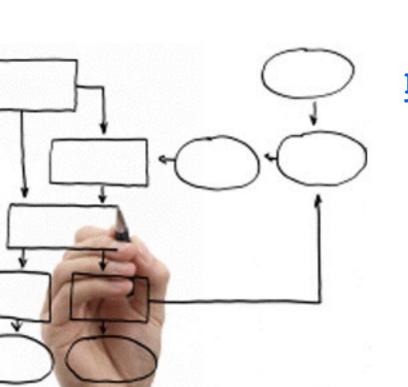
Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

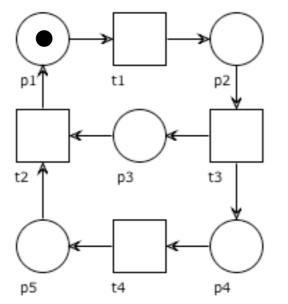


Roberto Bruni

http://www.di.unipi.it/~bruni

17 - T-systems

Object



We study some "good" properties of T-systems

Free Choice Nets (book, optional reading)

https://www7.in.tum.de/~esparza/bookfc.html

T-systems

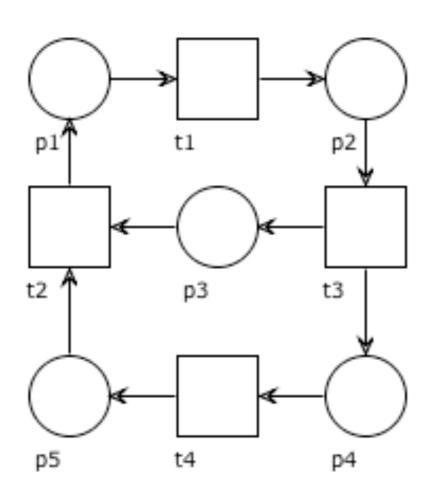
T-system

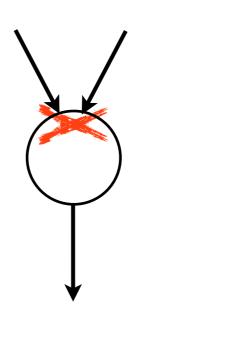
Definition: We recall that a net N is a T-net if each place has exactly one input transition and exactly one output transition

$$\forall p \in P, \qquad |\bullet p| = 1 = |p \bullet|$$

A system (N,M_0) is a T-system if N is a T-net

T-net: example





T-systems: an observation

Notably, computation in T-systems is concurrent, but essentially deterministic:

the firing of a transition t in M cannot disable another transition t' enabled at M

T-net N*

Is the following conjecture true?

A workflow net N is a T-net iff N* is a T-net

T-net N*

Is the following conjecture true?

A workflow net N is a T-net iff N* is a T-net

No, a workflow net cannot be a T-net because the place i has no incoming arc and the place o has no outgoing arc

(N* can be a T-net)

T-systems: another observation

Determination of control:

the transitions responsible for enabling t are one for each input place of t

Notation: token count of a circuit

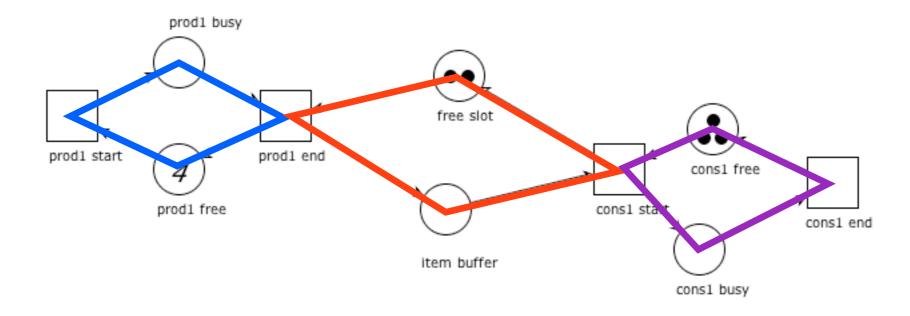
Let
$$\gamma = (x_1, y_1)(y_1, x_2)(x_2, y_2)...(x_n, y_n)$$
 be a circuit.

