
6

Lower Bounds on I/O

In this chapter, we prove the lower bounds from Theorems 5.1–5.4,

including a careful derivation of the constants of proportionality in the

permuting and sorting lower bounds. We also mention some related

I/O lower bounds for the batched problems in computational geometry

and graphs that we cover later in Chapters 8 and 9.

6.1 Permuting

The most trivial batched problem is that of scanning (a.k.a. streaming

or touching) a file of N data items, which can be done in a linear num-

ber O(N/DB) = O(n/D) of I/Os. Permuting is one of several simple

problems that can be done in linear CPU time in the (internal mem-

ory) RAM model. But if we assume that the N items are indivisible

and must be transferred as individual entities, permuting requires a

nonlinear number of I/Os in PDM because of the locality constraints

imposed by the block parameter B.

Our main result for parallel disk sorting is that we close the gap

between the upper and lower bounds up to lower order terms. The

lower bound from [23] left open the nature of the constant factor of

57



58 Lower Bounds on I/O

proportionality of the leading term; in particular, it was not clear what

happens if the number of output steps and input steps differ.

Theorem 6.1 ([202]). Assuming that m = M/B is an increasing

function, the number of I/Os required to sort or permute n indivis-

ible items, up to lower-order terms, is at least

2N

D

logn

B logm + 2logN
∼















2n

D
logm n if B logm = ω(logN);

N

D
if B logm = o(logN).

(6.1)

The main case in Theorem 6.1 is the first one, and this theorem

shows that the constant of proportionality in the Sort(N) bound (5.1)

of Theorem 5.1 is at least 2.

The second case in the theorem is the pathological case in which

the block size B and internal memory size M are so small that the

optimum way to permute the items is to move them one at a time in

the naive manner, not making use of blocking.

We devote the rest of this section to a proof of Theorem 6.1. For

the lower bound calculation, we can assume without loss of generality

that there is only one disk, namely, D = 1. The I/O lower bound for

general D follows by dividing the lower bound for one disk by D.

We call an input operation simple if each item that is transferred

from the disk gets removed from the disk and deposited into an empty

location in internal memory. Similarly, an output is simple if the trans-

ferred items are removed from internal memory and deposited into

empty locations on disk.

Lemma 6.2 ([23]). For each computation that implements a permu-

tation of the N items, there is a corresponding computation strategy

involving only simple I/Os such that the total number of I/Os is no

greater.

The lemma can be demonstrated easily by starting with a valid

permutation computation and working backwards. At each I/O step,



6.1 Permuting 59

in backwards order, we cancel the transfer of an item if its transfer is

not needed for the final result; if it is needed, we make the transfer

simple. The resulting I/O strategy has only simple I/Os.

For the lower bound, we use the basic approach of Aggarwal and

Vitter [23] and bound the maximum number of permutations that can

be produced by at most t I/Os. If we take the value of t for which the

bound first reaches N !, we get a lower bound on the worst-case number

of I/Os. In a similar way, we can get a lower bound on the average case

by computing the value of t for which the bound first reaches N !/2.

In particular, we say that a permutation 〈p1,p2, . . . ,pN 〉 of the

N items can be produced after tI input operations and tO output oper-

ations if there is some intermixed sequence of tI input operations and

tO output operations so that the items end up in the permuted order

〈p1,p2, . . . ,pN 〉 in extended memory. (By extended memory we mean the

memory locations of internal memory followed by the memory locations

on disk, in sequential order.) The items do not have to be in contiguous

positions in internal memory or on disk; there can be arbitrarily many

empty locations between adjacent items.

As mentioned above, we can assume that I/Os are simple. Each I/O

causes the transfer of exactly B items, although some of the items may

be nil. In the PDM model, the I/Os obey block boundaries, in that all

the non-nil items in a given I/O come from or go to the same block

on disk.

