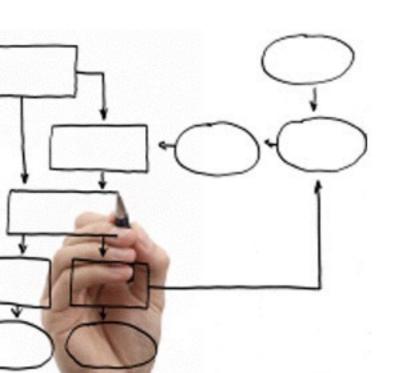
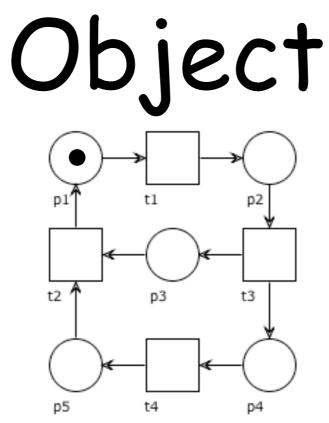
Methods for the specification and verification of business processes MPB (6 cfu, 295AA)



Roberto Bruni http://www.di.unipi.it/~bruni

17 - T-systems



We study some "good" properties of T-systems

Free Choice Nets (book, optional reading) https://www7.in.tum.de/~esparza/bookfc.html

T-systems

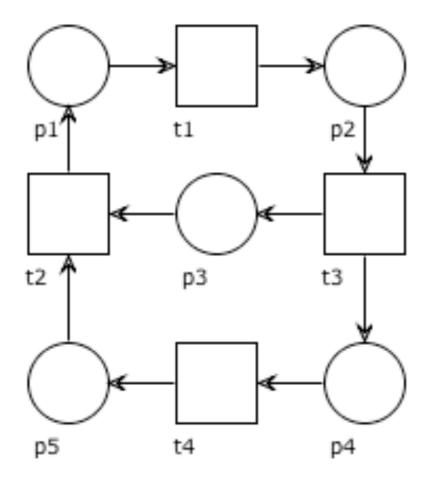
T-system

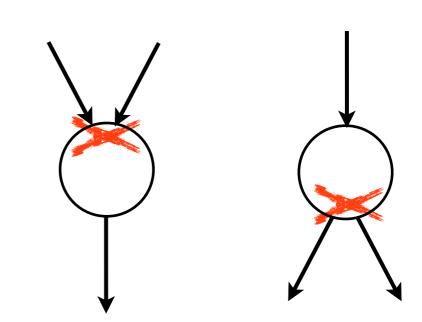
Definition: We recall that a net N is a T-net if each place has exactly one input transition and exactly one output transition

$$\forall p \in P, \qquad |\bullet p| = 1 = |p \bullet$$

A system (N,M₀) is a T-system if N is a T-net

T-system: example





T-systems: an observation

Notably, computation in T-systems is concurrent, but essentially deterministic:

the firing of a transition t in M cannot disable another transition t' enabled at M

T-net N*

Is it true that: A workflow net N is a T-net iff N* is a T-net ?

T-net N*

Is the following conjecture true? A workflow net N is a T-net iff N* is a T-net

No, N can never be a T-net because the place i has no incoming arc and the place o has no outgoing arc

(N* can be a T-net)

T-systems: another observation

Determination of control:

the transitions responsible for enabling t are one for each input place of t

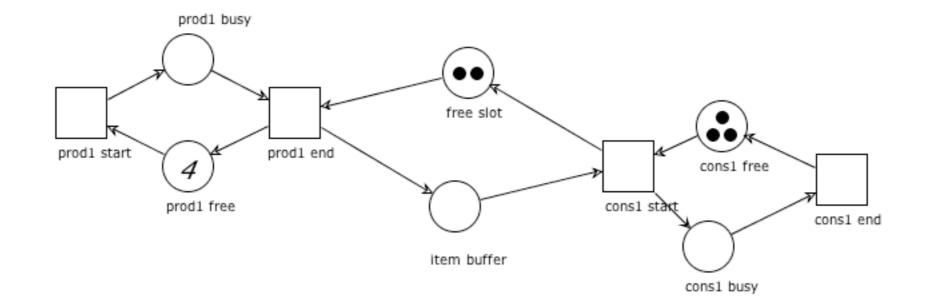
Notation: token count of a circuit

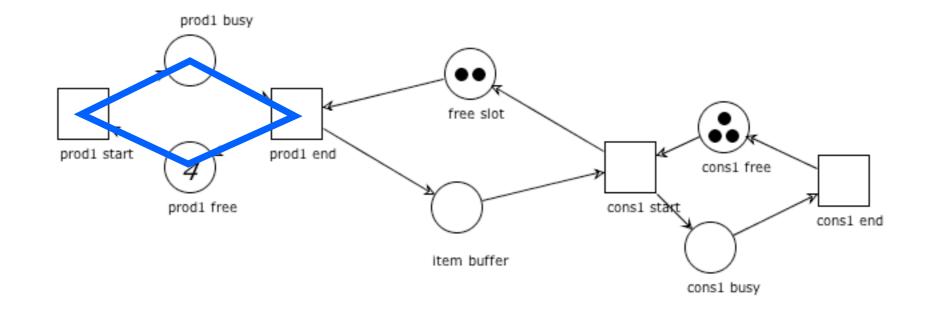
Let $\gamma = (x_1, y_1)(y_1, x_2)(x_2, y_2)...(x_n, y_n)$ be a circuit.