Let $P_{|\gamma} \subseteq P$ be the set of places in γ .

$$M(\gamma) = M(P_{|\gamma}) = \sum_{p \in P_{|\gamma}} M(p)$$

We say that γ is marked at M if $M(\gamma) > 0$

Example



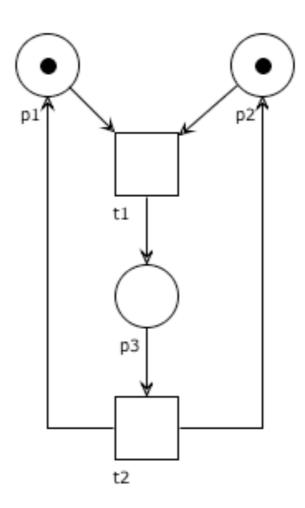
$$M(\gamma_1) = 4$$

$$M(\gamma_2) = 2$$

$$M(\gamma_3) = 3$$

Question time

Trace two circuits over the T-system below



Fundamental property of T-systems

The token count of a circuit is invariant under any firing.

Fundamental property of T-systems

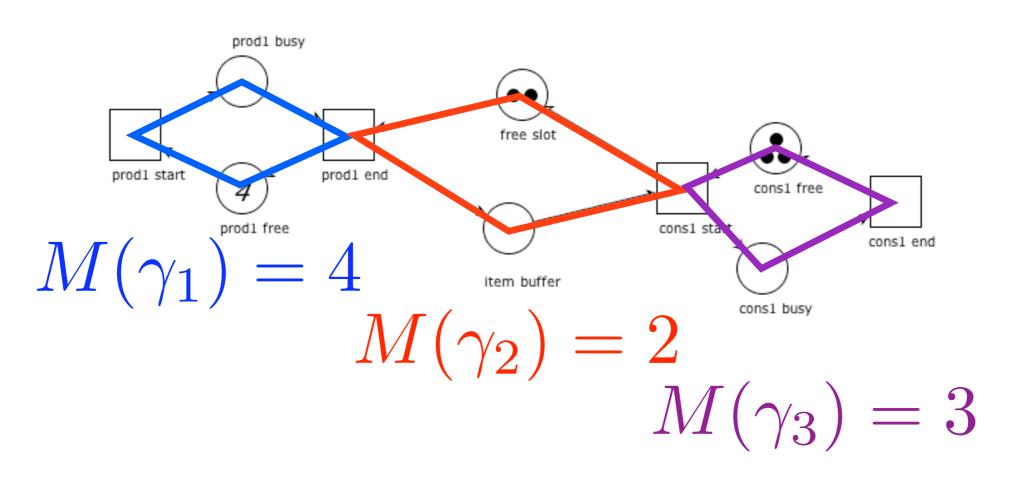
Proposition: Let γ be a circuit of a T-system (P, T, F, M_0) . If M is a reachable marking, then $M(\gamma) = M_0(\gamma)$

Take any $t \in T$: either $t \notin \gamma$ or $t \in \gamma$.

If $t \notin \gamma$, then no place in $\bullet t \cup t \bullet$ is in γ (otherwise, by definition of T-nets, t would be in γ). Then, an occurrence of t does not change the token count of γ .

If $t \in \gamma$, then exactly one place in $\bullet t$ and one place in $t \bullet$ are in γ . Then, an occurrence of t does not change the token count of γ .

Example



$$M_0 = [0 \ 4 \ 2 \ 0 \ 3 \ 0]$$

 $M = [2 \ 2 \ 1 \ 2 \ 2 \ 1]$

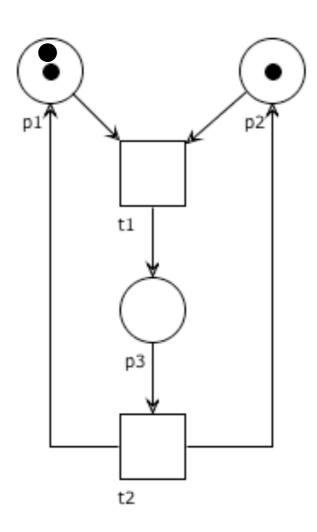
Example

$$M(\gamma_1)=4$$
 Item buffer $M(\gamma_3)=3$ $M_0=[0.4,2.0,3.0]$

$$M' = [2 1 1 1 2 2]$$

Question time

Is the marking p₁ + 2p₂ reachable? (why?)



T-invariants of T-nets

Proposition: Let N=(P,T,F) be a (connected) T-net. **J** is a T-invariant of N **iff J**=[k ... k] for some value k

(the proof is dual to the analogous proposition for S-invariants of S-nets)

Boundedness in strongly connected T-systems

Lemma: If a T-system (N,M₀) is strongly connected, then it is bounded

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma)$.

