Methods for the specification and

verification of business processes
MPB (6 cfu, 295AA)

Roberto Bruni

'—l O http://www.di.unipi.it/~bruni
Y

B i

t 18 - Diagnosis for WF nets

http://www.di.unipi.it/~bruni

Object

We study suitable diagnosis technigues
for unsound Workflow nets

Diagnosing workflow processes using Woflan (article, optional reading)
http://wwwis.win.tue.nl/~wvdaalst/publications/pl35.pdf

2

http://wwwis.win.tue.nl/~wvdaalst/publications/p135.pdf

Some Pragmatic
Considerations

We know that, for free-choice nets,
liveness and boundedness can be decided efficiently
(in polynomial time)

but we want to check soundness for a wider range of nets

Moreover, when a process is not sound, some diagnostic
can be generated that indicates why it is flawed

Woflan
(now a ProM plugin)

- WOrkFLow ANalyzer (Windows only)
@ http://www.win.tue.nl/woflan/

Woflan tells us if N is a sound workflow net
(Is N a workflow net? Is N* bounded? Is N* live?)
if not, provides some diagnostic information

http://www.win.tue.nl/woflan/

Running example

cl send c3 l timeout c5
rec
' \ 4
reglister
c8 archive ‘
(%_ |
c2 do 4 c7

example

register(tl)

(01000... Z(10010...
[i]
send(t2)
register . nt(t10)
i ©00010.°%©o0011.. (@o0000..
do dont
[c1,c4] «— [c1,c2] ————» [c1,c7]
isend isend isend imeout(t3)
end(t2) end(td) ec(t4)
(3.c4] €« [c2.c3] — 9N b [c3.c7] do(t5) ont(t10)
(0O0000O0... (O0001... (10000O0... (LO0OO0O...

\ic \ic \ic
[c4,c5,c8] <——— [c2,c5,c8] —— [c5,c7,c8] rec(td) et ot
do dont
on . A dolles

timeout i process| timeout 00000... V000 1..

[c5,c6] (00000...
T done
\ p cess(th) archive(tg)
\/ \/
[€2,68] ——or > [c5.¢7] (00000...

ti

archive(t9)
00001, —==(00100...

Running example:
short-circuited

reset
rec

’ ¥
register
c8 archive i
|
0

c2 ao c4 ; process ; co daone c7
redo
>
aont
7

- Running example:
short-circuited

shortcircuit shortcircuit

— > [i] [c8,0] [c82,0]
shortcircuit A A
register register
[c1.c4] €90 je1.c2) —9ON o e o7 [c1,c4.c8°] €432 [c1,c2,c8] archive
isend isend isend archive w SN
do dont process
[c3,c4] «— [c2,c3] ———» [c3,c7] [c1,c6,c8°] —]— [c1,c7,c89]
\ \ \ send done
rec
rec rec send
\j do y
[c4,c5,c8] «\E [c2,c5,c8] ——» [c5,c7,c8] [c3,c4,c8°] «4—7—— [c2,c3,c8°] send
: . dont redo dont
timeout | process | timeout timeout
process& Y rec| timeout \/
[c5,c6] [c3,c6,c8°] — —» [c3,c7,c89]
T q rec| timeout done
one
V\ v v rec| timeout y
[c2,c5] W [c5,c7] [c4,c5,c8°] 4—“& [c2,c5,c87] rec| timeout
‘Yf W
. process Y Y
[0] = archive [c5,c6,c8°] W [c5,c7,c8%]

Structural analysis

S-Invariant analysis

If every place of N* is covered by a
semi-positive S-invariant
then N* is bounded

Places not covered by semi-positive S-invariants
are potential sources of errors

S-Coverability analysis

A case Is often composed by parallel threads of control
(each thread imposing some order over its tasks)

The notion of S-coverability allows to reveal such threads

Quick reminder

A subnet N' = (P',T', F') of N = (P, T, F') consists of:
e a subset P’ C P of places

e a subset 77 C T of transitions

e the subset FN((P' xT")U(T'" x P")) C F of arcs

An S-component is a subnet N’ = (P’,T", F') of N that:
e is a strongly-connected S-net (Vi € T".|et| =|teo| =1)

e for any p € P’ we have ep U pe C T"

12

Quick reminder

In a S-component,
the total number of tokens in its places is constant

Any S-component
induces a uniform invariant (weights 0 and 1)

A net is S-coverable iff
any p € P belongs to some S-component

S-coverability implies boundedness
(because it induces a positive S-invariant)

S-Coverability vs
Soundness

S-coverability is one of the basic requirements
any workflow process definition should satisfy

