Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni http://www.di.unipi.it/~bruni

16 - S-systems

We study some "good" properties of S-systems

Free Choice Nets (book, optional reading) https://www7.in.tum.de/~esparza/bookfc.html

S-systems

S-system

Definition: We recall that a net N is an S-net if each transition has exactly one input place and exactly one output place

$$\forall t \in T, \qquad |\bullet t| = 1 = |t \bullet|$$

A system (N,M₀) is an S-system if N is an S-net

S-system: example

S-net N*

Proposition: A workflow net N is an S-net iff N* is an S-net

N and N* differ only for the reset transition, that has exactly one incoming arc and exactly one outgoing arc

Fundamental property of S-systems

Observation: each transition t that fires removes exactly one token from some place p and inserts exactly one token in some place p' (p and p' can also coincide)

Thus, the overall number of tokens in the net is an invariant under any firing.

Notation: token count

$$M(P) = \sum_{p \in P} M(p)$$

Example

 $P = \{p_1, p_2, p_3\} \qquad M = 2p_1 + 3p_2 \qquad M(P) = 2 + 3 + 0 = 5$

Fundamental property of S-systems

Proposition: Let (P,T,F,M_0) be an S-system. If M is a reachable marking, then $M(P) = M_0(P)$

We show that for any $M \stackrel{\sigma}{\longrightarrow} M'$ we have M'(P) = M(P)

base $(\sigma = \epsilon)$: trivial (M' = M)

induction ($\sigma = \sigma' t$ for some $\sigma' \in T^*$ and $t \in T$):

Let
$$M \xrightarrow{\sigma'} M'' \xrightarrow{t} M'$$
.

By inductive hypothesis: M''(P) = M(P)By definition of S-system: $|\bullet t| = |t \bullet| = 1$ Thus, $M'(P) = M''(P) - |\bullet t| + |t \bullet| = M(P) - 1 + 1 = M(P)$

A consequence of the fundamental property

Corollary: Any S-system is bounded

Let $M \in [M_0 \rangle$.

By the fundamental property of S-systems: $M(P) = M_0(P)$.

Then, for any $p \in P$ we have $M(p) \leq M(P) = M_0(P)$.

Thus the S-system is k-bounded for any $k \ge M_0(P)$.

$$M(P) = \sum_{p \in P} M(p)$$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

S-invariance
$$\forall t \in T, \ \sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)$$

S-nets

$$\forall t \in T, |\bullet t| = |t \bullet| = 1$$

$$\begin{array}{c|c} & t \\ \hline p^t \\ p^t \end{array} \begin{array}{c} p_t \\ p_t \end{array}$$

$$\forall t \in T, \, \mathbf{I}(p^t) = \mathbf{I}(p_t)$$

Let $\bullet t = \{p^t\}$ and $t \bullet = \{p_t\}$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

$$\mathbf{I}(p^t) = \mathbf{I}(p_t) = \mathbf{I}(p^{t'}) = \mathbf{I}(p_{t'})$$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

$$\mathbf{I}(p^t) = \mathbf{I}(p_t) = \mathbf{I}(p_{t'}) = \mathbf{I}(p^{t'})$$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

$$\mathbf{I}(p_t) = \mathbf{I}(p^t) = \mathbf{I}(p^{t'}) = \mathbf{I}(p_{t'})$$

Proposition: Let N=(P,T,F) be a connected S-net.
I is a rational-valued S-invariant of N iff I=[x ... x] for some rational value x

weak connectivity $\forall p_0, p_n \in P, \quad p_0 t_1 p_1 t_2 p_2 t_3 p_3 \dots t_n p_n$ S-net $(\forall t_i, \text{ either } (p_i, t_i)(t_i, p_{i+1}) \text{ or } (t_i, p_i)(p_{i+1}, t_i))$

$$\forall p_0, p_n \in P, \, \mathbf{I}(p_0) = \mathbf{I}(p_n)$$

A note on S-invariants and S-nets

S-invariance
$$\forall M \in [M_0 \rangle, \quad \mathbf{I} \cdot M = \mathbf{I} \cdot M_0$$

S-invariant
$$\mathbf{I} = \begin{bmatrix} 1 \ 1 \ \dots \ 1 \end{bmatrix}$$
 of S-nets

consequence
$$\forall M$$
, $\mathbf{I} \cdot M = \sum_{p \in P} 1 \cdot M(p) = \sum_{p \in P} M(p) = M(P)$

We recover the Fundamental $\forall M \in [M_0\rangle, \quad M(P) = \mathbf{I} \cdot M = \mathbf{I} \cdot M_0 = M_0(P)$ property of S-nets

Liveness theorem for S-systems

Theorem: An S-system (N,M₀) is live iff N is strongly connected and M₀ marks at least one place

 \Rightarrow) (quite obvious) (N, M₀) is live by hypothesis and bounded (because S-system). By the strong connectedness theorem, N is strongly connected.

