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WEB	APPLICATIONS	ARCHITECTURE	



Outline	

§ Web	Application	Architecture	
§  Crash	courses	on:	

§  HTML	
§  CSS	
§  Javascript	

§ Web	Server	
§  Node.js	and	NPM	



WEB	APPLICATIONS	ARCHITECTURE	



Static	Websites	

§  The	content	of	each	page	is	sent	AS	IS	from	
the	server	to	the	client	
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Dynamic	website	

§ Web	page	content	is	composed	on	demand	
§  Content	is	stored	in	different	forms:	
databases,	external	resources,	other	static	
web	pages	
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Server	Side	vs	Client	Side	

§  Client-side	coding	includes	HTML,	CSS,	and	
Javascript	

§  This	code	is	transmitted	AS	IS	and	executed	in	
the	browser	
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Web	Server	

§  Implements	HTTP	protocol	
§  The	web	server	handles	a	folder,	called	Document	Root	
§  For	security	reasons,	only	the	files	within	the	DocRoot	are	
visible	for	the	web	server	

§  A	web	server	is	reachable	via	a	URL	
§  A	URL	consists	of	4	parts:	

§  A	selector	of	the	protocol	(http	or	https)	
§  The	domain	name	of	the	server	(www.nytimes.com)	
§  The	port	number	(by	default	it	is	80)	
§  A	path	to	localize	additional	information	
§  Ex:	http://www.nytimes.com:80/sport/baseball		



HTTP	

§  3.	Send	
§  HTTP	Request	

§  Methods	to	tell	server	what	the	client	need	
§  HTTP	Methods:	

§  GET;	POST;	PUT;	DELETE;	OPTIONS;…	



HTTP	

§  4.	Wait	and	5.	Load	
§  HTTP	Response	

§  Read	Response	Codes	
§  Read	data	

§  HTTP	Response	Codes	
§  1xx	–	Informational	
§  2xx	–	Success	
§  3xx	–	Redirection	
§  4xx	–	Client	Error	
§  5xx	–	Server	Error	



Example	–	Requesting	page.html	

Client	
§  GET	‘/page.html’	
§  …	wait	…	
§  Download	and	parse	file	
§  GET	‘/css/style.css’	
§  …	wait	…	
§  Download	and	parse	file	
§  GET	/page.hhtml	
§  …	wait	…	
§  Page	not	found	error	

Web	Server	
§  Search	for	the	file	page.html	
§  Send	response	200	
§  Send	the	content	of	file	
§  Look	in	folder	css	for	file	
§  Send	response	200	
§  Send	content	of	file	
§  Search	for	file	page.hhtml	
§  Send	response	404	



HTML,	CSS,	and	Javascript	

§ HTML	
§ CSS	
§ Javascript	

§ Structure	
§ Presentation	
§ Behavior	



HTML	101	



Hyper	Text	Markup	Language	(HTML)	

§  Hyper	Text	 §  Markup	Language	
§  Composed	of	markup	
tags	

§  Tags	group	and	describe	
page	content	
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HTML	Structure	



Markup	Language	

§  HTML	tags	give	
structure	

§  They	also	provide	
semantics	
§  Headings	for	headers	
§  UL	for	unordered	list	
§  … 		



§  Browser	applies	built-in	
styles	to	each	tag	

§  Even	with	default	style,	
web	pages	should	be	
readable	and	its	
hierarchy	clear	



Relevant	tags:	DOCTYPE	

§  It	is	not	a	common	tag	
§  No	closing	tag	
§  Opening	with	“!”	

§  It	is	a	declaration	
§  Select	the	correct	dialect	of	HTML	the	page	is	
using	

§  E.g.:	<!DOCTYPE	html>		selects	HTML5	



Relevant	tags:	HTML	

§  This	tag	enclose	the	whole	document	
§  <html></html>	



Relevant	tags:	HEAD	

§  It	provides	information	to	browser	to	retrive	
additional	information	for	the	page	
§  Javascript,	styles,	information,	meta,	etc.	

