However,
the C sorting routine gsort is slower and harder to use than the C++ function sort.
The main reason is that the comparison function is passed as a function pointer and is
called for every element comparison. In contrast, sort uses the template mechanism
of C++ to figure out at compile time how comparisons are performed so that the
code generated for comparisons is often a single machine instruction. The parame-
ters passed to sort are an iterator pointing to the start of the sequence to be sorted,
and an iterator pointing after the end of the sequence. In our experiments using an
Intel Pentium III and GCC 2.95, sort on arrays ran faster than our manual implemen-
tation of quicksort. One possible reason is that compiler designers may tune their

