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Before we start...



Two theorems on strong
connectedness whose
proofs we omit



Strong connectedness
theorem

Theorem: If a weakly connected system is live
and bounded then it is strongly connected

(the proof requires a few technical lemmas that we
prefer to omit)
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Strong connectedness
via invariants

Theorem: If a weakly connected net has a positive
S-invariant and a positive T-invariant then it is
strongly connected

(the proof exploits requires a few technical
lemmas that we prefer to omit)
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Object

We study some “good” properties of S-systems
and T-systems
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Notation: token count

M(P) =  M(p)
Example

P={p1,p2,p3} M=2p1+3ps M(P)=2+3




S-systems



S-system

Definition: We recall that a net N is an S-net if
each transition has exactly one input place and
exactly one output place

Vt e T, ot =1=|te]

A system (N,Mo) is an S-system if N is an S-net
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S-system: example

I/ \}—> —H/ \i




Fundamental property
of S-systems

Observation: each transition t that fires
removes exactly one token from some place p
and inserts exactly one token in some place p’

(p and p’ can also coincide)

Thus, the overall number of tokens in the net is
an invariant under any firing.
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Fundamental property
of S-systems

Proposition: Let (P, T,F,Mo) be an S-system.
If M is a reachable marking, then M(P) = Mo(P)

We show that for any M —~+ M’ we have M'(P) = M(P)
base (o = ¢€): trivial (M’ = M)
induction (o = ¢’t for some ¢’ € T* and t € T'):

Let M -2 M" 45 M.

By inductive hypothesis: M"(P) = M(P)
By definition of T-system: |et| =|te| =1

Thus, M'(P) = M"(P) —|e t| + [te| = M(P)—1+1= M(P)
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A consequence of the
fundamental property

Corollary: Any S-system is bounded

Let M € [MO >
By the fundamental property of S-systems: M (P) = My(P).
Then, for any p € P we have M (p) < M(P) = My(P).

Thus the S-system is k-bounded for any k& > My (P).

|3
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S-invariants of S-nets

Proposition: Let N=(P, T,F) be a connected S-net.
| is a rational-valued S-invariant of N iff I=[ x ... X ]
for some rational value x

S-invariance Vi € T, Z I(p) — Z I(p)

pcet pEte

S-nets \V/tET,“t|:|t“:1 Q_’ t _)Q

t
Let ot = {pt} and te = {p,} P Pt

Vi € T, I(p") = I(p)
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S-invariants of S-nets

Proposition: Let N=(P, T,F) be a connected S-net.
| is a rational-valued S-invariant of N iff I=[ x ... X ]
for some rational value x
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S-invariants of S-nets

Proposition: Let N=(P, T,F) be a connected S-net.
| is a rational-valued S-invariant of N iff I=[ x ... X ]
for some rational value x

OO0
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S-invariants of S-nets

Proposition: Let N=(P, T,F) be a connected S-net.
| is a rational-valued S-invariant of N iff I=[ x ... X ]
for some rational value x
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S-invariants of S-nets

Proposition: Let N=(P, T,F) be a connected S-net.
| is a rational-valued S-invariant of N iff I=[ x ... X ]
for some rational value x

weak

comectiviy VP, P € Py, potiprtep2tsps ... tn Pn
(\V/tz, either (putz)(t”wpz—l—l) or (t”LapZ)(pz—l—l?tz))

VDo, pn € P, I(po) = I(pn)



A note on S-invariants
and S-nets

S-invariance VM € [M() >, I1- M =1- MO
S-invarian _
ofS-netst I=[11..1]
consequence I1-M = Z 1- M Z M
peP pEP

“rundamenal VM € [Mo), M(P)=T-M =1-My= My(P)

property of S-nets

19
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Reachability lemma for
S-nets

Lemma: Let (P, T,F) be a strongly connected S-net.
If M(P) = M'(P), then M’ is reachable from M

We proceed by induction on M (P)
base (M (P) = M'(P)=0): trivial (M’ = M)

induction (M (P)= M'(P) > 0):
Let p,p’ € P be such that M (p) > 0 and M'(p’) > 0.
let K =M —pand K' =M — 9.
Clearly K'(P) = K(P) < M(P) = M'(P).
By inductive hypothesis: 3o, K — K’

By strong connectedness: there is a path from pg = p to p,, = p’

(Post1)(t1, p1)(P1,t2). - (tn, Pr)
By definition of S-system: ot; = {p;_1} and t;e = {p;}.
Thus, p = pg <, pp, = p' for o' = tity...t,.