§  <head></head>	



Relevant	tags:	body	

§  Contaiins	the	documetn	content	
§  The	enclosed	tags	are	showed	in	the	browsere	
window	

§  <body></body>	



Minimal	Structure	

§  This	is	a	basic	structure	
for	a	web	page	

§  HTML	uses	nesting	to	
code	hierarchies	

§  For	readability,	
enclosed	tags	are	
indented	w.r.t.	
container	



Document	Hierarchy	

§  Each	tag	has	a	parent	
§  A	tag	may	have	children	
or	siblings	

§  Examples:	
§  h1	is	a	child	of	body	
§  body	has	two	children	
§  p	is	sibling	of	h1	
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HTML	Element	

§  An	element	is	the	union	
of	two	corresponding	
tags	and	their	content	

§  Tags	are	usually	present	
in	pairs:	
§  Start	tag	
§  End	tag	

<tag>Content</tag>	



Named	tags	

§  HTML	has	a	set	of	
predefined	tag	names,	
associated	with	special	
structures	

<h1>My	Title</h1>	



Essential	Tags	

§  Primary	Structure	
§  html	
§  head	
§  body	

§  Head	Elements	
§  title	
§  meta	
§  link	

§  Formatting	elements	
(inline)	
§  em,	i	
§  strong,	b	
§  q,	blockquote	
§  Span	

§  Structural	Elements	(blocks)	
§  p	
§  h1-h6	
§  ul,	ol	
§  a	
§  img	
§  div	



CSS	101	



CSS	–	Cascading	Stylesheet	

§  A	stylesheet	specifies	a	set	of	rules	to	define	how	
html	elements	are	presented	on	the	browser	

§  Each	rule	applies	to	a	specific	set	of	elements	of	
the	page	

§  Rules	have	a	cascading	behaviour	
§  Conflicts	between	multiple	rules	are	resolved	by	
priorities	

§  Elements	not	covered	by	explicit	rules	inherit	
presentation	of	ancestors	



Rule	priorities	

§  Browser	stylesheet	
§  Linked	external	stylesheet	
§  Embedded	stylesheet	(tag	style)	
§  Inline	style	(attribute	style)	



Inheritance	

body	
make	font	16px,	Verdana,	red	

p	
make	font	blue	

html	

head	 body	
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h1		is	red	 p	is	blue	



Anatomy	of	a	CSS	Rule	

§  Every	rule	is	composed	of	a	selector	and	a	
declaration	

§  Declaration	contains	at	least	one	pair	property/
value	

selector	{property:	value;}	

declaration	selector	



Basic	CSS	Selectors	

§  Type	selectors	
§  Target	an	element	by	name	

§  body	{font-family:	Verdana	}	
§  h1	{color:	red}	

§  ID	selectors	
§  An	ID	is	an	attribute	added	to	an	HTML	element	

§  #logo	{declaration}	
§  <img	id=“logo”	src=“img/imga.jpg”	alt=“description”/>	

§  Class	selectors	
§  An	identifier	attribute	added	to	a	set	of	HTML	elements	

§  .ingredients	{declaration}	
§  <ul	class=“ingredients”>		



ID	or	Class	

§  There	can	be	only	one	element	with	a	given	ID	
§  ID	is	more	specific	than	a	class	
§  An	element	can	have	both	ID	and	classes	



Descendant	Selectors	

§  Descendant	selectors	are	composed	of	two	basic	
selectors	separated	by	a	space	

§  The	rule	targets	the	elements	of	the	second	
selectors	that	are	descendant	of	the	element	of	
the	first	selector	

§  Example	
§  #sidebar	.author	{declaration}		
§  <div	id=”sidebar”>	
		<p	class=”author”></p>	
</div>	
<p	class=“author”></p>	

	



JAVASCRIPT	101	



Javascript	

Eloquent	Javascript	–	Second	Edition	
Marijn	Haverbeke	
Licensed	under	CC	license.	
Available	here:	http://eloquentjavascript.net/	
	



Developer	Tools	(Safari,	Chrome,	Firefox)	