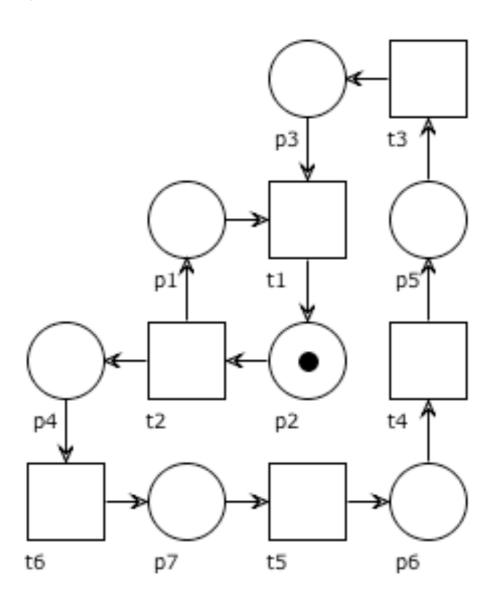
Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Question time

Is the T-systems below bounded? (why?)



Theorem: A T-system (N,M₀) is live **iff** every circuit of N is marked at M₀

 \Rightarrow) (quite obvious) By contradiction, let γ be a circuit with $M_0(\gamma)=0$. By the fundamental property of T-systems: $\forall M \in [M_0), M(\gamma)=0$.

Take any $t \in T_{|\gamma}$ and $p \in P_{|\gamma} \cap \bullet t$.

For any $M \in [M_0]$, we have M(p) = 0. Hence t is never enabled and the T-system is not live.

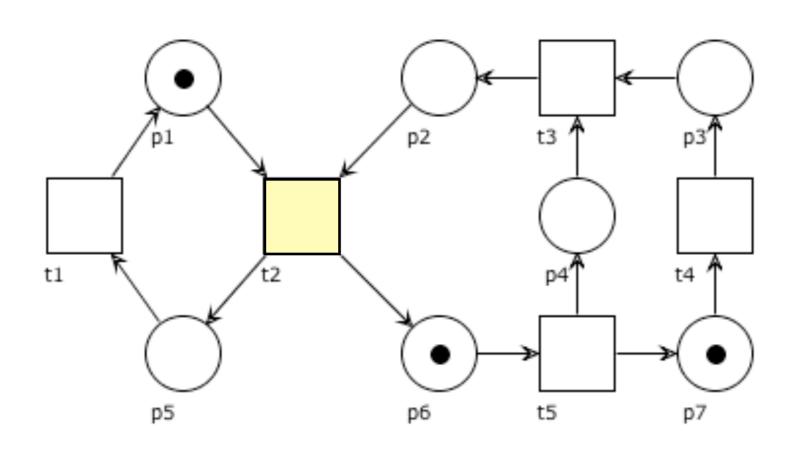
Theorem: A T-system (N,M₀) is live **iff** every circuit of N is marked at M₀

 $\Leftarrow) \text{ (more involved)}$ Take any $t \in T$ and $M \in [M_0]$. We need to show that some marking M' reachable from M enables t.

The key idea is to collect the places that control the firing of t: $p \in P_{M,t}$ if there is a path from p to t through places unmarked at M. We then proceed by induction on the size of $P_{M,t}$.

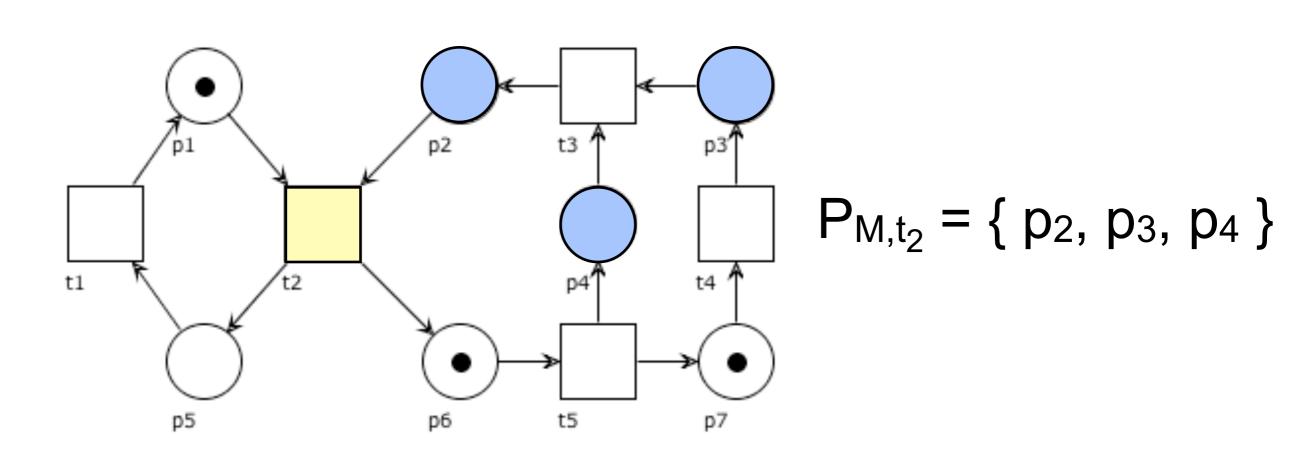
We just sketch the key idea of the proof over a T-system.

