
Methods for the specification and 
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni 

23 - Yet another workflow 
language

1

martedì 10 dicembre 13

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni


Object

2

We overview the key features of YAWL 
and the main differences with Petri nets

martedì 10 dicembre 13



3

martedì 10 dicembre 13



Expressiveness...
not in the formal sense

(w.r.t. WF patterns)

4

martedì 10 dicembre 13



A wish list

5

Graphical language

Formal syntax

Rigourous theory

Direct support for (all?) workflow patterns

Tool support

martedì 10 dicembre 13



6

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)

• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and

Synchronization Patterns

• Pattern 6 (Multi - choice)

• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns

• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns

• Pattern 16 (Deferred
Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns

• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-

ing (Pattern 1) to complex patterns involving complex synchronizations such as the

discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most

relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow

languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the

basic patterns to allow for more advanced types of splitting and joining behavior.

An example is the Synchronizing merge (Pattern 7) which behaves like an AND-

join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly

identifies entry and exit points is quite natural. In graphical languages allowing for

parallelism such a requirement is often considered to be too restrictive. Therefore,

we have identified patterns that allow for a less rigid structure.

4. Patterns involvingmultiple instances.Within the context of a single case (i.e., work-

flow instance) sometimes parts of the process need to be instantiated multiple times,

e.g., within the context of an insurance claim, multiple witness statements need to

be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events

and not on states. This limits the expressiveness of the workflow language because

it is not possible to have state dependent patterns such as the Milestone pattern

(Pattern 18).

martedì 10 dicembre 13



7

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an

order) may lead to the cancellation of activities. In some scenarios such events can

even cause the withdrawal of the whole case.

Figure 1 shows an overview of the 20 patterns grouped into the six categories. A detailed

discussion of these patterns is outside the scope of this paper. The interested reader is

referred to [5–8, 48].

We have used these patterns to evaluate 15 workflow systems: COSA (Ley GmbH,

[43]) , Visual Workflow (Filenet, [13]), Forté Conductor (SUN, [14]), Lotus Domino

Workflow (IBM/Lotus, [34]), Meteor (UGA/LSDIS, [41]), Mobile (UEN, [23]), MQ-

Series/Workflow (IBM, [22]), Staffware (Staffware PLC, [44]), Verve Workflow (Ver-

sata, [46]), I-Flow (Fujitsu, [16]), InConcert (TIBCO, [45]), Changengine (HP, [21]),

SAP R/3 Workflow (SAP, [39]), Eastman (Eastman, [42]), and FLOWer (Pallas Athena,

[9]). Tables 1 and 2 summarize the results of the comparison of the workflow manage-

ment systems in terms of the selected patterns. For each product-pattern combination,

we checked whether it is possible to realize the workflow pattern with the tool. If a

product directly supports the pattern through one of its constructs, it is rated +. If the

pattern is not directly supported, it is rated +/-. Any solution which results in spaghetti

diagrams or coding, is considered as giving no direct support and is rated -.

pattern product

Staffware COSA InConcert Eastman FLOWer Domino Meteor Mobile

1 (seq) + + + + + + + +

2 (par-spl) + + + + + + + +

3 (synch) + + + + + + + +

4 (ex-ch) + + +/- + + + + +

5 (simple-m) + + +/- + + + + +

6 (m-choice) - + +/- +/- - + + +

7 (sync-m) - +/- + + - + - -

8 (multi-m) - - - + +/- +/- + -

9 (disc) - - - + +/- - +/- +

10 (arb-c) + + - + - + + -

11 (impl-t) + - + + - + - -

12 (mi-no-s) - +/- - + + +/- + -

13 (mi-dt) + + + + + + + +

14 (mi-rt) - - - - + - - -

15 (mi-no) - - - - + - - -

16 (def-c) - + - - +/- - - -

17 (int-par) - + - - +/- - - +

18 (milest) - + - - +/- - - -

19 (can-a) + + - - +/- - - -

20 (can-c) - - - - +/- + - -

Table 1. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus Domino

Workflow, Meteor, and Mobile.
martedì 10 dicembre 13



8

pattern product

MQSeries Forté Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +

2 (par-spl) + + + + + + +

3 (synch) + + + + + + +

4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +

6 (m-choice) + + + + + + +

7 (sync-m) + - - - - - -

8 (multi-m) - + + - - - -

9 (disc) - + + - + - +

10 (arb-c) - + + +/- + + -

11 (impl-t) + - - - - - -

12 (mi-no-s) - + + + - + -

13 (mi-dt) + + + + + + +

14 (mi-rt) - - - - - - +/-

15 (mi-no) - - - - - - -

16 (def-c) - - - - - - -

17 (int-par) - - - - - - -

18 (milest) - - - - - - -

19 (can-a) - - - - - - +

20 (can-c) - + + - + - +

Table 2. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo, Changengine,

I-Flow, and SAP/R3 Workflow.