Javascript	Console	(Safari,	Chrome,	Firefox)	



Variables	

§  Containers	for	data	
var	number	=	5;	
var	address	=	“Largo	Bruno	Pontecorvo	5”;	



Arrays	

§  Store	sequences	of	values	with	a	single	name	
var	numberA	=	5;	
var	numberB	=	10;	
var	numberC	=	15;	
var	numberD	=	20;	
var	numberE	=	25;	
var	numbers	=	[	5,	10,	15,	20,	25	];	
numbers[0]		//Returns	5	
numbers[1]		//Returns	10	
numbers[2]		//Returns	15	
numbers[3]		//Returns	20	
numbers[4]		//Returns	25	



Objects	

§  A	sort	of	custom	data	structures	
§  Object	is	declared	with	curly	brackets	
§  A	sequence	of	property	value	pairs	are	separated	by	commas	

var	fruit	=	{	
				kind:	"grape",	
				color:	"red",	
				quantity:	12,	
				tasty:	true	
};	
fruit.kind						//Returns	"grape"	
fruit.color					//Returns	"red"	
fruit.quantity		//Returns	12	
fruit.tasty					//Returns	true	



Array	of	Object	or	Objects	of	Arrays	

var	fruits	=	[	
				{	
								kind:	"grape",	
								color:	"red",	
								quantity:	12,	
								tasty:	true	
				},	
				{	
								kind:	"kiwi",	
								color:	"brown",	
								quantity:	98,	
								tasty:	true	
				},	
				{	
								kind:	"banana",	
								color:	"yellow",	
								quantity:	0,	
								tasty:	true	
				}	
];	

fruits[0].kind						==		"grape"	
fruits[0].color					==		"red"	
fruits[0].quantity		==		12	
fruits[0].tasty					==		true	
	
fruits[1].kind						==		"kiwi"	
fruits[1].color					==		"brown"	
fruits[1].quantity		==		98	
fruits[1].tasty					==		true	
	
fruits[2].kind						==		"banana"	
fruits[2].color					==		"yellow"	
fruits[2].quantity		==		0	
fruits[2].tasty					==		true	



Control	Structures	

§  If	statement	
if	(test)	{	
				//Code	to	run	if	true	
}	

§  Example	
if	(3	<	5)	{	
				console.log("Eureka!	Three	is	
less	than	five!");	
}	

§  for	statement	
for	(initialization;	test;	update)	
{	
				//Code	to	run	each	time	
through	the	loop	
}	

§  Example	
for	(var	i	=	0;	i	<	5;	i++)	{	
				console.log(i);		//Prints	
value	to	console	
}	



Functions	

§  Declaration	
var	functionName=	function(arg1,	
arg2){	
		return	something;	
}	

§  Example	
var	calculateGratuity	=	
function(bill)	{	
				return	bill	*	0.2;	
};	

§  Call	of	a	function	
functionName(arg1,arg2)	
var	tip	=	calculateGratuity(38);	
console.log(tip);		//Prints	7.6	to	
the	console	



Link	to	javascript	from	a	web	page	

§  Embedded	within	body	
element	

<body>	
				<script	type="text/javascript">	
								alert("Hello,	world!");	
				</script>	
</body>	

§  Linked	from	the	head	
section	

<head>	
				<title>Page	Title</title>	
				<script	type="text/javascript"	
src="myscript.js"></script>	
</head>	



DEVELOPMENT	CHECKLIST	



Tools	

§  A	modern	browser	(Chrome,	Firefox,	etc)	
§  An	integrated	IDE,	like	WebStorm	for	example	
§  Node.js	and	NPM	installed		



Tools	(old	school)	

§  A	modern	browser	(Chrome,	Firefox,	etc)	
§  A	modern	text	editor	(TextMate,	Sublime,	
Atom,	…)	

§  A	terminal	(Command	prompt)	to	run	an	http-
server	[Terminal	A]	

§  A	terminal	to	handle	code	versioning	
[Terminal	B]	

§  Node.js	and	NPM	installed		