Let $P_{|\gamma} \subseteq P$ be the set of places in γ .

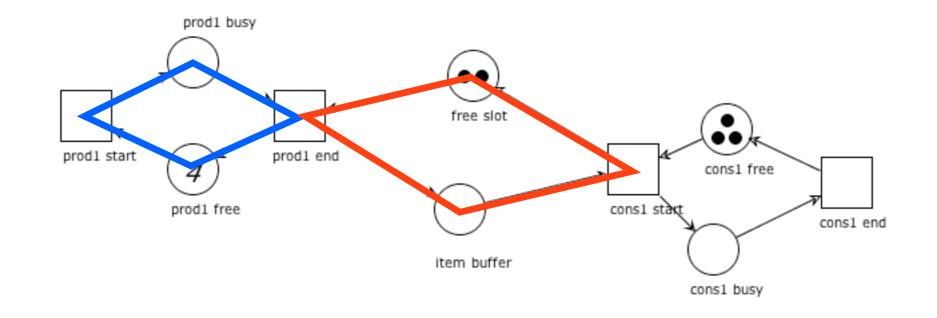
$$M(\gamma) = M(P_{|\gamma}) = \sum_{p \in P_{|\gamma}} M(p)$$

We say that γ is **marked at** M if $M(\gamma) > 0$

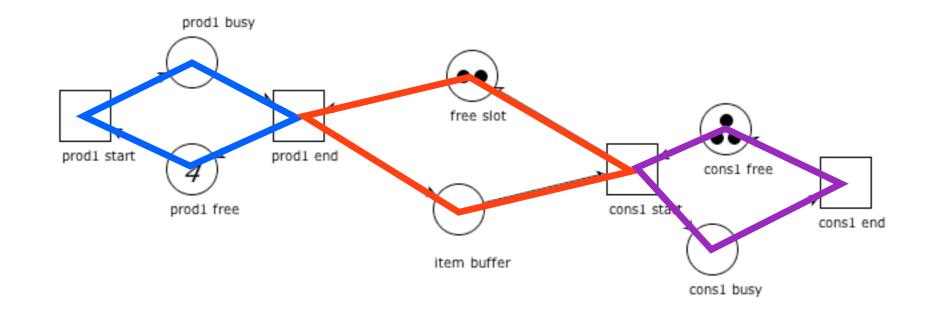




 $M(\gamma_1) = 4$



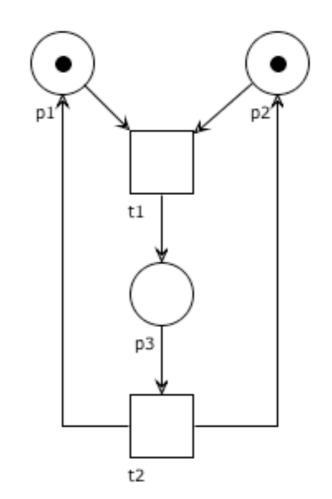
 $M(\gamma_1) = 4$ $M(\gamma_2) = 2$



 $M(\gamma_1) = 4$ $M(\gamma_2) = 2$ $M(\gamma_3) = 3$

Question time

Trace two circuits over the T-system below



Fundamental property of T-systems

The token count of a circuit is invariant under any firing.

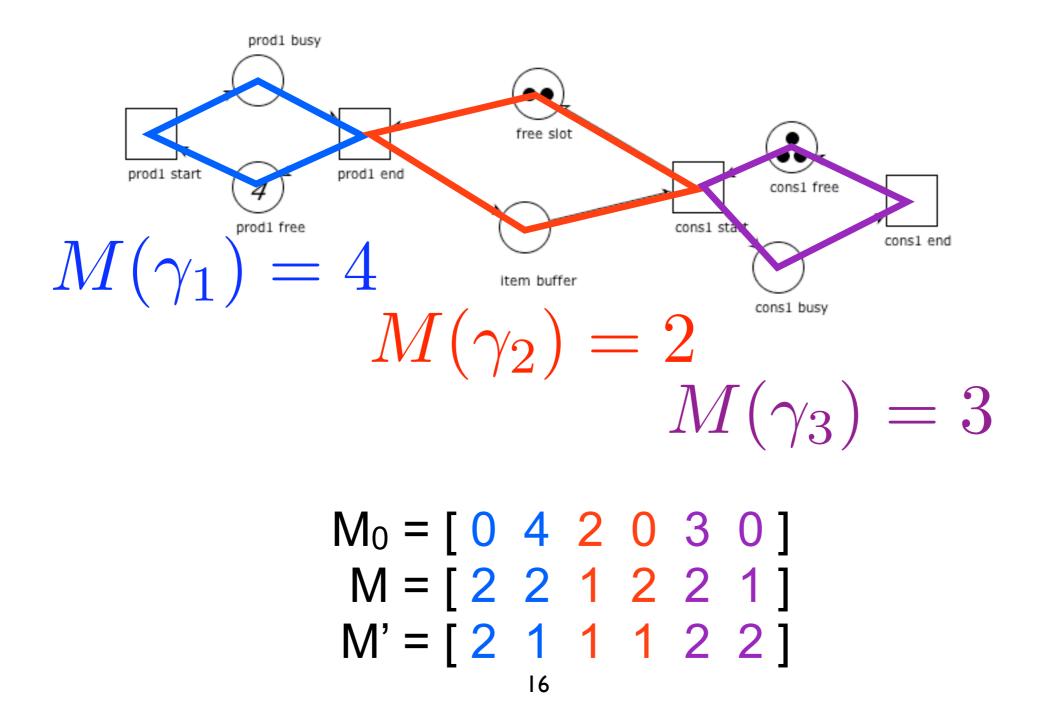
Fundamental property of T-systems

Proposition: Let γ be a circuit of a T-system (P, T, F, M_0) . If M is a reachable marking, then $M(\gamma) = M_0(\gamma)$

Take any $t \in T$: either $t \notin \gamma$ or $t \in \gamma$.