Theorem: A T-system (N,M_0) is live \Leftarrow every circuit of N is marked at M_0



$$M = p_1 + p_6 + p_7$$

M' enabling t₂?



Theorem: A T-system (N,M_0) is live \Leftarrow every circuit of N is marked at M_0

←) (continued proof sketch)

Base case: $|P_{M,t}| = 0$.

Every place in $\bullet t$ is already marked at M.

Hence t is enabled at M.

Theorem: A T-system (N,M₀) is live ← every circuit of N is marked at M₀

←) (continued proof sketch)

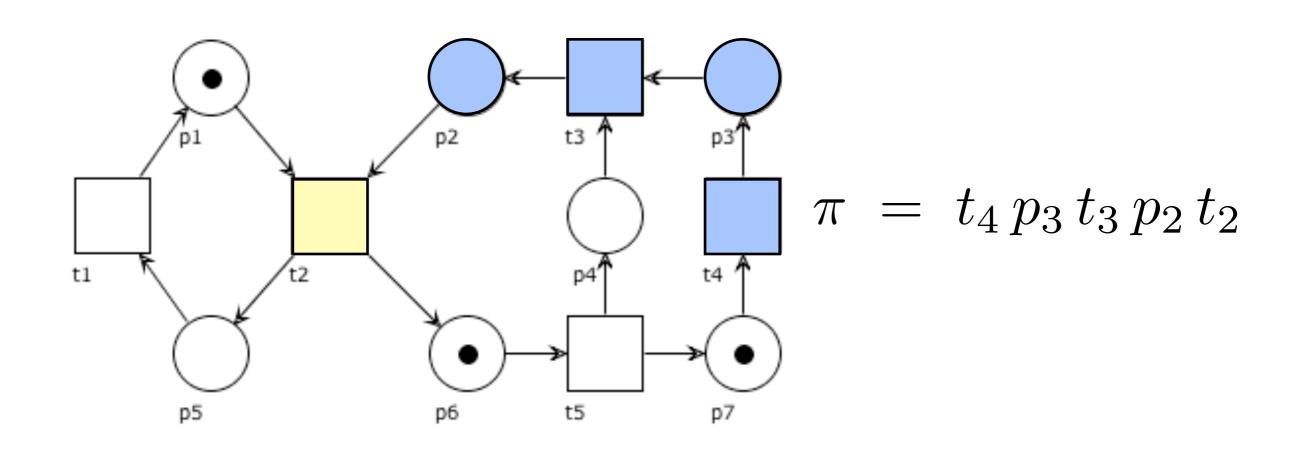
Inductive case: $|P_{M,t}| > 0$.

Therefore t is not enabled at M.

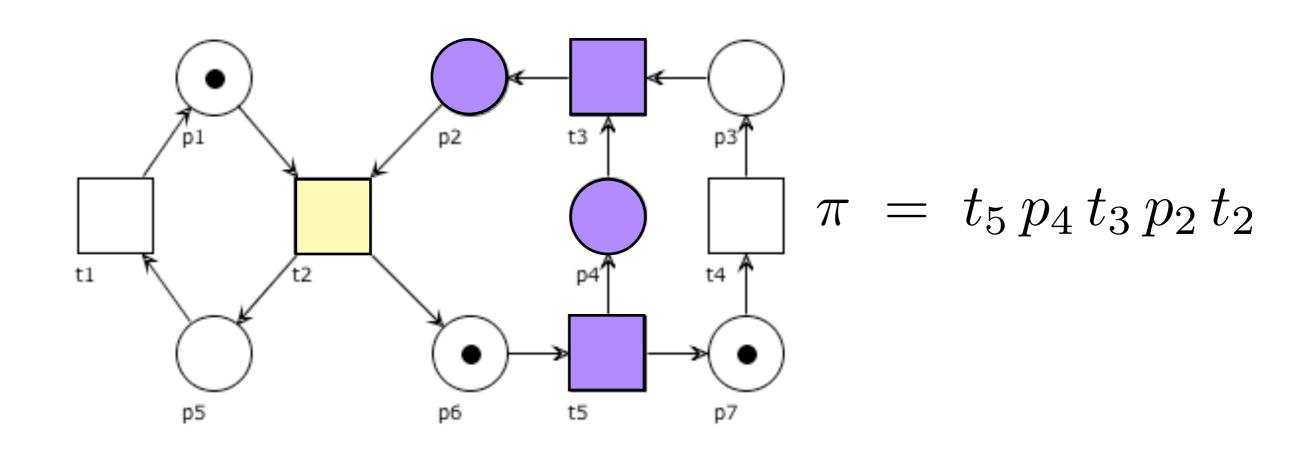
We look for a path π of maximal length necessary for firing t. π must contain only places unmarked at M.