By the monotonicity lemma: M =K +p — K' +p - K' +p =M’
20
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Liveness theorem for
S-systems

Theorem: An S-system (N,Mo) is live iff N is
strongly connected and Mo marks at least one place

=) (quite obvious)
(N, My) is live by hypothesis and bounded (because S-system).

By the strong connectedness theorem, IV Is strongly connected.

Since (N, My) is live, then M — for some t.

Assume ot = {p}. Thus, My(p) > 1.

21
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Liveness theorem for
S-systems

Theorem: An S-system (N,Mo) is live iff N is
strongly connected and Mo marks at least one place
<) (more interesting)
Take any M € [My) and t € T.
We want to find M’ € [ M) such that M’ —.

Take p; € P such that M(p;) > 1 (it exists, because M (P) = My(P) > 1).
By strong connectedness: there is a path from p; to t,, = ¢

(p1,t1)(t1,p2) (P2, t2)...(Pn> tn)

By definition of S-system: ot; = {p;} and t;e = {p;1}.
ThUS, M L) M’ ; for o = t1t2---tn—1-

22
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Reachability Theorem
for S-systems

Theorem: Let (P, T,F,Mo) be a live S-system.
A marking M is reachable iff M(P)=Mo(P)

=>) Follows from the fundamental property of S-systems
<=) By the liveness theorem, the S-net is strongly

connected. Then we conclude by applying the
reachability lemma.

23
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S-systems: recap

S-system => bounded
S-system: str. conn. + Mo(P)>0 <=> liveness
S-system + M reachable => M(P) = Mo(P)

S-system + str. conn.: M(P)=Mo(P) <=> M reachable
S-system + liveness: M(P)=Mo(P) <=> M reachable

S-invariant | =>]|=[XX...X]
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Exercises

Which of the following S-systems are live? (why?)
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Exercises

Which of the following markings are reachable? (why?)

6N £ )
| @ F—— —> P @ E— { @ |
\\ - \\\.__--'// \\\. ./
& \tl / a t5 pa
Y Sx
// ‘\\
—>| ——T
N i
t t p3 t4

26
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1212

1 — —
W Ny S Ry —

(4000]
(0404]
[0321]
(0040]
(0300]
(0301]



Exercises

Which of the following markings are reachable? (why?)

[1111]

[2020]

(o) —>s |—s(ee)—1 |—(o) [1212]
R, o i F (4000]
/// [0404]

i . T [0321]

: : e g [0040]
[0300]

(0301]

27
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Exercise

Which of the following are S-invariants? (why?)

[1100]
) [0022]
(o) |—>(ee)— (o) [1111]
e N by > [2211]
[2222]
Y o T [1221]

Newld
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Exercise

Which of the following are S-invariants? (why?)

[1100]

[0022]

Col—sl |G e (o) [1111]
| @ —> 90 F— o )

E- tl pzn/ ts pf/ [2 21 1 ]

[2222]

- 7N 1221]

29
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Boundedness Theorem
for S-systems

Theorem:
A live S-system (P, T, F, My) is k-bounded iff My(P) < k

30



Exercise

Prove the boundedness theorem for live S-systems

31
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T-systems

32



T-system

Definition: We recall that a net N is a T-net if each
place has exactly one input transition and exactly
one output transition

Vp € P, epl=1=pe]

A system (N,Mo) is a T-system if N is a T-net

33
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T-system: example

A £ N\
I\ /}—> H\ /l
plT t1 P I

7N

<—| e—

\ SR
t T p3 t l
i 7
I & J— ! |
4 Nor: ol
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T-systems: an
observation

Notably, computation in T-systems is concurrent,
but essentially deterministic:

the firing of a transition t in M cannot disable
another transition t' enabled at M

35
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T-systems: another
observation

Determination of control:

the transitions responsible for enabling t are
one for each input place of t

36



Notation: token count
of a circuit

Let v = (x1,y1) (Y1, 22)(x2,Y2)...(xy, yn) be a circuit.

Let P, € P be the set of places in 7.

M(y) = M(P,,) = Z M (p

peEP|,

We say that v is marked at M if M(vy) > 0

37



38
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Example

Trace two circuits over the T-system below

39
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Fundamental property
of T-systems

The token count of a circuit is invariant under any firing.