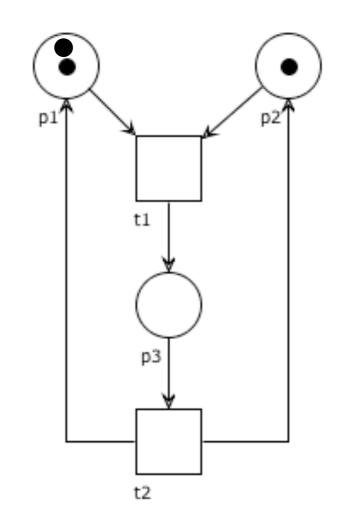
If $t \notin \gamma$, then no place in $\bullet t \cup t \bullet$ is in γ (otherwise, by definition of T-nets, t would be in γ). Then, an occurrence of t does not change the token count of γ .

If $t \in \gamma$, then exactly one place in $\bullet t$ and one place in $t \bullet$ are in γ . Then, an occurrence of t does not change the token count of γ .



Question time

Is the marking p₁ + 2p₂ reachable? (why?)



T-invariants of T-nets

Proposition: Let N=(P,T,F) be a connected T-net.
J is a rational-valued T-invariant of N iff J=[x ... x] for some rational value x

(the proof is dual to the analogous proposition for S-invariants of S-nets)

Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

⇒) (quite obvious) By contradiction, let γ be a circuit with $M_0(\gamma) = 0$. By the fundamental property of T-systems: $\forall M \in [M_0\rangle, M(\gamma) = 0$.

Take any $t \in T_{|\gamma}$ and $p \in P_{|\gamma} \cap \bullet t$.

For any $M \in [M_0\rangle$, we have M(p) = 0. Hence t is never enabled and the T-system is not live.

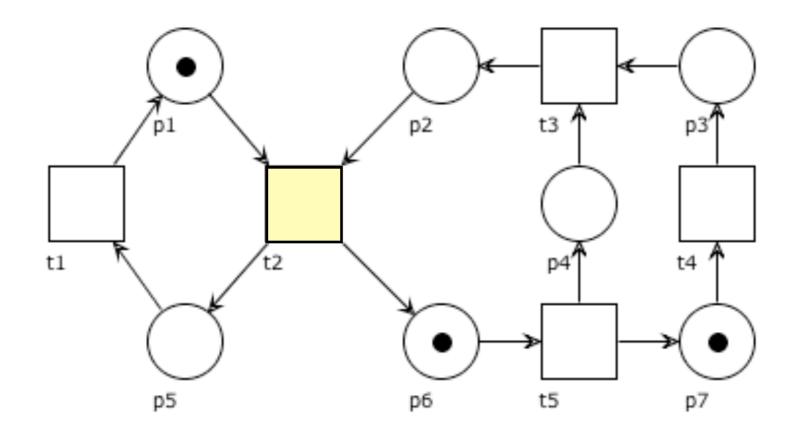
Theorem: A T-system (N,M₀) is live iff every circuit of N is marked at M₀

 \Leftarrow) (more involved) Take any $t \in T$ and $M \in [M_0 \rangle$. We need to show that some marking M' reachable from M enables t.

The key idea is to collect the places that control the firing of t: $p \in P_{M,t}$ if there is a path from p to t through places unmarked at M. We then proceed by induction on the size of $P_{M,t}$.

We just sketch the key idea of the proof over a T-system.

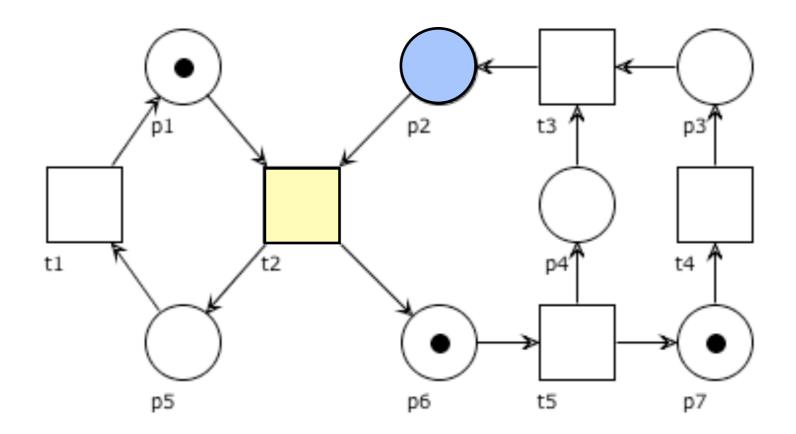
Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀



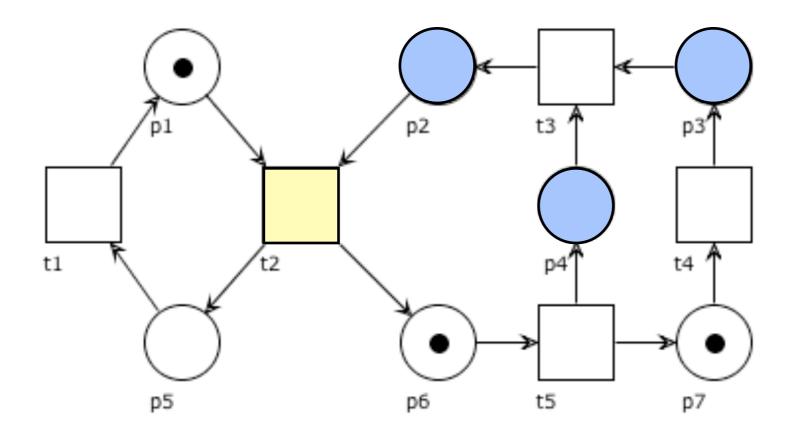
$$M = p_1 + p_6 + p_7$$

M' enabling t₂?

