MPB - Selected solutions of mid-term exams

November 2, 2017

Ex. 4 1. no because p_{2} has two outgoing arcs
2. the firing sequence $t_{5} t_{1} t_{1} t_{3} t_{3} t_{4} t_{5} t_{1} t_{3}$ leads to $2 p_{3}$ which is a deadlock
3. no, because it is not deadlock free
4. places $p_{1}, p_{2}, p_{3}, p_{5}$ must be assigned the same weight x because of t_{1}, t_{3}, t_{5}; then because of t_{2} we have $x=x+y$, for y the weight of p_{4}, hence $y=0$
5. no

Ex. 5 1. the Parikh vector is $\vec{\sigma}=\left[\begin{array}{lll}3 & 1 & 2\end{array} 22\right]$, thus $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=p_{3}+p_{5}$
2. the Parikh vector is $\overrightarrow{\sigma^{\prime}}=\left[\begin{array}{llll}2 & 1 & 2 & 1\end{array} 1\right]$, but $M^{\prime}=M_{0}+\mathbf{N} \cdot \vec{\sigma}=$ $\left[\begin{array}{llll}0 & -1 & 2 & 1\end{array}\right]$ is not a marking

Ex. $6 \quad 1 . \mathbf{I}=\left[\begin{array}{lllll}2 & 1 & 1 & 1 & 1\end{array}\right]$
2. $\mathbf{I} \cdot M_{0}=2$ and $\mathbf{I}\left(p_{1}\right)=2$ thus for any $M \in\left[M_{0}\right\rangle$ we have $M\left(p_{1}\right) \leq$ $2 / 2=1$
3. the only possible T-invariants are of the form $\left[\begin{array}{ccccc}x & x & x & x & 0\end{array}\right]$
4. from (i) the system is bounded; from a theorem: "if a bounded system is live then it has a positive T-invariant"; since the system has no positive T-invariant then it is not live

November 3, 2016

Ex. 4 1. no: t_{2} and t_{5} have different pre-sets with p_{2} in common
2. a positive S -invariant is $\mathbf{I}=\left[\begin{array}{lllll}2 & 1 & 1 & 1 & 1\end{array} 22\right]$
3. $\mathbf{I} \cdot M=4 \neq 3=\mathbf{I} \cdot M_{0}$
4. $t_{1} t_{2} t_{3}$ leads to the marking $2 p_{4}+p_{5}$ that is deadlock

5 . no, because it is not deadlock free
Ex. 5 1. the sequence $t_{1} t_{2}$ leads to the marking $M_{0}+p_{3}$
2. $\mathbf{I}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$ is semi-positive and $\mathbf{I} \cdot M_{0}=0$
3. the Parikh vector is $\vec{\sigma}=\left[\begin{array}{lllll}23 & 3 & 5 & 0 & 0\end{array}\right]$, then $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=$ [$130-1000]$ is not a marking

November 5, 2015

Ex. 3 1. no, p_{1} has two incoming arcs
2. yes, $\mathbf{I}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ is a positive S -invariant
3. no, transitions t_{1}, t_{3}, t_{4} must be assigned the same weight x; then we have $x=x+y$, for y the weight of t_{2}, hence $y=0$
4. no positive T-invariant + boundedness implies the system is not live

Ex. 4 1. the Parikh vector is $\vec{\sigma}=\left[\begin{array}{lll}4 & 2 & 3\end{array}\right.$ 迷, then $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=\left[\begin{array}{lll}3 & 0 & 0\end{array}\right]=$ $3 p_{1}+p_{4}$
2. $\mathbf{I}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ is an S-invariant with $\mathbf{I} \cdot M=5 \neq 4=\mathbf{I} \cdot M_{0}$

Ex. 5 1. yes
2. it has no initial place
3. not strongly connencted: p_{3} has no outgoing arc
4. $\mathbf{I}=\left[\begin{array}{llll}2 & 1 & 1 & 2\end{array}\right]$ is a positive S -invariant