Initially, before any I/Os are performed and the items reside on disk,

the number of producible permutations is 1. Let us consider the effect of

an output. There can be at most N/B + o − 1 nonempty blocks before

the oth output operation, and thus the items in the oth output can

go into one of N/B + o places relative to the other blocks. Hence, the

oth output boosts the number of producible permutations by a factor

of at most N/B + o, which can be bounded trivially by

N(1 + logN). (6.2)

For the case of an input operation, we first consider an input I/O

from a specific block on disk. If the b items involved in the input I/O

were together in internal memory at some previous time (e.g., if the

block was created by an earlier output operation), then the items could



60 Lower Bounds on I/O

have been arranged in an arbitrary order by the algorithm while they

were in internal memory. Thus, the b! possible orderings of the b input

items relative to themselves could already have been produced before

the input operation. This implies in a subtle way that rearranging the

newly input items among the other M − b items in internal memory can

boost the number of producible permutations by a factor of at most
(

M
b

)

, which is the number of ways to intersperse b indistinguishable

items within a group of size M .

The above analysis applies to input from a specific block. If the

input was preceded by a total of o output operations, there are at

most N/B + o ≤ N(1 + logN) blocks to choose from for the I/O, so

the number of producible permutations is boosted further by at most

N(1 + logN). Therefore, assuming that at some prior time the b input

items were together in internal memory, an input operation can boost

the number of producible permutations by at most

N(1 + logN)

(

M

b

)

. (6.3)

Now let us consider an input operation in which some of the input

items were not together previously in internal memory (e.g., the first

time a block is input). By rearranging the relative order of the items in

internal memory, we can increase the number of producible permuta-

tions by a factor of B!. Given that there are N/B full blocks initially,

we get the maximum increase when all N/B blocks are input in full,

which boosts the number of producible permutations by a factor of

(B!)N/B. (6.4)

Let I be the total number of input I/O operations. In the ith input

operation, let bi be the number of items brought into internal mem-

ory. By the simplicity property, some of the items in the block being

accessed may not be brought into internal memory, but rather may

be left on disk. In this case, bi counts only the number of items that

are removed from disk and put into internal memory. In particular, we

have 0 ≤ bi ≤ B.

By the simplicity property, we need to make room in internal mem-

ory for the new items that arrive, and in the end all items are stored



6.2 Lower Bounds for Sorting and Other Problems 61

back on disk. Therefore, we get the following lower bound on the num-

ber O of output operations:

O ≥
1

B

(

∑

1≤i≤I

bi

)

. (6.5)

Combining (6.2), (6.3), and (6.4), we find that

(

N(1 + logN)
)I+O

∏

1≤i≤I

(

M

bi

)

≥
N !

(B!)N/B
, (6.6)

where O satisfies (6.5).

Let B̃ ≤ B be the average number of items input during the I input

operations. By a convexity argument, the left-hand side of (6.6) is maxi-

mized when each bi has the same value, namely, B̃. We can rewrite (6.5)

as O ≥ IB̃/B, and thus we get I ≤ (I + O)/(1 + B̃/B). Combining

these facts with (6.6), we get

(

N(1 + logN)
)I+O

(

M

B̃

)I

≥
N !

(B!)N/B
; (6.7)

(

N(1 + logN)
)I+O

(

M

B̃

)(I+O)/(1+B̃/B)

≥
N !

(B!)N/B
. (6.8)

By assumption that M/B is an increasing function, the left-hand side

of (6.8) is maximized when B̃ = B, so we get

(

N(1 + logN)
)I+O

(

M

B

)(I+O)/2

≥
N !

(B!)N/B
. (6.9)

The lower bound on I + O for D = 1 follows by taking logarithms of

both sides of (6.9) and solving for I + O using Stirling’s formula. We

get the general lower bound of Theorem 6.1 for D disks by dividing the

result by D.

6.2 Lower Bounds for Sorting and Other Problems

Permuting is a special case of sorting, and hence, the permuting lower

bound of Theorem 6.1 applies also to sorting. In the unlikely case that

B logm = o(logn), the permuting bound is only Ω(N/D), and we must