By the fundamental property of T-systems: all circuits are marked at M. π is not necessarily unique, but exists (no cycle in it).

Theorem: A T-system (N,M₀) is live ← every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live ← every circuit of N is marked at M₀



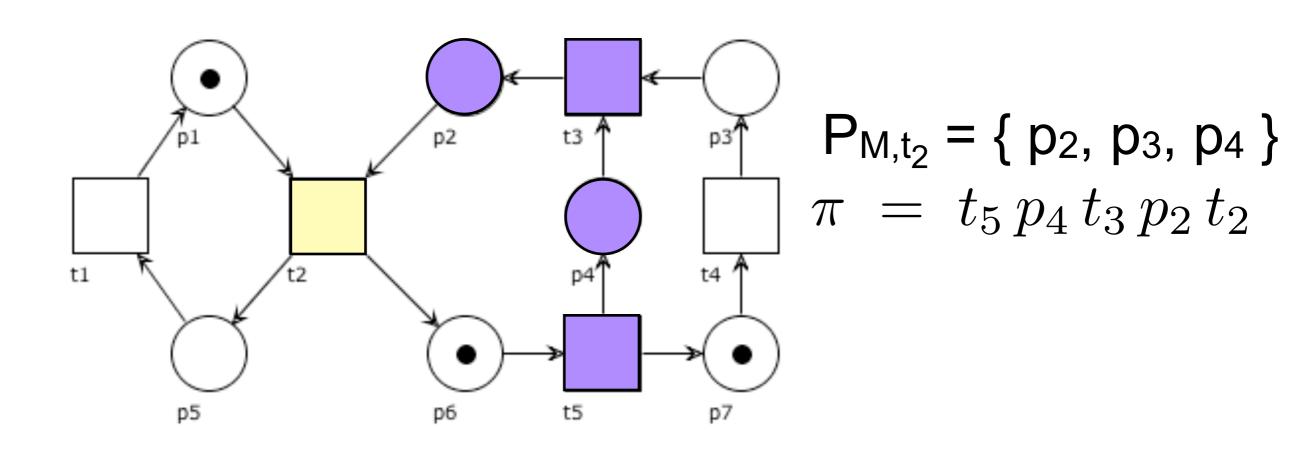
Theorem: A T-system (N,M₀) is live ← every circuit of N is marked at M₀

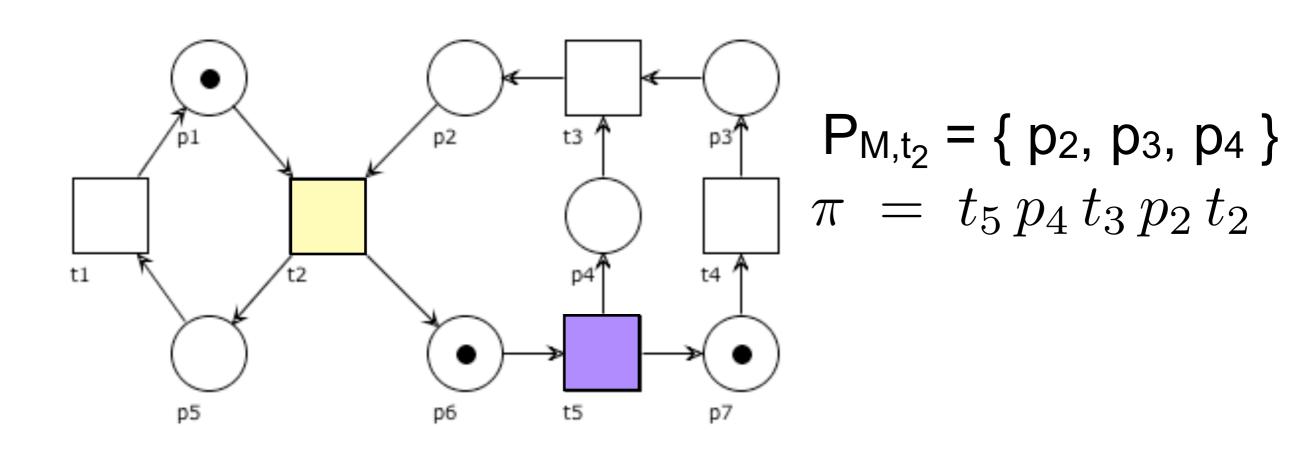
 \Leftarrow) (Inductive case: $|P_{M,t}| > 0$, continued proof sketch)