5 . from (iv) it is bounded; bounded + not strongly connected implies non live

November 7, 2014

Ex. 3 1. the firing of t_{2} leads to the marking p_{3} that is deadlock
2. not live because not deadlock free
3. no, t_{3} and t_{4} have different pre-sets with p_{2} in common
4. the firing sequence $t_{1} t_{4} t_{6} t_{5}$ leads to $M_{0}+p_{3}$

Ex. 4 1. the Parikh vector is $\vec{\sigma}=\left[\begin{array}{lllll}3 & 1 & 0 & 3 & 2\end{array}\right]$, then $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=$ $\left[\begin{array}{lllll}0 & 0 & 3 & 1 & 0\end{array}\right]=3 p_{3}+p_{4}$
2. the Parikh vector is $\overrightarrow{\sigma^{\prime}}=\left[\begin{array}{lllll}3 & 0 & 2 & 3 & 2\end{array}\right]$, then $M^{\prime}=M_{0}+\mathbf{N} \cdot \vec{\sigma}=$ [$0-2031$] is not a marking

Ex. $5 \quad$ 1. $\mathbf{I}=\left[\begin{array}{llllll}3 & 1 & 2 & 1 & 1 & 1\end{array} 23\right]$ is a positive S -invariant
2. $\mathbf{I} \cdot M=6 \neq 5=\mathbf{I} \cdot M_{0}$

November 6, 2013

Ex. 3 1. not live
2. not place-live
3. not deadlock free
4. bounded
5. safe
6. not cyclic

Ex. 4 1. the Parikh vector is $\vec{\sigma}=\left[\begin{array}{lll}2 & 0 & 210112\end{array}\right]$, then $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=$ $\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0\end{array} 00\right]=p_{2}+p_{5}$

Ex. $5 \quad$ 1. $\mathbf{I}=\left[\begin{array}{llll}2 & 2 & 1 & 1\end{array} 1\right]$ is a positive S -invariant from which we have $\mathbf{I} \cdot M=$ $6 \neq 5=\mathbf{I} \cdot M_{0}$

November 7, 2012

Ex. 3 The net is alike the producer-consumer example with bounded buffer (2 producers, 2 consumers, 2 slots):

1. live
2. deadlock free
3. bounded
4. not safe
5. cyclic

Ex. 5 1. the Parikh vector is $\vec{\sigma}=\left[\begin{array}{llll}3 & 2 & 1 & 1\end{array}\right]$, then $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=\left[\begin{array}{llll}0 & 2 & 1 & 0\end{array}\right]=$ $2 p_{2}+p_{3}$
2. the Parikh vector is $\overrightarrow{\sigma^{\prime}}=\left[\begin{array}{llll}4 & 3 & 2 & 2\end{array}\right]$, then $M=M_{0}+\mathbf{N} \cdot \vec{\sigma}=$ $\left[\begin{array}{llll}0 & 2 & 1 & 0\end{array}\right]=2 p_{2}+p_{3}$

November 21, 2011

Ex. 3 The analysis of the T-system relies on the identification of its circuits. Let:

$$
\begin{aligned}
\gamma_{0} & =\left(p_{5}, t_{4}\right)\left(t_{4}, p_{6}\right)\left(p_{6}, t_{3}\right)\left(t_{3}, p_{4}\right)\left(p_{4}, t_{2}\right) \\
\gamma_{1} & =\left(p_{3}, t_{3}\right)\left(t_{3}, p_{4}\right)\left(p_{4}, t_{2}\right) \\
\gamma_{2} & =\left(p_{1}, t_{1}\right)\left(t_{1}, p_{2}\right)\left(p_{2}, t_{2}\right)
\end{aligned}
$$

Note that $M_{0}\left(\gamma_{0}\right)=3, M_{0}\left(\gamma_{1}\right)=2$, and $M_{0}\left(\gamma_{2}\right)=1$.