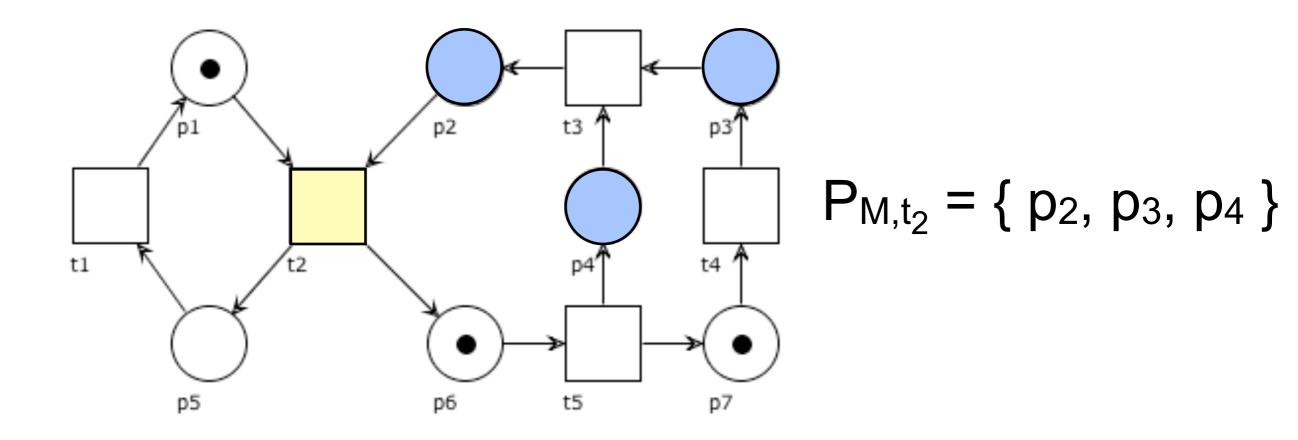
Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀

 \Leftarrow) (continued proof sketch)

```
Base case: |P_{M,t}| = 0.
```

Every place in $\bullet t$ is already marked at M.

Hence t is enabled at M.

Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀

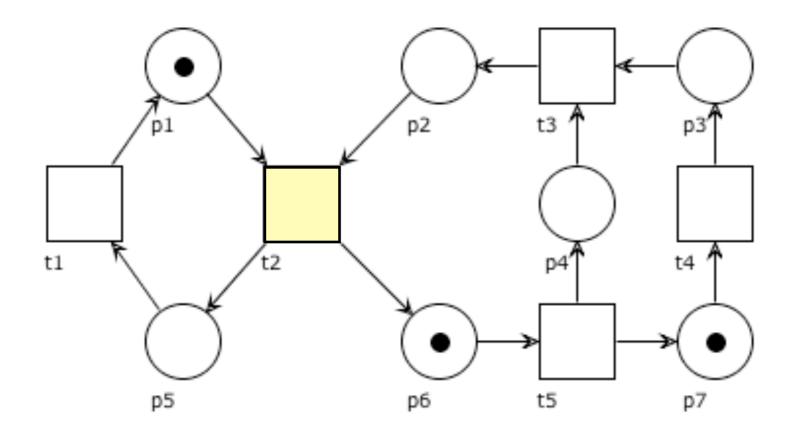
 \Leftarrow) (continued proof sketch)

Inductive case: $|P_{M,t}| > 0$. Therefore t is not enabled at M.

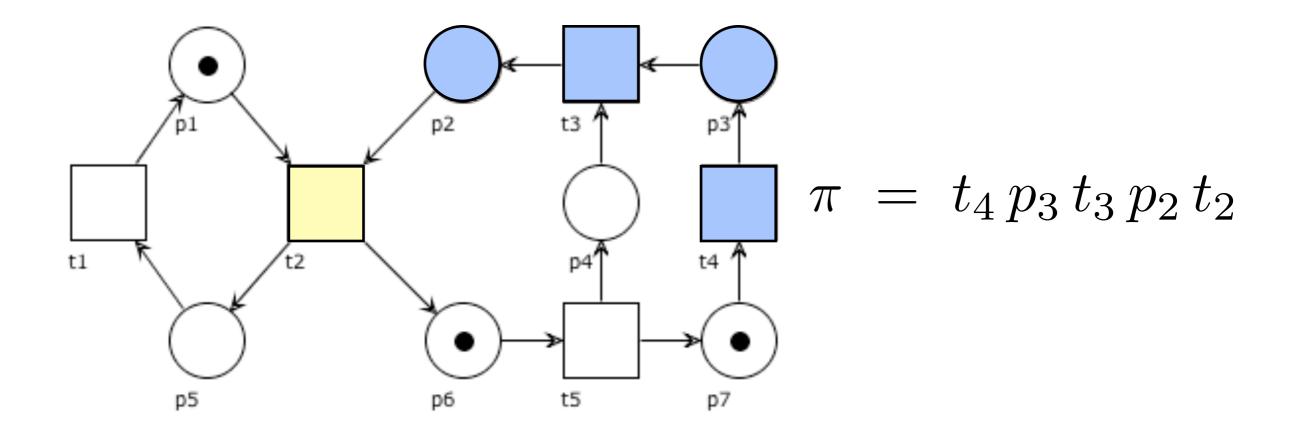
We look for a path π of maximal length necessary for firing t. π must contain only places unmarked at M.