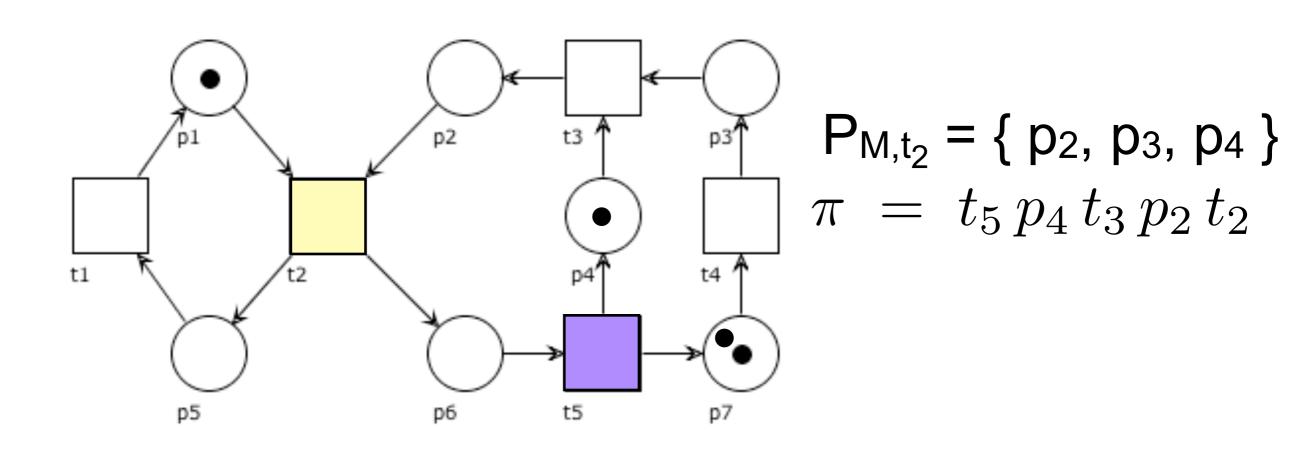
 π begins with a transition t' enabled at M. (otherwise a longer path could be found).

By firing t' we reach a marking M'' such that $P_{M'',t} \subset P_{M,t}$.

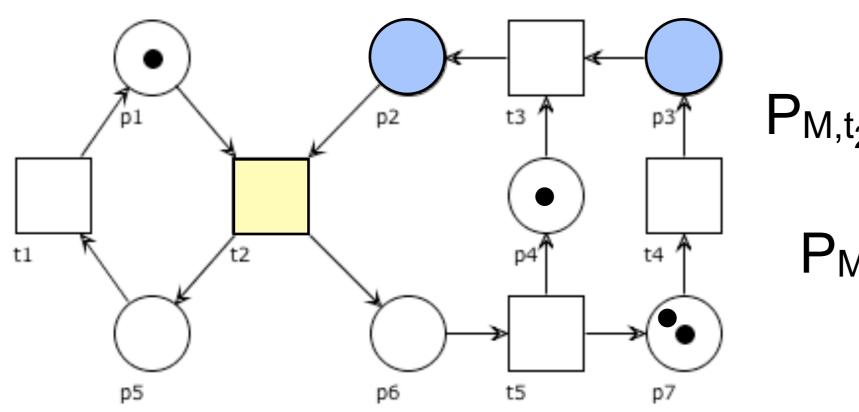
Hence $|P_{M'',t}| < |P_{M,t}|$ and we conclude by inductive hypothesis.