Please apply the results summarized in tables 1 and 2 with care. First of all, the

organization selecting a workflow management system should focus on the patterns

most relevant for the workflow processes at hand. Since support for the more advanced

patterns is limited, one should focus on the patterns most needed. Second, the fact that

a pattern is not directly supported by a product does not imply that it is not possible to

support the construct at all.

From the comparison it is clear that no tool supports all the of the 20 selected pat-

terns. In fact, many of the tools only support a relatively small subset of the more

advanced patterns (i.e., patterns 6 to 20). Specifically the limited support for the dis-

criminator, and its generalization, the -out-of- -join, the state-based patterns (only

COSA), the synchronization of multiple instances (only FLOWer) and cancellation ac-

tivities/cases, is worth noting.

The goal of providing the two tables is not to advocate the use of specific tools.

However, they illustrate that existing tools and languages are truly different and that

most languages provide only partial support for the patterns appearing in real life work-

flow processes. These observations have been our main motivation to look into the

expressiveness of high-level Petri nets (Section 3) and come up with a new language

(Section 4).

martedì 10 dicembre 13



9

Pattern-Based Analysis of BPML (and WSCI) 24

pattern standard
BPEL XLANG WSFL BPML WSCI

Sequence + + + + +
Parallel Split + + + + +
Synchronization + + + + +
Exclusive Choice + + + + +
Simple Merge + + + + +
Multi Choice + – + – –
Synchronizing Merge + – + – –
Multi Merge – – – +/– +/–
Discriminator – – – – –
Arbitrary Cycles – – – – –
Implicit Termination + – + + +
MI without Synchronization + + + + +
MI with a Priori Design Time Knowledge + + + + +
MI with a Priori Runtime Knowledge – – – – –
MI without a Priori Runtime Knowledge – – – – –
Deferred Choice + + – + +
Interleaved Parallel Routing +/– – – – –
Milestone – – – – –
Cancel Activity + + + + +
Cancel Case + + + + +
Request/Reply + + + + +
One-Way + + + + +
Synchronous Polling + + + + +
Message Passing + + + + +
Publish/Subscribe – – – – –
Broadcast – – – – –

Table 1. Comparison of BPEL4WS, XLANG, WSFL, BPML and WSCI using both
workflow and communication patterns.

– BPML does not o�er direct support for the Multi Choice and Synchro-
nizing Merge while BPEL4WS does. This comes from the fact that
BPEL4WS borrows the concept of “dead-path elimination” charac-
teristic of WSFL/IBM MQSeries.

– Each of the languages supports Multiple Instances without Synchro-
nization, Multiple Instances with a Priori Design Time Knowledge,
Cancel Activity, and Cancel Case.

– Most of the languages support the Implicit Termination and the De-
ferred Choice.

– None of the compared languages support arbitrary cycles, although
all of them directly support structured cycles.

When comparing BPEL4WS, XLANG, WSFL, BPML and WSCI to
contemporary workflow systems [3] on the basis of the patterns discussed

FIT Technical Report FIT-TR-2002-05

martedì 10 dicembre 13



Some deficiencies

10

About synchronization patterns

Petri nets have difficulties in dealing with or-join patterns
especially, synchronization merge, discriminator

Examples: 
optional booking of flight, train, hotel, rental car, show tickets

number of paper submissions to a conference

martedì 10 dicembre 13



Some deficiencies

11

About multiple instances

Petri nets do not provide adequate means 
to easily describe multiple instances tasks

Examples: 
witness statements in processing insurance claim

number of paper submissions to a conference

martedì 10 dicembre 13



Some deficiencies

12

About nonlocal firing behaviour

Petri nets do not provide adequate means 
to model cancellation patterns

(the firing of a transition should atomically trigger the 
cancellation of other tokens in some places, 

if there are some tokens there)

Examples: 
abort of a commercial transaction

martedì 10 dicembre 13



YAWL

13

martedì 10 dicembre 13



Extended workflow net

14

See [Weske] Def. 4.9 on page 183

Some transitions are labelled as AND/XOR/OR split

Some transitions are labelled as AND/XOR/OR join

Some transitions are assigned a set of places 
to vacuum-clean when firing

Some transitions are assigned a (min, max, threshold) 
number of multiple instances to be spawn

(statically or dynamically)

martedì 10 dicembre 13



Notational elements of 
YAWL

15

martedì 10 dicembre 13



Phases for single 
instance tasks

16

martedì 10 dicembre 13



Phases for multiple 
instance tasks

17

martedì 10 dicembre 13



Discriminator 
(via cancellation region)

