
DATA	VISUALIZATION	AND		
VISUAL	ANALYTICS	

S.	Rinzivillo	–	rinzivillo@isti.cnr.it	

WEB	APPLICATIONS	ARCHITECTURE	

Outline	

§ Web	Application	Architecture	
§  Crash	courses	on:	

§  HTML	
§  CSS	
§  Javascript	

§ Web	Server	
§  Node.js	and	NPM	

WEB	APPLICATIONS	ARCHITECTURE	

Static	Websites	

§  The	content	of	each	page	is	sent	AS	IS	from	
the	server	to	the	client	

Page1
.html	

Page2
.html	

Page3
.html	

Page1
.html	

Page2
.html	

Page3
.html	

Server	 Browser	

Dynamic	website	

§ Web	page	content	is	composed	on	demand	
§  Content	is	stored	in	different	forms:	
databases,	external	resources,	other	static	
web	pages	

Page1
.html	

Composite_page.
html	

DB	

External	
resources	

Server	 Browser	

Server	Side	vs	Client	Side	

§  Client-side	coding	includes	HTML,	CSS,	and	
Javascript	

§  This	code	is	transmitted	AS	IS	and	executed	in	
the	browser	

Page1
.html	 Composite_page.

html	

DB	

External	
resources	

Style.css	

Script.js	

Server	 Browser	

Web	Server	

§  Implements	HTTP	protocol	
§  The	web	server	handles	a	folder,	called	Document	Root	
§  For	security	reasons,	only	the	files	within	the	DocRoot	are	
visible	for	the	web	server	

§  A	web	server	is	reachable	via	a	URL	
§  A	URL	consists	of	4	parts:	

§  A	selector	of	the	protocol	(http	or	https)	
§  The	domain	name	of	the	server	(www.nytimes.com)	
§  The	port	number	(by	default	it	is	80)	
§  A	path	to	localize	additional	information	
§  Ex:	http://www.nytimes.com:80/sport/baseball		

HTTP	

§  3.	Send	
§  HTTP	Request	

§  Methods	to	tell	server	what	the	client	need	
§  HTTP	Methods:	

§  GET;	POST;	PUT;	DELETE;	OPTIONS;…	

HTTP	

§  4.	Wait	and	5.	Load	
§  HTTP	Response	

§  Read	Response	Codes	
§  Read	data	

§  HTTP	Response	Codes	
§  1xx	–	Informational	
§  2xx	–	Success	
§  3xx	–	Redirection	
§  4xx	–	Client	Error	
§  5xx	–	Server	Error	

Example	–	Requesting	page.html	

Client	
§  GET	‘/page.html’	
§  …	wait	…	
§  Download	and	parse	file	
§  GET	‘/css/style.css’	
§  …	wait	…	
§  Download	and	parse	file	
§  GET	/page.hhtml	
§  …	wait	…	
§  Page	not	found	error	

Web	Server	
§  Search	for	the	file	page.html	
§  Send	response	200	
§  Send	the	content	of	file	
§  Look	in	folder	css	for	file	
§  Send	response	200	
§  Send	content	of	file	
§  Search	for	file	page.hhtml	
§  Send	response	404	

HTML,	CSS,	and	Javascript	

§ HTML	
§ CSS	
§ Javascript	

§ Structure	
§ Presentation	
§ Behavior	

HTML	101	

Hyper	Text	Markup	Language	(HTML)	

§  Hyper	Text	 §  Markup	Language	
§  Composed	of	markup	
tags	

§  Tags	group	and	describe	
page	content	

Page2
.html	

Page1
.html	

Page3
.html	

link	

link	

link	

link	

HTML	Structure	

Markup	Language	

§  HTML	tags	give	
structure	

§  They	also	provide	
semantics	
§  Headings	for	headers	
§  UL	for	unordered	list	
§  … 		

§  Browser	applies	built-in	
styles	to	each	tag	

§  Even	with	default	style,	
web	pages	should	be	
readable	and	its	
hierarchy	clear	

Relevant	tags:	DOCTYPE	

§  It	is	not	a	common	tag	
§  No	closing	tag	
§  Opening	with	“!”	