Theorem: A T-system (N,M₀) is live ← every circuit of N is marked at M₀

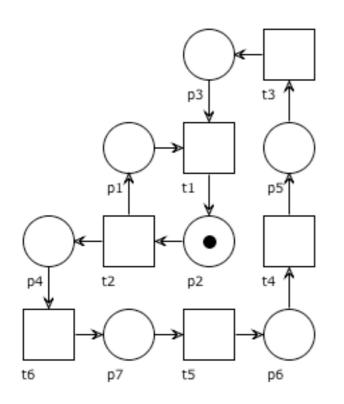


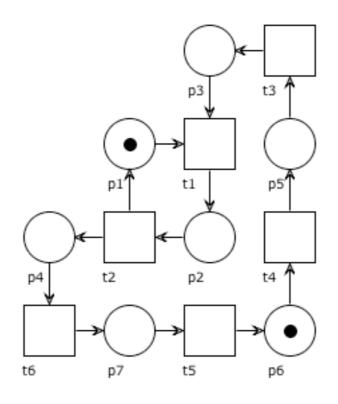
$$P_{M,t_2} = \{ p_2, p_3, p_4 \}$$

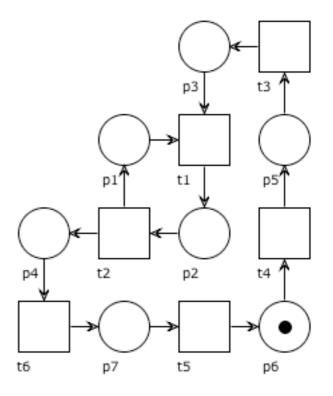
$$P_{M'',t_2} = \{ p_2, p_3 \}$$

Question time

Which of the T-systems below is live? (why?)







Boundedness theorem for live T-systems

Theorem: A live T-system (P, T, F, M_0) is k-bounded iff every place $p \in P$ belongs to a circuit γ_p with $M_0(\gamma_p) \leq k$.

 \Leftarrow) Let $M \in [M_0)$ and take any $p \in P$.

By the fundamental property of T-systems:

$$M(p) \le M(\gamma_p) = M_0(\gamma_p) \le k$$

Boundedness theorem for live T-systems

Theorem: A live T-system (P, T, F, M_0) is k-bounded iff every place $p \in P$ belongs to a circuit γ_p with $M_0(\gamma_p) \leq k$.

 \Rightarrow) Let $k_p \leq k$ be the bound of p. Take $M \in [M_0)$ with $M(p) = k_p$.

Define $L=M-k_pp$ and note that the T-system (N,L) is not live. (otherwise $L\stackrel{\sigma}{\longrightarrow} L'$ with L'(p)>0 for enabling $t\in p\bullet$. But then: $M=L+k_pp\stackrel{\sigma}{\longrightarrow} L'+k_pp=M'$ with $M'(p)=L'(p)+k_p>k_p!$)

By the liveness theorem: some circuit γ is not marked at L. Since (N,M) is live, the circuit γ is marked at $M\supset L$. Since $M-L=k_pp$, the circuit γ contains p and $M_0(\gamma)=M(\gamma)=M(p)=k_p\leq k$.

Place bounds in live T-systems

Let (P, T, F, M_0) be a **live** T-system. We can draw some easy consequences of the above results:

- 1) If $p \in P$ is bounded, then it belongs to some circuit. (see part \Rightarrow of the proof of the boundedness theorem)
- 2) If $p \in P$ belongs to some circuit, then it is bounded. (by the fundamental property of T-systems)
- 3) If (N, M_0) is bounded, then it is strongly connected. (by strong connectedness theorem, holding for any system)
- 4) If N is strongly connected, then (N, M_0) is bounded. (by 1, since any $p \in P$ belongs to a circuit by strong connectdness)

Place bounds in live T-systems

Let (P, T, F, M_0) be a **live** T-system.

We can draw some easy consequences of the above results:

1+2) $p \in P$ is bounded iff it belongs to some circuit.

3+4) (N, M_0) is bounded iff it is strongly connected.