By the fundamental property of T-systems: all circuits are marked at M. π is not necessarily unique, but exists (no cycle in it).

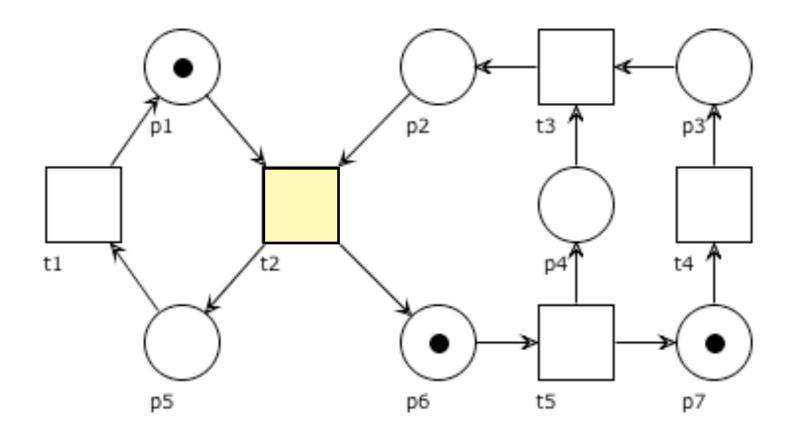
Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀



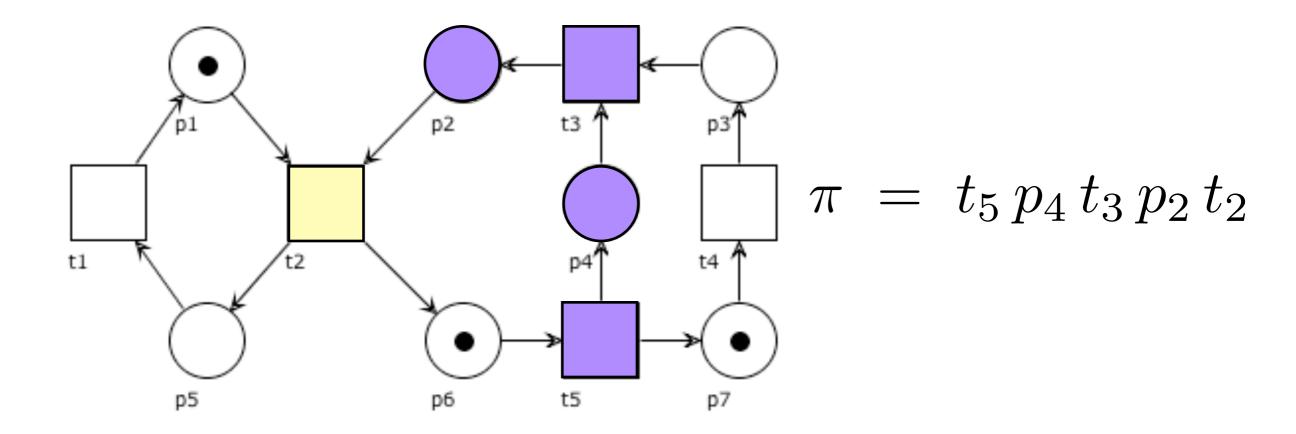
Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀

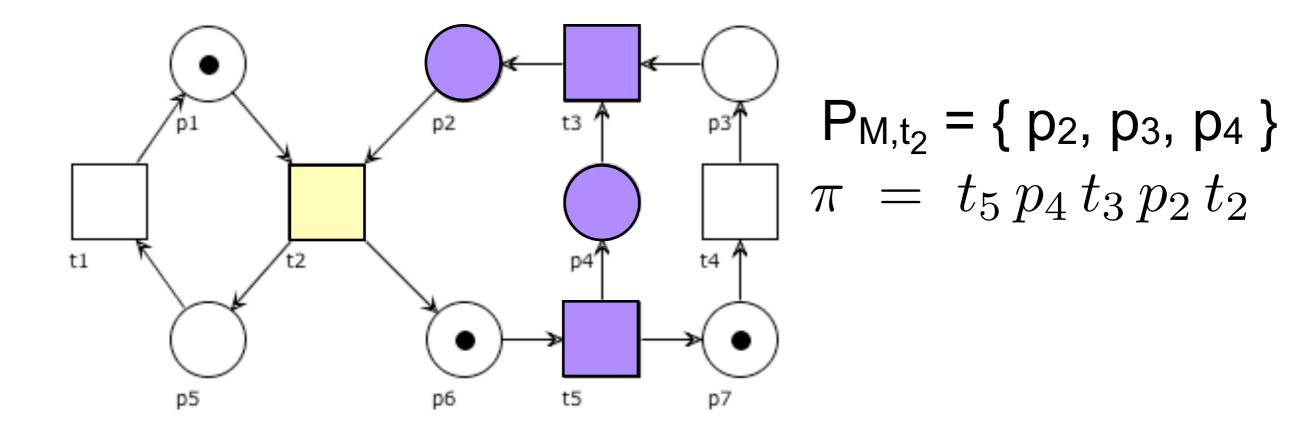
 \Leftarrow) (Inductive case: $|P_{M,t}| > 0$, continued proof sketch)

 π begins with a transition t' enabled at M. (otherwise a longer path could be found).