Still:
there exists WF-nets which are S-coverable but not sound

there exists WF-nets which are sound but not S-coverable

Example: sound but
hot S-coverable

0

- o

N

Exercises

Find all (maximal) S-components using WoPeD

@—»

p4

0

t4
t5
3 Y / p6 e

Exercises

Draw a workflow net that is S-coverable but not sound

Quick reminder

Recall that a net is free choice If
for any two transitions t1 and t2 then
either st1 =sto oret1 N et =

Non free-choice:
two tasks share some but not all preconditions
like a XOR-split that overlaps with an AND-join

AND-joi

XOR-split

|18

Free-Choice vs
Soundness

Note that free-choice is orthogonal to soundness:
there exists WF-nets that are free-choice but not sound

there exists WF-nets that are sound but not free-choice

Example: sound
but not free-choice

—)Q-)

@—>

SO

o

—>(—>

Exercise

Draw a workflow net that is free-choice but not sound

21

S-Coverability diagnosis

A net which is free-choice, live, and bounded
must be S-coverable (S-coverabllity theorem)

If N* Is free-choice, live and bounded
must be S-coverable

Corollary: If N is sound and free-choice,
then N* must be S-coverable

N free-choice + N* not S-coverable => N not sound

22

S-Coverability diagnosis
Any S-component of N* includes |, 0, reset

(by strong-connectedness)

Places that are not covered by S-component
are potential sources of errors

S-coverability is not a sufficient requirement for soundness

N* can be S-coverable even if N is not sound

23

Running example:
S-cover for N* ?

On

cl send
" ter

regls
c2

reset
rec
\? c8 arch

cess ;C6 daone
0

do c4 ; pro
red
>

—(

Running example:
S-cover for N* ?

do 4 ; process ;CB done
redo

donis

Running example:
S-cover for N*

cl . send

Running example:
S-cover for N* 2 No

IIIIII

N* Iis free-choice
but not S-coverable

thus
N Is not sound

00!157

Split / Join Balancing

A good workflow design is characterized by a balance
between AND/XOR-split and AND/XOR-joins

Any mismatch is a potential source of errors

28

PT-handles

Two alternative flows created via a XOR-split
should not be synchronized by an AND-join
(the net could deadlock)

SN
@XOR-split AND-join T
Ny

29

TP-handles

Two parallel flows initiated by an AND-split
should not be joined by a XOR-join
(multiple tokens can be produced in the same place)

A0

T |AND-split XOR-join

30

TP- and PT-handles

Definition: A transition t and a place p
form a TP-handle if there are
two distinct elementary paths c1 and c2 from t to p
such that the only nodes they have in common are t,p

Definition: A place p and a transition t
form a PT-handle if there are
two distinct elementary paths c1 and co fromp to t
such that the only nodes they have in common are p,t

31

Well-Structured Nets

A net is well-handled iff it has:
no PT-handles and no TP-handles

Definition: A net is well-handled iff
for any pair of nodes x and y of different kinds
(one place and one transition)
any two elementary paths c1 and c2 from xto y
coincide or have some other nodes in common apart x,y

Definition: A workflow net N is said well-structured
If N* Is well-handled

32

S-coverability diagnosis

Theorem:
If N iIs sound and well-structured, then N* is S-coverable
(proof omitted)

N well-structured + N* not S-coverable => N not sound
Note that
If N* is not well-handled, N can be sound
especially if reset is involved in the handle

(it is a symptom, not a disease)

33

Running example:
Well-structured? No

ttttttt

.

don§4

Running example:
Well-structured? No

TP-handle

don§5

Running Example:
WoPeD Diagnosi

e 00 _ wfnet-unsound.pnml

[Process Resources BPEL Preview |

’ " Assistant Expert | B

v @ Qualitative analysis
v @ Structural analysis
» € Net statistics
€ Wrongly used operators: 0
) Free-choice violations: 0
v () S-Components
cl send c3 timeout c5 v S-Components: 2

i JS-Component:13

rec » © S-Component:10

v () Places not covered by S-Compor
register
c8 archive —»O O 8

v) Wellstructuredness
» @ PT-Handles: 4
» @ TP-Handles: 5
v () Soundness
» & Workflow net property
c2 do 4 process c6 done c7 I 0 |n|t|a| marking
v) Boundedness
» () Unbounded places: 1
v @ Liveness
@ Dead transitions: 0
» @ Non-live transitions: 10

redo

dont

€

L -

o
A
v

@ Auto-refresh Analysis-Sidebar
| Show t* (editing disabled)

36

Places: 10 Transitions: 10 Subprocesses: 0 Modeling direction: horizontal Zoom: 100% [l Not saved

Be careful

N well-structured = N* well-handled

WoPeD marks PT/TP-handles over N*

37

Liveness and boundedness
VS
Soundness requirements

Improper completion

Suppose N completes improperly:
from | we can reach o+M

We can do the same on N*
then we fire reset and reach i+M

we can repeat the same run and reach i+2M
and then i+3M and then i+4M and then ... i+kM

N* has some unbounded places
(all p such that M(p)>0)

39

Unsoundness
from unboundedness

Improper completion of N implies unboundeness of N*
Symptom: N* has some unbounded places

Disease: N could complete improperly...