1. It is immediate to check that the T-system is strongly connected. By a known Lemma, since it is strongly connected, then it is bounded. Place p_{5} is not 1-bounded, hence the T-system is not safe (e.g., take the firing $M_{0} \xrightarrow{t_{2}} M^{\prime}$).
2. It is immediate to check that all places belong to γ_{0} or γ_{1} or γ_{2}. By a known Theorem, a T-system is live iff all of its circuits are marked at M_{0}. Since γ_{0}, γ_{1} and γ_{2} are all marked, we can conclude that the T-system is live. Note that, by a known Theorem, a live T-system is k-bounded iff every place p belongs to some circuit γ_{p} such that
$M_{0}\left(\gamma_{p}\right) \leq k$. We can exploit this property to confirm that the Tsystem is not safe by noting that no such circuit γ with $M_{0}(\gamma) \leq 1$ can be found for p_{5}.
3. The fundamental property of T-systems guarantees that the token count of a circuit is invariant under any firing. By noting that $M\left(\gamma_{0}\right)=M\left(p_{5}\right)+M\left(p_{6}\right)+M\left(p_{4}\right)=2 \neq 3=M_{0}\left(\gamma_{0}\right)$ we can conclude that M is not reachable from M_{0}.

Ex. 4 The set \mathbf{M} is stable. In fact, the fundamental property of S-systems guarantees that the token count is invariant under any firing. Therefore, taken any $M \in \mathbf{M}$, and any firing $M \xrightarrow{t} M^{\prime}$, we know that $M^{\prime}(P)=$ $M(P)=M_{0}(P)$ and thus $M^{\prime} \in \mathbf{M}$.
By the Reachability Lemma for S -system, $\mathbf{M}=\left[M_{0}\right\rangle$ iff the S -system is strongly connected.

Ex. 5 For each vector \mathbf{I}_{i} we need to check that

$$
\forall t \in T . \sum_{p \in \bullet t} \mathbf{I}_{i}(p)=\sum_{p \in t \bullet} \mathbf{I}_{i}(p)
$$

$-\mathbf{I}_{1}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array} 0\right]$ is an S-invariant.
$-\mathbf{I}_{2}=\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array} 1\right]$ is not an S-invariant, because the above equality does not hold, e.g., for t_{1}.
$-\mathbf{I}_{3}=\left[\begin{array}{llll}2 & 2 & 1 & 2\end{array}\right]$ is an S-invariant.
For each vector \mathbf{J}_{i} we need to check that

$$
\forall p \in P . \sum_{t \in p} \mathbf{J}_{i}(t)=\sum_{t \in p \bullet} \mathbf{J}_{i}(t)
$$

$-\mathbf{J}_{1}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]$ is not a T-invariant, because the above equality does not hold, e.g., for p_{4}.
$-\mathbf{J}_{2}=\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]$ is a T-invariant.
$-\mathbf{J}_{3}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ is not a T-invariant, because the above equality does not hold, e.g., for p_{3}.

May 2, 2011

Ex. 3 1. S-net
2. not a T-net
3. free-choice (because S-net)

Ex. 4 1. there can exist nets with a semi-positive S-invariant but with some unbounded place (e.g., producer-consumer example with unbounded buffer)
2. the existence of a positive S-invariant implies the boundedness but not the safeness (e.g., put two tokens in the same place in the initial marking)
3. the existence of a positive S-invariant implies the boundedness (known theorem)

Ex. 5 For each vector \mathbf{I}_{i} we need to check that

$$
\forall t \in T . \sum_{p \in \bullet t} \mathbf{I}_{i}(p)=\sum_{p \in t \bullet} \mathbf{I}_{i}(p)
$$

1. $\mathbf{I}_{1}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array} 0\right]$ is not an S-invariant, because the above equality does not hold, e.g., for t_{3}.
2. $\mathbf{I}_{2}=\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}\right]$ is an S-invariant.
3. $\mathbf{I}_{3}=\left[\begin{array}{llll}1 & 1 & 2 & 2\end{array} 1\right]$ is an S-invariant.
4. $\mathbf{I}_{4}=\left[\begin{array}{llll}2 & 2 & 1 & 1\end{array} 1\right]$ is not an S-invariant, because the above equality does not hold, e.g., for t_{3}.
5. $\mathbf{I}_{5}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array} 0\right]$ is an S-invariant $\left(\mathbf{I}_{5}=\mathbf{I}_{3}-\mathbf{I}_{2}\right)$.
6. $\mathbf{I}_{6}=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array} 1\right]$ is not an S-invariant, because the above equality does not hold, e.g., for t_{1}.