40



Fundamental property
of T-systems

Proposition: Let v be a circuit of a T-system (P, T, F, My).
If M is a reachable marking, then M (vy) = My(7)

ake any t € T": eithert & v ort € .

If ¢ € v, then no place in et U te is in v
(otherwise, by definition of T-nets, £ would be in 7).
Then, an occurrence of t does not change the token count of .

If ¢ € ~, then exactly one place in et and one place in te are in 7.
Then, an occurrence of t does not change the token count of ~.

4]
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Not reachable!
Not reachable!

ANl ™
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Example

Is the marking p1 + 2p2 reachable? (why?)

44
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T-invariants of T-nets

Proposition: Let N=(P, T,F) be a connected T-net.
J Is a rational-valued T-invariant of N iff J=[ x ... X ]
for some rational value x

(the proof is dual to the analogous proposition for
S-invariants of S-nets)

45
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

=) (quite obvious)
By contradiction, let v be a circuit with My(v) = 0.
By the fundamental property of T-systems: VM € | My ), M(v) = 0.

Take any t € 1}, and p € P, Net.

For any M € [ M; ), we have M(p) = 0.
Hence t is never enabled and the T-system is not live.

46
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

&) (more involved)
Take any t € T and M € | My ).
We need to show that some marking M’ reachable from M enables ¢.

The key idea is to collect the places that control the firing of ¢:
p € Pyr 4 if there is a path from p to ¢ through places unmarked at M.
We then proceed by induction on the size of Py ;.

We just sketch the key idea of the proof over a T-system.

47
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Liveness theorem for

T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

/
{
|.| |

/

|

_,//
/pl \ p2 t3

7 \\\|
\ /
N

48
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

| . l | P
/pl \ p2 t:'T p3

t1 N /tg \ p4‘|‘ t4 T
N\
N\
>/-\ o~ ' ‘-\\
f \

49



Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

& ) (continued proof sketch)
Base case: |Pys¢| = 0.
Every place in et is already marked at M.

Hence t Is enabled at M.

50
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

& ) (continued proof sketch)

Inductive case: |Pys | > 0.
Therefore t is not enabled at M.

We look for a path m of maximal length necessary for firing t.
7 must contain only places unmarked at M.

By the fundamental property of T-systems: all circuits are marked at M.

7 is not necessarily unique, but exists (no cycle in it).
51
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

| . l Pra—
/pl \ p2 t:'T p3

f/”\\u m = 1 D { D {
L 4 P33 P2l2
t1 N / t2 \ p-4T HT

\

\

>/‘\ /-\\ ' //‘\\

{ \ { \ { \

| | | @ —> —> @ |

o - \

pS p6 t p7

52



Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

/“ \ a

1 N t2
N\
N\
N, o
4 ™
{ {

53
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

&) (Inductive case: |Pas | > 0, continued proof sketch)

7 begins with a transition ¢’ enabled at M.
(otherwise a longer path could be found).

By firing " we reach a marking M" such that Py C Py

Hence | Py ¢| < |Pas¢| and we conclude by inductive hypothesis.

54
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

VAN = ot 2f Pup ={p2, ps, pa}
@ T = t5p4t3P2io
tl “"\\ /tz \ p4 t4 T

55



Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

' . ' |'{ \'k(—‘ <—l/ \l
oo Nassradd
/Fl \ p2 ”T psT Pl\/l,t2 — { p2, p3, p4 }
.’,/"-\\ p t t t
() T = Ul5Pqlz P2l
t1 “"\\ / t2 \ P4T t4 T
\ —_ g ¢ SBEr
( ] /) (\\0 — _”‘i\:/:'
pS p6 L 4
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

' . ' |'{ \'k(—‘ <—l/ \l
oo Nassradd
/Fl \ p2 ”T psT Pl\/l,t2 — { p2, p3, p4 }
e
(&) [ 17 = tspatspats
t1 “"\\ / t2 \ p4 t4 T
Noyzrese: il .
li/ ) ( \\t——> —H/.Q \i
e 7 \,___ / \\-_.-r
D p6 t P/
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Liveness theorem for
T-systems

Theorem: A T-system (N,Mo) is live
iIff every circuit of N is marked at Mo

/t:l \ p2 “"1 Q Pl\/l 12 — { p2, p3a p4 }

¥ "
lf ® \i
'\\ /
t1 N t2 n4 t4 P —
\\ M t2 p2 y p3
>/‘\ /-\\ ' //‘\\
I/ \l |/ \}—-)’ ‘—)’( .. \|
B I ¢ s
P po t ps
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Example

Which of the T-systems below is live? (why?)