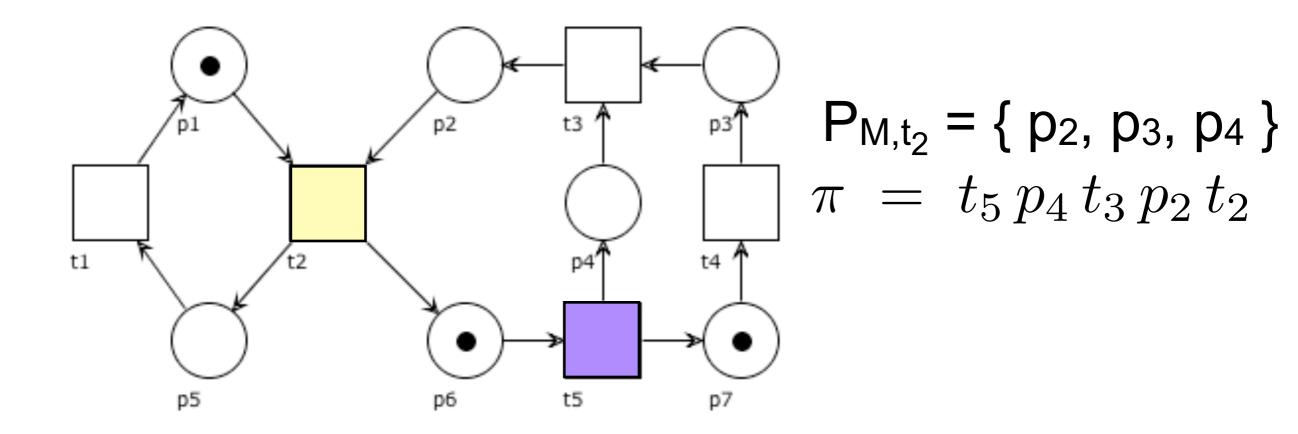
By firing t' we reach a marking M'' such that $P_{M'',t} \subset P_{M,t}$.

Hence $|P_{M'',t}| < |P_{M,t}|$ and we conclude by inductive hypothesis.

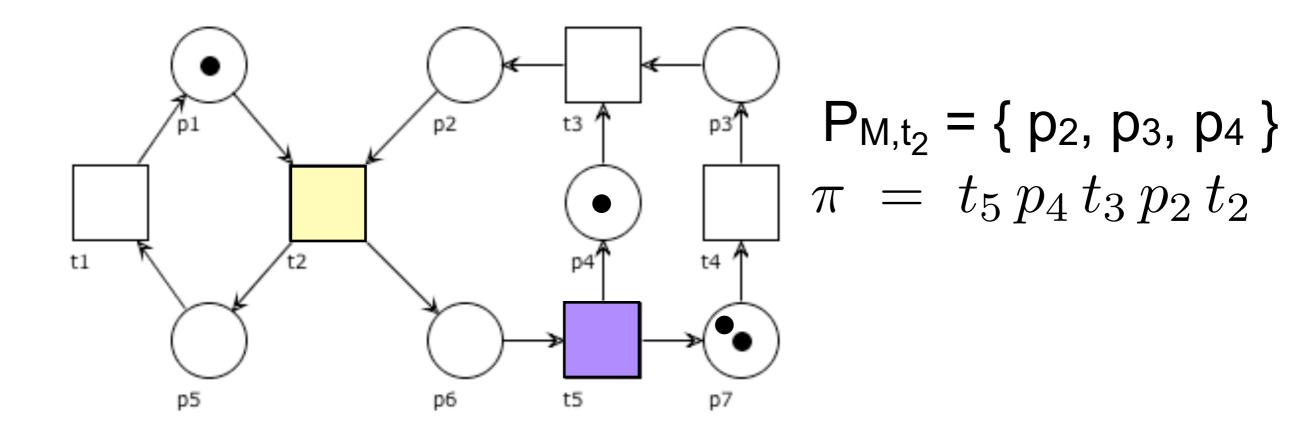
Theorem: A T-system (N,M₀) is live \Leftarrow every circuit of N is marked at M₀



Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀

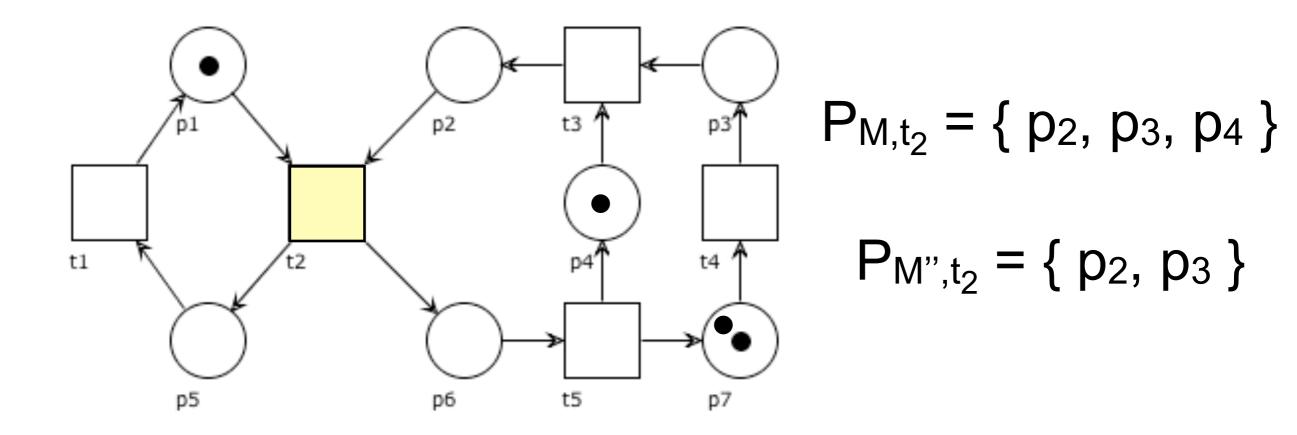


Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀



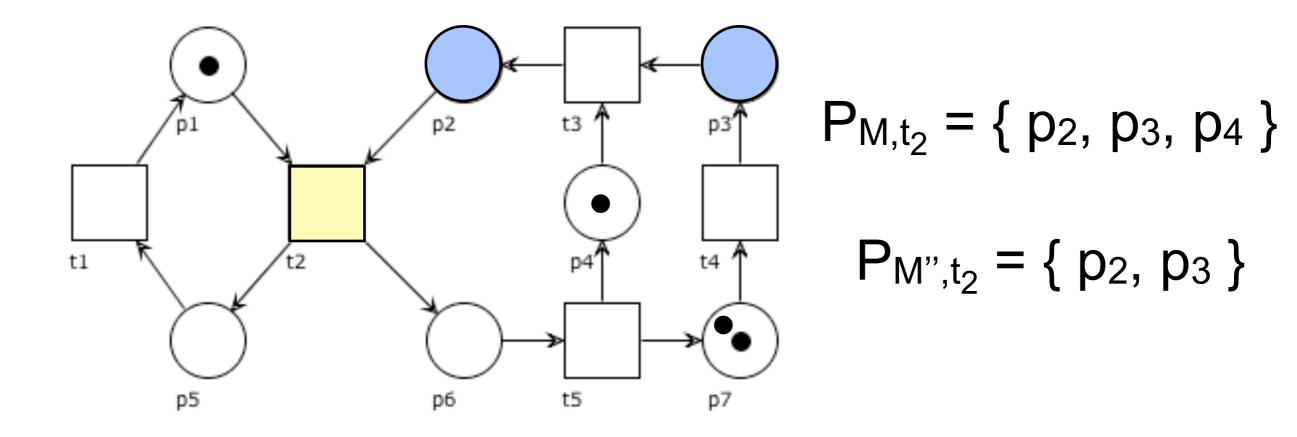
Liveness theorem for T-systems

Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀



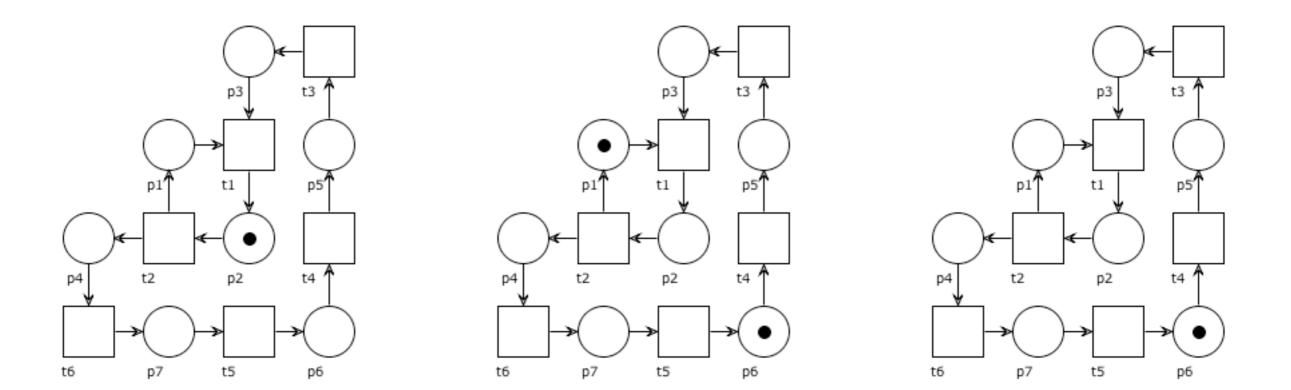
Liveness theorem for T-systems

Theorem: A T-system (N,M₀) is live \leftarrow every circuit of N is marked at M₀



Question time

Which of the T-systems below is live? (why?)



Boundedness theorem for live T-systems

Theorem: A live T-system (P, T, F, M_0) is k-bounded iff every place $p \in P$ belongs to a circuit γ_p with $M_0(\gamma_p) \leq k$.

⇐) Let
$$M \in [M_0\rangle$$
 and take any $p \in P$.

By the fundamental property of T-systems: $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$

Boundedness theorem for live T-systems

Theorem: A live T-system (P, T, F, M_0) is k-bounded iff every place $p \in P$ belongs to a circuit γ_p with $M_0(\gamma_p) \leq k$.

⇒) Let $k_p \leq k$ be the bound of p. Take $M \in [M_0\rangle$ with $M(p) = k_p$.