§  It	is	a	declaration	
§  Select	the	correct	dialect	of	HTML	the	page	is	
using	

§  E.g.:	<!DOCTYPE	html>		selects	HTML5	

Relevant	tags:	HTML	

§  This	tag	enclose	the	whole	document	
§  <html></html>	

Relevant	tags:	HEAD	

§  It	provides	information	to	browser	to	retrive	
additional	information	for	the	page	
§  Javascript,	styles,	information,	meta,	etc.	

§  <head></head>	

Relevant	tags:	body	

§  Contaiins	the	documetn	content	
§  The	enclosed	tags	are	showed	in	the	browsere	
window	

§  <body></body>	

Minimal	Structure	

§  This	is	a	basic	structure	
for	a	web	page	

§  HTML	uses	nesting	to	
code	hierarchies	

§  For	readability,	
enclosed	tags	are	
indented	w.r.t.	
container	

Document	Hierarchy	

§  Each	tag	has	a	parent	
§  A	tag	may	have	children	
or	siblings	

§  Examples:	
§  h1	is	a	child	of	body	
§  body	has	two	children	
§  p	is	sibling	of	h1	

html	

head	 body	

h1	 p	

HTML	Element	

§  An	element	is	the	union	
of	two	corresponding	
tags	and	their	content	

§  Tags	are	usually	present	
in	pairs:	
§  Start	tag	
§  End	tag	

<tag>Content</tag>	

Named	tags	

§  HTML	has	a	set	of	
predefined	tag	names,	
associated	with	special	
structures	

<h1>My	Title</h1>	

Essential	Tags	

§  Primary	Structure	
§  html	
§  head	
§  body	

§  Head	Elements	
§  title	
§  meta	
§  link	

§  Formatting	elements	
(inline)	
§  em,	i	
§  strong,	b	
§  q,	blockquote	
§  Span	

§  Structural	Elements	(blocks)	
§  p	
§  h1-h6	
§  ul,	ol	
§  a	
§  img	
§  div	

CSS	101	

CSS	–	Cascading	Stylesheet	

§  A	stylesheet	specifies	a	set	of	rules	to	define	how	
html	elements	are	presented	on	the	browser	

§  Each	rule	applies	to	a	specific	set	of	elements	of	
the	page	

§  Rules	have	a	cascading	behaviour	
§  Conflicts	between	multiple	rules	are	resolved	by	
priorities	

§  Elements	not	covered	by	explicit	rules	inherit	
presentation	of	ancestors	

Rule	priorities	

§  Browser	stylesheet	
§  Linked	external	stylesheet	
§  Embedded	stylesheet	(tag	style)	
§  Inline	style	(attribute	style)	

Inheritance	

body	
make	font	16px,	Verdana,	red	

p	
make	font	blue	

html	

head	 body	

h1	 p	

h1		is	red	 p	is	blue	

Anatomy	of	a	CSS	Rule	

§  Every	rule	is	composed	of	a	selector	and	a	
declaration	

§  Declaration	contains	at	least	one	pair	property/
value	

selector	{property:	value;}	

declaration	selector	

Basic	CSS	Selectors	

§  Type	selectors	
§  Target	an	element	by	name	

§  body	{font-family:	Verdana	}	
§  h1	{color:	red}	

§  ID	selectors	
§  An	ID	is	an	attribute	added	to	an	HTML	element	

§  #logo	{declaration}	
§  	

§  Class	selectors	
§  An	identifier	attribute	added	to	a	set	of	HTML	elements	

§  .ingredients	{declaration}	
§  <ul	class=“ingredients”>		

ID	or	Class	

§  There	can	be	only	one	element	with	a	given	ID	
§  ID	is	more	specific	than	a	class	
§  An	element	can	have	both	ID	and	classes	

Descendant	Selectors	

§  Descendant	selectors	are	composed	of	two	basic	
selectors	separated	by	a	space	

§  The	rule	targets	the	elements	of	the	second	
selectors	that	are	descendant	of	the	element	of	
the	first	selector	

§  Example	
§  #sidebar	.author	{declaration}		
§  <div	id=”sidebar”>	
		<p	class=”author”></p>	
</div>	
<p	class=“author”></p>	

	