T-systems: recap

```
T-system + \gamma circuit + M reachable => M(\gamma) = M<sub>0</sub>(\gamma)
```

T-system + γ circuit + M(γ) \neq M₀(γ) => M not reachable

T-system + γ_1 ... γ_n circuits: $\exists i. p \in \gamma_i <=> p$ bounded

T-system: $M_0(\gamma)>0$ for all circuits $\gamma <=>$ live

T-system: strongly connected => bounded

T-system + live: strongly connected <=> bounded

T-system: T-invariant J <=> J = [k k ... k]

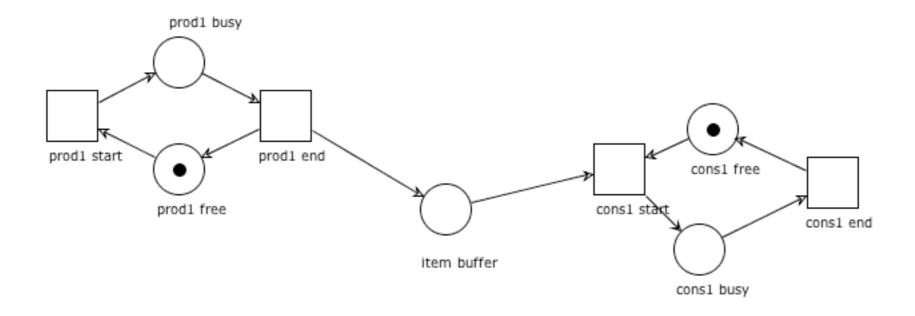
Consequences on workflow nets

Theorem: If N is a workflow net s.t. N* is a T-system then
N is safe and sound iff
every circuit of N* is marked

N workflow net => N* strongly connected all circuits of N* are marked <=> N* live N* strongly connected + N* T-system => N* bounded $i \in \gamma <=> M_0(\gamma)=1 <=> \gamma$ marked circuit γ marked circuit + M reachable => M(γ)=1 N* bounded <=> any place p belongs to a circuit of N* p belongs to a circuit of N* => p is safe all places belong to marked circuits => N* safe => N safe

Exercises

Which are the circuits of the T-system below? Is the T-system below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.



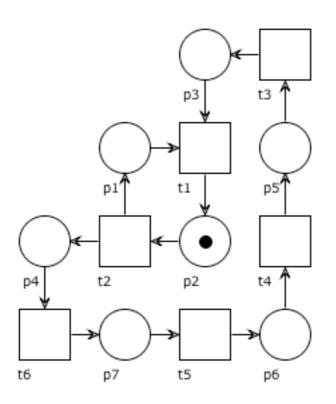
Exercises

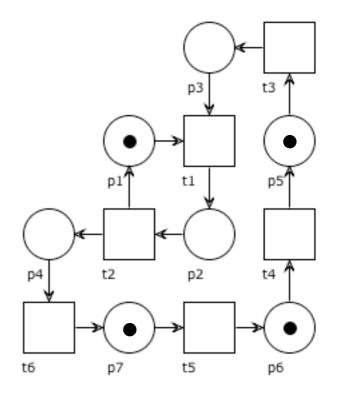
Which are the circuits of the T-systems below?

Are the T-systems below live? (why?)

Which places are bounded? (why?)

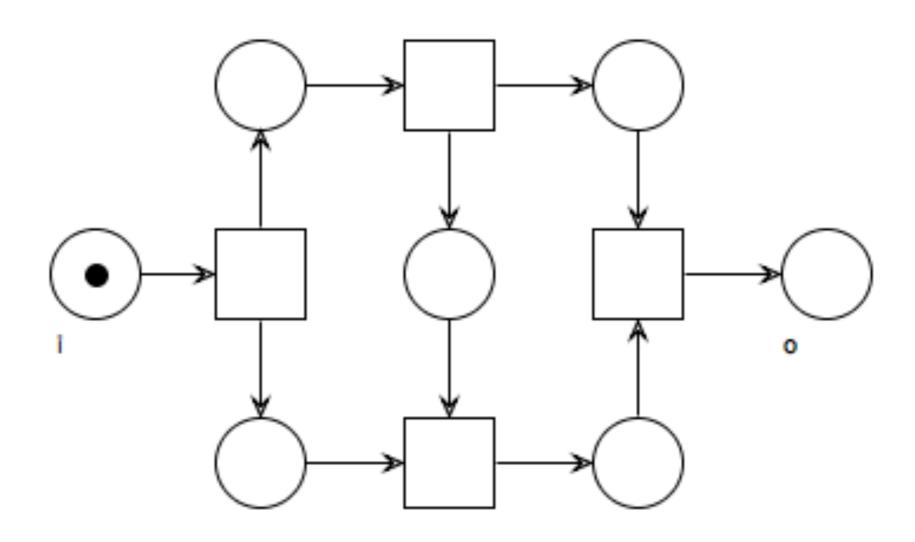
Assign a bound to each bounded place.





Exercise

Is the net below a workflow net? Is it sound?



Exercise

Is the net below a workflow net? Is it sound?