Define $L = M - k_p p$ and note that the T-system (N, L) is not live. (otherwise $L \xrightarrow{\sigma} L'$ with L'(p) > 0 for enabling $t \in p \bullet$. But then: $M = L + k_p p \xrightarrow{\sigma} L' + k_p p = M'$ with $M'(p) = L'(p) + k_p > k_p!$)

By the liveness theorem: some circuit γ is not marked at L. Since (N, M) is live, the circuit γ is marked at $M \supset L$. Since $M - L = k_p p$, the circuit γ contains p and $M_0(\gamma) = M(\gamma) = M(p) = k_p \leq k$.

Boundedness in strongly connected T-systems

Lemma: If a T-system (N,M₀) is strongly connected, then it is bounded

Let Γ be the set of the circuits of N and let $k = \max_{\gamma \in \Gamma} M_0(\gamma)$.

Since N is strongly connected, every place p belongs to some circuit γ_p .

By the fundamental property of T-systems: token count of γ_p is invariant.

Thus, for any reachable marking M, we have $M(p) \leq M(\gamma_p) = M_0(\gamma_p) \leq k$. Hence the net is k-bounded.

Liveness in strongly connected T-systems

Lemma: If a T-system (N,M₀) is strongly connected, then it is live iff it is deadlock-free iff it has an infinite run \longrightarrow

It is obvious that (for any net):

Liveness implies deadlock freedom.

Deadlock freedom implies the existence of an infinite run.

We show that (for strongly connected T-systems): The existence of an infinite run implies liveness.

Liveness in strongly connected T-systems

Lemma: Let (N,M_0) be a strongly connected T-system. If it has an infinite run σ , then it is live

Since the T-system is strongly connected then it is bounded.

By the Reproduction lemma (holding for any bounded net): There is a semi-positive T-invariant J. The support of J is included in the set of transitions of the infinite run σ .

By T-invariance in T-systems: $\langle \mathbf{J} \rangle = T$ (σ is an infinite run that contains all transitions).

Hence every transition can occur from M_0 . Hence every place can become marked. Hence every circuit can become marked.

By the fundamental property of T-systems: every circuit is marked at M_0 .

By the liveness theorem, (N, M_0) is live.

Place bounds in live T-systems

Let (P, T, F, M_0) be a **live** T-system. We can draw some easy consequences of the above results:

1) If $p \in P$ is bounded, then it belongs to some circuit. (see part \Rightarrow of the proof of the boundedness theorem)

2) If $p \in P$ belongs to some circuit, then it is bounded. (by the fundamental property of T-systems)

3) If (N, M_0) is bounded, then it is strongly connected. (by strong connectedness theorem, holding for any system)

4) If N is strongly connected, then (N, M_0) is bounded. (by 1, since any $p \in P$ belongs to a circuit by strong connectdness)

Place bounds in live T-systems

Let (P, T, F, M_0) be a live T-system. We can draw some easy consequences of the above results:

1+2) $p \in P$ is bounded iff it belongs to some circuit.

3+4) (N, M_0) is bounded iff it is strongly connected.

T-systems: recap

T-system + γ circuit + M reachable => M(γ) = M₀(γ) T-system + γ circuit + M(γ) \neq M₀(γ) => M not reachable

T-system + $\gamma_1 \dots \gamma_n$ circuits: $\exists i. p \in \gamma_i <=> p$ bounded T-system: $M_0(\gamma)>0$ for all circuits $\gamma <=>$ live

T-system:strongly connected=> boundedT-system + live:strongly connected <=> boundedT-system + str. conn.:deadlock-free <=> liveT-system + str. conn.:infinite run <=> live

T-system: T-invariant $J \leq J = [x x ... x]$

Consequences on workflow nets

Theorem: If N is a workflow net s.t. N* is a T-system then N is safe and sound iff every circuit of N* is marked

N workflow net => N* strong connected N* strong connected + N* T-system => N* bounded $M_0(\gamma)>0$ for all circuits γ of N* <=> N* live

 γ marked circuit <=> i $\in \gamma$ <=> M₀(γ)=1

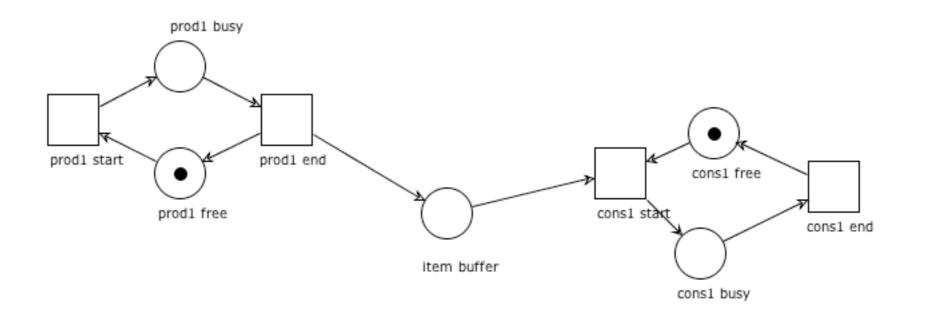
 γ marked circuit + M reachable => M(γ)=1

p belongs to a circuit of $N^* => p$ is safe

N* bounded <=> any place p belongs to a circuit of N* all places belong to marked circuits => N* safe => N safe

Exercises

Which are the circuits of the T-system below? Is the T-system below live? (why?) Which places are bounded? (why?) Assign a bound to each bounded place.



Exercises

Which are the circuits of the T-systems below? Are the T-systems below live? (why?) Which places are bounded? (why?) Assign a bound to each bounded place.