40

Unsoundness
from unboundedness

If N has some unbounded places
then N* has some unbounded places

Symptom: N* has some unbounded places

Disease: N could complete improperly
or may violate “option to complete”

41

Consequences
of boundedness

If N* is bounded, then:
If o+M is reachable fromiin N, then M=0

If N* is bounded, then
either N satisfies both
option to complete and proper completion
or N does not satisfy option to complete

42

Completion option
failure

Suppose N does not satisfy the “option to complete”:
then from | we can reach M
from which we cannot mark o

We can do the same on N*
then reset is dead from M
l.e. reset is non-live in N*

N* has non-live transitions (including reset)

43

Unsoundness
from non-liveness

Option to complete fail for N implies non-liveness of N*
Symptom: reset transition is non-live in N*

Disease: N could violate option to complete

44

Unsoundness from
Non-Livehess

If N* is bounded and has dead transitions, then

If reset is dead
N and N* have the same finite reachability graph
hence N has the same dead tasks as N*
(except reset)

If reset is not dead
the reachability graphs of N and N* differ only for o ek gy
(because N* is bounded)
hence N has the same dead tasks as N*

45

Unsoundness from
Non-Livehess

Symptom: N* is bounded and has dead transitions

Disease: N has the same dead tasks as N*

46

Unsoundness from
Non-Livehess

Symptom: N* has non-live transitions
Disease: N could have dead transitions

(but which ones?)

47

Error sequences

Diagnostic information

The sets of:
unbounded places of N*
dead transitions of N*
non-live transitions of N*

may provide useful information for
the diagnosis of behavioural errors
(pointing to different types of errors)

Unfortunately, this information is not always sufficient
to determine the exact cause of the error

Behavioural error sequences can overcome this problem

49

Error sequences

Rationale:
We want to find firing sequences such that:

every continuation of such sequences will lead to an error

they have minimal length
(none of its prefixes satisfies the above property)

Informally:
error sequences are scenarios that capture
the essence of errors made in the workflow design
(violate “option to complete” or “proper completion”)

50

Non-Live sequences:
informally

A non-live sequence is a
firing sequence of minimal length
such that completion of the case is no longer possible

I.e. a witness for transition reset being non-live in N*

51

Non-Live sequences:
fundamental property

Let N be such that:
N* is bounded
N (or equivalently N*) has no dead task

Then, N* is live
Iff
N has no non-live sequences

52

Non-Live sequences:
graphically

The analysis is possible in bounded systems only

Compute the RG of N*
Color in red all nodes from which there is no path to o

Color in green all nodes from which all paths lead to o

Color in yellow all remaining nodes
(some but not all paths lead to o)

53

Non-Live sequences:
remarks

No red node implies no yellow node

No green node implies no yellow node

54

Non-Live sequences:
formally

Definition:

An occurrence sequence

ot t . .
i — My ... M._1 —=> M, is non-live if

e all markings are distinct

o M, . is yellow Firing t removes
the option to complete!

o M Is red

Then, the firing sequence t;...t; is also called non-live

55

Running example:
slight variant

cl send c3 I timeout cS
rec

®—> register
|

c2 ao c4 ; process ; cb aone c7
redo
aont

Running example
variant: colored RG

‘N Yellow markings !
’\' register ,
N egiste | (é)’
dont o R register, do
-
’ send; = register, send, do
: dont ' O
. > NG . .
, ; register, send, timeout
rec \.Nc \f\ric
72) . . .
o N L register, send, rec, do
X do . dontk
S AN on . .
S timeout '« . archive register, send, dont, timeout
S : timeout
N\ |
i \ -
N n and also?
%A '\ ,
!
mEm_mm
do dont N\

57

Unbounded sequences:
informally

An unbounded sequence is a
firing sequence of minimal length such that
every continuation implies a violation of proper completion

l.e. a withess for unboundedness

59

Unbounded sequences:
fundamental property

N* is bounded
iff
N has no unbounded sequences

Undesired markings:
infinite-weighted markings or markings greater than o

60

Unbounded sequences:
graphically

Compute the CG of N*

Color in green all nodes from which
undesired markings are not reachable

Color in red all nodes from which
no green marking is reachable
(undesired markings are unavoidable)

Color in yellow all remaining nodes
(undesired markings are reachable but avoidable)

61

Unbounded sequences:
remarks

No red node implies no yellow node

No green node implies no yellow node

62

Restricted coverability
graph (RCG)

CG can become very large (intractable!)
Basic observation:
infinite-weighted markings leads to infinite-weighted markings
and they will be all red

We can just avoid computing them!