JAVASCRIPT	101	

Javascript	

Eloquent	Javascript	–	Second	Edition	
Marijn	Haverbeke	
Licensed	under	CC	license.	
Available	here:	http://eloquentjavascript.net/	
	

Developer	Tools	(Safari,	Chrome,	Firefox)	

Javascript	Console	(Safari,	Chrome,	Firefox)	

Variables	

§  Containers	for	data	
var	number	=	5;	
var	address	=	“Largo	Bruno	Pontecorvo	5”;	

Arrays	

§  Store	sequences	of	values	with	a	single	name	
var	numberA	=	5;	
var	numberB	=	10;	
var	numberC	=	15;	
var	numberD	=	20;	
var	numberE	=	25;	
var	numbers	=	[5,	10,	15,	20,	25];	
numbers[0]		//Returns	5	
numbers[1]		//Returns	10	
numbers[2]		//Returns	15	
numbers[3]		//Returns	20	
numbers[4]		//Returns	25	

Objects	

§  A	sort	of	custom	data	structures	
§  Object	is	declared	with	curly	brackets	
§  A	sequence	of	property	value	pairs	are	separated	by	commas	

var	fruit	=	{	
				kind:	"grape",	
				color:	"red",	
				quantity:	12,	
				tasty:	true	
};	
fruit.kind						//Returns	"grape"	
fruit.color					//Returns	"red"	
fruit.quantity		//Returns	12	
fruit.tasty					//Returns	true	

Array	of	Object	or	Objects	of	Arrays	

var	fruits	=	[
				{	
								kind:	"grape",	
								color:	"red",	
								quantity:	12,	
								tasty:	true	
				},	
				{	
								kind:	"kiwi",	
								color:	"brown",	
								quantity:	98,	
								tasty:	true	
				},	
				{	
								kind:	"banana",	
								color:	"yellow",	
								quantity:	0,	
								tasty:	true	
				}	
];	

fruits[0].kind						==		"grape"	
fruits[0].color					==		"red"	
fruits[0].quantity		==		12	
fruits[0].tasty					==		true	
	
fruits[1].kind						==		"kiwi"	
fruits[1].color					==		"brown"	
fruits[1].quantity		==		98	
fruits[1].tasty					==		true	
	
fruits[2].kind						==		"banana"	
fruits[2].color					==		"yellow"	
fruits[2].quantity		==		0	
fruits[2].tasty					==		true	

Control	Structures	

§  If	statement	
if	(test)	{	
				//Code	to	run	if	true	
}	

§  Example	
if	(3	<	5)	{	
				console.log("Eureka!	Three	is	
less	than	five!");	
}	

§  for	statement	
for	(initialization;	test;	update)	
{	
				//Code	to	run	each	time	
through	the	loop	
}	

§  Example	
for	(var	i	=	0;	i	<	5;	i++)	{	
				console.log(i);		//Prints	
value	to	console	
}	

Functions	

§  Declaration	
var	functionName=	function(arg1,	
arg2){	
		return	something;	
}	

§  Example	
var	calculateGratuity	=	
function(bill)	{	
				return	bill	*	0.2;	
};	

§  Call	of	a	function	
functionName(arg1,arg2)	
var	tip	=	calculateGratuity(38);	
console.log(tip);		//Prints	7.6	to	
the	console	

Link	to	javascript	from	a	web	page	

§  Embedded	within	body	
element	

<body>	
				<script	type="text/javascript">	
								alert("Hello,	world!");	
				</script>	
</body>	

§  Linked	from	the	head	
section	

<head>	
				<title>Page	Title</title>	
				<script	type="text/javascript"	
src="myscript.js"></script>	
</head>	

DEVELOPMENT	CHECKLIST	

Tools	

§  A	modern	browser	(Chrome,	Firefox,	etc)	
§  An	integrated	IDE,	like	WebStorm	for	example	
§  Node.js	and	NPM	installed		

Tools	(old	school)	

§  A	modern	browser	(Chrome,	Firefox,	etc)	
§  A	modern	text	editor	(TextMate,	Sublime,	
Atom,	…)	

§  A	terminal	(Command	prompt)	to	run	an	http-
server	[Terminal	A]	

§  A	terminal	to	handle	code	versioning	
[Terminal	B]	

§  Node.js	and	NPM	installed		