Since (N, M_0) is live, then $M_0 \xrightarrow{t}$ for some t.

Assume $\bullet t = \{p\}$. Thus, $M_0(p) \ge 1$.

Liveness theorem for S-systems

Theorem: An S-system (N,M₀) is live iff N is strongly connected and M₀ marks at least one place

 $\Leftarrow) \text{ (more interesting)}$ Take any $M \in [M_0\rangle$ and $t \in T$. We want to find $M' \in [M\rangle$ such that $M' \stackrel{t}{\longrightarrow}$.

Take $p_1 \in P$ such that $M(p_1) \ge 1$ (it exists, because $M(P) = M_0(P) \ge 1$). By strong connectedness: there is a path from p_1 to $t_n = t$ $(p_1, t_1)(t_1, p_2)(p_2, t_2)...(p_n, t_n)$

By definition of S-system: $\bullet t_i = \{p_i\}$ and $t_i \bullet = \{p_{i+1}\}$. Thus, $M \xrightarrow{\sigma} M' \xrightarrow{t}$ for $\sigma = t_1 t_2 \dots t_{n-1}$.

Reachability lemma for S-nets

Lemma: Let (P,T,F) be a strongly connected S-net. If M(P) = M'(P), then M' is reachable from M

We proceed by induction on ${\cal M}({\cal P})$

base (M(P) = M'(P) = 0): trivial (M' = M)

induction (M(P) = M'(P) > 0):

Let $p, p' \in P$ be such that M(p) > 0 and M'(p') > 0. Let K = M - p and K' = M' - p'. Clearly K'(P) = K(P) < M(P) = M'(P). By inductive hypothesis: $\exists \sigma, K \xrightarrow{\sigma} K'$ By strong connectedness: there is a path from $p_0 = p$ to $p_n = p'$ $(p_0, t_1)(t_1, p_1)(p_1, t_2)...(t_n, p_n)$ By definition of S-system: $\bullet t_i = \{p_{i-1}\}$ and $t_i \bullet = \{p_i\}$.

Thus, $p = p_0 \xrightarrow{\sigma'} p_n = p'$ for $\sigma' = t_1 t_2 ... t_n$.

By the monotonicity lemma: $M = K + p \xrightarrow{\sigma} K' + p \xrightarrow{\sigma'} K' + p' = M'$

Reachability Theorem for S-systems

Theorem: Let (P,T,F,M₀) be a live S-system. A marking M is reachable **iff** M(P)=M₀(P)

=>) Follows from the fundamental property of S-systems

<=) By the previous liveness theorem, the S-net is strongly connected. We conclude by applying the reachability lemma for S-systems.

S-systems: recap

S-system => bounded S-system: strong conn. + $M_0(P)>0 <=>$ live

S-system + M reachable $=> M(P) = M_0(P)$ S-system + str. conn.: $M(P)=M_0(P) <=> M$ reachableS-system + live: $M(P)=M_0(P) <=> M$ reachable

S-system: S-invariant I <=> I = [x x ... x]

Consequences on workflow nets

Theorem: If a workflow net N is an S-system then it is safe and sound

N is S-system <=> N* is S-system N workflow net => N* strong connected

 $M_0(P)=1$ (initially one token in place i) N and N* S-systems + $M_0(P)=1 => N$ and N* safe (M reachable in N* + N* str. conn. + $M_0(P)=1 <=> M(P)=1$) N* strong connected + $M_0(P) = 1 <=> N*$ live

N* bounded (safe) and live <=> N sound

Question time

Which of the following markings are reachable? (why?)

 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 4 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 3 & 0 & 1 \end{bmatrix}$

Question time

Which of the following are S-invariants? (why?)

 $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 2 & 2 \end{bmatrix}$

Exercises

Which of the following S-systems are live? (why?)

Boundedness Theorem for S-systems

Theorem:

A live S-system (P, T, F, M_0) is k-bounded iff $M_0(P) \leq k$

Exercise

Prove the boundedness theorem for live S-systems