63

Running example:
RCG vs C6

_ > i [c8.0] shortcircuit > [c8°] <shortcwcurt
shortcircuit A
i register i register
do dont do
[c1,c4] «— [c1,c2] ———» [c1,c7] [c1,c4,c8°] «—— [c1,c2,c87]
isend isend lsend archive W
do dont process
[c3,c4] «— [c2,c3] ———» [c3,c7] [c1,c6,c8°] —]
\ \ \ send
rec
rec rec
y

[c4,c5,c8] w—]—— [c2,c5,c8] — ¥ [c5,c7,c8] [c3,c4,c8°] w—

do dont dont
timeout | process | timeout .
timeout .
timeout \
[c5,c6] ——» [c3,c7,c8°]
T done
done
ti t
I A] v\ v (ljr(r;eou Y
[c4,c5] <T [c2,c5] W [c5,c7] —— [c2,c5,c89] rec| timeout
W
y

[0] = archive [c5,c6,c8°] W [c5,c7,c8%]

64

Running example:
colored RCG

Yellow markings
register ,
dont A
-
N <
send send) g
dont l 8
| g
N rec \\ric
Y ,
N \ _f_>
do
: don
timeout . | archive
N\ timeout

N d
' o)
54\’
\
isend ~\'
- do .
'~
\ic ’
-
timeout ¢ process
\/
| redo
< do

Green markings

I
-
|

A

.\'
\0
archive

65

register, dont, send, rec
register, send, dont, rec

and also?

Practice with WoPeD
(and Woflan)

Analyse the running

rec

‘ A4
register
c8 archive »
|
0

c2 ao c4 ; process ;Cﬁ aone c7
redo
>
dont

Analyse the running
example variant

cl send c3 l timeout)
rec

O

reglster
€& ¥ ‘
T archive
|
Cg_ / 0
c2 do c4 ; process ; c6 daone c/7
redo
»

Analyse this net

reglister

cl

c2

check powcy

check damag

70

c3

c4

cS

co

send letkgr

pay damage

Analyse this net

reglister

cl

c2

check powcy

check damag

71

c3

c4

c5

cb

send letker
o

t7

pay damage

Analyse this net

cancel order

charge credit card succes or fallure Pack comd} or Incomplete

Backorder

update billing Info updated or canceled

72

Ship

send questionnaire

t1

register

Analyse this net

O

t4 | time out

]

t2

p3 t5 p5

. ‘ |
process queshonnalre

processing required

(8 @ 9

A
‘ process com

t10

(9 —

plaint check processing

{12 (=

t3

t11

processing not ok

_.@ .

té

evaluate

no processing

73

processing ok

archive

t7

—()

Analyse this net

t1

t3

t6

t4

t5

t7

74

Is this net free-choice?

75

Is this net S-coverable?

76

Is this net sound?

)

~
9

Design and analysis of
WF-nefts

The workflow of a computer repair service (CRS) can be described as follows.

A customer brings in a defective computer and the CRS checks the defect and hands out a
repair cost calculation back.

If the customer decides that the costs are acceptable, the process continues, otherwise
she takes her computer home unrepaired.

The ongoing repair consists of two activities, which are executed, in an arbitrary order.
The first activity is to check and repair the hardware,

whereas the second activity checks and configures the software.

After each of these activities, the proper system functionality is tested.

If an error is detected another arbitrary repair activity is executed,

otherwise the repair is finished.

Model the described workflow as a sound workflow net.

78

Design and analysis of
WF-nefts

A hospital wants to establish a rating workflow for their doctors. To make the workflow reliable two
different roles are assigned.

The first one is a referee from the newly created quality assurance department while

the second one represents the managing director of the hospital.

Both roles execute all of their tasks independently from each other.

The referee starts a new case regarding a certain doctor by interviewing patients.

Since a patient interview workflow is already established, it is simply integrated in the new
workflow.

Meanwhile, the director asks an external expert to review the work of the doctor under rating.
Unfortunately, since the expert only gets a low expenses fee, it can happen that the expert is not
responding in time.

If that happens, another expert has to be asked (who could also not respond in time, i.e. the
procedure repeats).

If an expert finally sends an expertise, it is received by the director and forwarded to the referee.
The referee files the results containing the patient interviews as well as the expertise and afterward
creates a report.

While the referee is doing this, the manager fills a cheque to pay the expenses of the expert.

Model the described workflow as a sound workflo7v9v net.

