DATA VISUALIZATION AND VISUAL ANALYTICS

S. Rinzivillo – rinzivillo@isti.cnr.it
Networks

- Data main focus is relationship
- Study the patterns of connection among different parts of a complex system
- Visualization has a key role to add insights to numerical analysis
NETWORKS AND GRAPHS
BASIC ELEMENTS

- **components**: nodes, vertices
- **interactions**: links, edges
- **system**: network, graph

(N,L)
Network refer to a real system
Graph refers to mathematical representation of a network
UNDIRECTED VS DIRECTED

Undirected

\[A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \]

\[A_{ii} = 0 \quad A_{ij} = A_{ji} \]

\[L = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} < k >= \frac{2L}{N} \]

Directed

\[A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

\[A_{ii} = 0 \quad A_{ij} \neq A_{ji} \]

\[L = \sum_{i,j=1}^{N} A_{ij} < k >= \frac{L}{N} \]

Actor network, protein-protein interactions

WWW, citation networks
UNWEIGHTED VS WEIGHTED

Unweighted (undirected)

\[
A_{ij} = \begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

\[A_{ii} = 0, \quad A_{ij} = A_{ji}\]

\[L = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} < k >= \frac{2L}{N}\]

Weighted (undirected)

\[
A_{ij} = \begin{pmatrix}
0 & 2 & 0.5 & 0 \\
2 & 0 & 1 & 4 \\
0.5 & 1 & 0 & 0 \\
0 & 4 & 0 & 0
\end{pmatrix}
\]

\[A_{ii} = 0, \quad A_{ij} = A_{ji}\]

\[L = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij}) < k >= \frac{2L}{N}\]

protein-protein interactions, www

Call Graph, metabolic networks
Network Internal Representation

- Three main methods
 a) Adjacency Lists
 b) Matrices
 c) Edge list

\[
A_{ij} = \begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

- Diagram:
 1: \{2,3\}
 2: \{3,1,4\}
 3: \{1,2\}
 4: \{2\}
ADJACENCY MATRIX

- Each cell ij represents an edge from vertex i to vertex j
- Effectiveness of visualization depends on rows/columns ordering
- First example by Jacques bertin (with paper strips rearranged by hand)
- Effective also for highly connected graphs

https://observablehq.com/@bstaats/matrix-diagram
NODE-LINK REPRESENTATION

- Symbolic elements for nodes
- Lines for connection among nodes
- Physical networks (roads, power grids) have a natural spatial encoding
- Abstract networks need layouts to infer a spatial position for nodes

PROBLEMS OF NODE-LINK DIAGRAMS

• Occlusion of node and link crossings
• Large networks may produce hairball like networks
• Many algorithms to produce effective layouts to reduce cluttering
CLUTTERING REDUCTION

• Interaction to switch between different layouts
• Effective positioning of labels
 • Centered on nodes
 • Visualization based on interaction and mouse hover

http://projects.flowingdata.com/tut/interactive_network_demo/
CLUTTERING REDUCTION

• Collapsing nodes into clusters

http://www.theyrule.net/
CLUTTERING REDUCTION

• Zooming and context distortion

https://bost.ocks.org/mike/fisheye/
CLUTTERING REDUCTION

• Zooming and context distortion

http://www.nytimes.com/interactive/2008/05/05/science/20080506_DISEASE.html?_r=0
CASE STUDY: FORCE DIRECTED

http://projects.flowingdata.com/tut/interactive_network_demo/
CASE STUDY: INFORMATION FLOW

Circular Layout

http://www.eigenfactor.org/projects/well-formed/
CASE STUDY: SANKEY TYPE DIAGRAMS
D3 FORCE PACKAGE

• This is the package that manages the utility functions to visualize a graph (plus additional features)
 • Documentation: https://d3js.org/d3-force
 • Demos: https://observablehq.com/collection/@d3/d3-force