18

when E fires,
all token in the region

are removed

martedì 10 dicembre 13



N-out-of-M
(via multiple instances)

19

Not fully realized
(N-out-of-M of the same activity)

min

max threshold

static

martedì 10 dicembre 13



Multiples instances 
without synchronization

20

martedì 10 dicembre 13



Multiples instances with a 
priori design time knowledge

21

martedì 10 dicembre 13



Multiples instances with a 
priori runtime knowledge

22

martedì 10 dicembre 13



Multiples instances without a 
priori runtime time knowledge

23

martedì 10 dicembre 13



24

pattern high-level Petri nets YAWL

1 (seq) + +

2 (par-spl) + +

3 (synch) + +

4 (ex-ch) + +

5 (simple-m) + +

6 (m-choice) + +

7 (sync-m) − +

8 (multi-m) + +

9 (disc) − +

10 (arb-c) + +

11 (impl-t) − −
12 (mi-no-s) + +

13 (mi-dt) + +

14 (mi-rt) − +

15 (mi-no) − +

16 (def-c) + +

17 (int-par) + +

18 (milest) + +

19 (can-a) − +

20 (can-c) − +

(i) The synchronizing merge is not supported because the designer has to keep track

of the number of parallel threads and decide to merge or synchronize flows (cf.

Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the

number of threads running and the number of threads completed and has to reset

the construct explicitly by removing all tokens corresponding to the iteration (cf.

Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of

running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one

unique final node. Any model with multiple end nodes can be transformed into a

net with a unique end node (simply use a synchronizing merge). This has not been

added to YAWL to force the designer to think about successful completion of the

case. This requirement allows for the detection of unsuccessful completion (e.g.,

deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets

(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.

(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-

ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to

remove tokens which may of may not reside in specific places (cf. Section 3.3).

(about YAWL)

pattern high-level Petri nets YAWL

1 (seq) + +

2 (par-spl) + +

3 (synch) + +

4 (ex-ch) + +

5 (simple-m) + +

6 (m-choice) + +

7 (sync-m) − +

8 (multi-m) + +

9 (disc) − +

10 (arb-c) + +

11 (impl-t) − −
12 (mi-no-s) + +

13 (mi-dt) + +

14 (mi-rt) − +

15 (mi-no) − +

16 (def-c) + +

17 (int-par) + +

18 (milest) + +

19 (can-a) − +

20 (can-c) − +

(i) The synchronizing merge is not supported because the designer has to keep track

of the number of parallel threads and decide to merge or synchronize flows (cf.

Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the

number of threads running and the number of threads completed and has to reset

the construct explicitly by removing all tokens corresponding to the iteration (cf.

Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of

running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one

unique final node. Any model with multiple end nodes can be transformed into a

net with a unique end node (simply use a synchronizing merge). This has not been

added to YAWL to force the designer to think about successful completion of the

case. This requirement allows for the detection of unsuccessful completion (e.g.,

deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets

(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.

(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-

ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to

remove tokens which may of may not reside in specific places (cf. Section 3.3).

pattern high-level Petri nets YAWL

1 (seq) + +

2 (par-spl) + +

3 (synch) + +

4 (ex-ch) + +

5 (simple-m) + +

6 (m-choice) + +

7 (sync-m) − +

8 (multi-m) + +

9 (disc) − +

10 (arb-c) + +

11 (impl-t) − −
12 (mi-no-s) + +

13 (mi-dt) + +

14 (mi-rt) − +

15 (mi-no) − +

16 (def-c) + +

17 (int-par) + +

18 (milest) + +

19 (can-a) − +

20 (can-c) − +

(i) The synchronizing merge is not supported because the designer has to keep track

of the number of parallel threads and decide to merge or synchronize flows (cf.

Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the

number of threads running and the number of threads completed and has to reset

the construct explicitly by removing all tokens corresponding to the iteration (cf.

Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of

running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one

unique final node. Any model with multiple end nodes can be transformed into a

net with a unique end node (simply use a synchronizing merge). This has not been

added to YAWL to force the designer to think about successful completion of the

case. This requirement allows for the detection of unsuccessful completion (e.g.,

deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets

(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.

(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-

ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to

remove tokens which may of may not reside in specific places (cf. Section 3.3).

martedì 10 dicembre 13



YAWL discussion

25

martedì 10 dicembre 13



Advantages and 
drawbacks

26

Graphical presentation closely related to WF nets
Formal semantics (state- transitions model)

Support for Multiple Instance patterns
Support for cancellation region

Unfortunately most soundness properties are undecidable
when reset arcs are used

But you can still play with YAWL by downloading it from
http://www.yawlfoundation.org/ 

martedì 10 dicembre 13

http://www.yawlfoundation.org
http://www.yawlfoundation.org