3 573 -~
.\} .\ /K_. .¥><_
. psl t'T . psl t;T i psl tT
W ) (L N W M
\__/ \__/ PRI, \__/ \__/
T T T T
) ke— | .\l l/-\k(— | | \ 1/-\»<— e—| \u
Kl/ >/ : \l/ \_/ : \I/ Y, T
p4 t p t4 p4 t p2 t4 p4 t p t4
(O~ O (e (e
t6 p7 ts p6 t6 p7 ts p6 t6 p ts p6
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Boundedness theorem
for live T-systems

Theorem: A live T-system (P, T, I, M) is k-bounded iff
every place p € P belongs to a circuit vy, with My(v,) < k.

=) Let k, < k be the bound of p.
Take M € [ My ) with M(p) = k,.

Define L = M — k,p and note that the T-system (N, L) is not live.
(otherwise L —— L’ with L’(p) > 0 for enabling t € pe. But then:
M =1L+ky,p—> L +kyp=M" with M'(p) = L'(p) + k, > k)

By the liveness theorem: some circuit v I1s not marked at L.
Since (N, M) is live, the circuit + is marked at M D L.
Since M — L = k,p, the circuit v contains p and
Mo(y) = M(3) = M(p) = k, < k.

60
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Boundedness theorem
for live T-systems

Theorem: A live T-system (P, T, I, M) is k-bounded iff
every place p € P belongs to a circuit vy, with My(v,) < k.

<) Let M € [ My) and take any p € P.

By the fundamental property of T-systems:
M(p) < M(y,) = Mo(7,) < k

61
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Boundedness in strongly
connected T-systems

Lemma: If a T-system (N,Mo) is strongly connected,
then it Is bounded
Let I' be the set of the circuits of N and let k¥ = max er Moy(7).
Since N is strongly connected, every place p belongs to some circuit ~,,.
By the fundamental property of T-systems: token count of «, is invariant.

Thus, for any reachable marking M, we have M(p) < M (vy,) = Mo(7v,) < k.
Hence the net is k-bounded.

62
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Liveness in strongly
connected T-systems

Lemma: If a T-system (N,Mo) is strongly connected, then
itis live Iff itis deadlock-free iff it has an infinite run

- -

It is obvious that (for any net):
Liveness implies deadlock freedom.
Deadlock freedom implies the existence of an infinite run.

We show that (for strongly connected T-systems):
The existence of an infinite run implies liveness.

63
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Liveness in strongly
connected T-systems

Lemma: Let (N,Mo) be a strongly connected T-system.
If it has an infinite run, then it is live

Since the T-system is strongly connected then it is bounded.

By the Reproduction lemma (holding for any bounded net):
There is a semi-positive T-invariant J.
The support of J is included in the set of transitions of the infinite run o.

By T-invariance in T-systems: (J) =T
(o is an infinite run that contains all transitions).

Hence every transition can occur from M.
Hence every place can become marked.
Hence every circuit can become marked.

By the fundamental property of T-systems: every circuit is marked at Mj.

By the liveness theorem, (N, M) is live.
64
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Place bounds in
live T-systems

Let (P, T, F, My) be a live T-system.
We can draw some easy consequences of the above results:

1) If p € P is bounded, then it belongs to some circuit.
(see part = of the proof of the boundedness theorem)

2) If p € P belongs to some circuit, then it is bounded.
(by the fundamental property of T-systems)

3) If (N, Mj) is bounded, then it is strongly connected.
(by strong connectedness theorem, holding for any system)

4) If N is strongly connected, then (N, M) is bounded.
(by 1, since any p € P belongs to a circuit by strong connectdness)
65
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Place bounds in
live T-systems

Let (P, T, F, My) be a live T-system.
We can draw some easy consequences of the above results:

1+2) p € P is bounded iff it belongs to some circuit.

3+4) (N, My) is bounded iff it is strongly connected.

66
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T-systems: recap

T-system + M reachable + c circuit => M(c) = Mo(c)

T-system + c1...Cn Circuits: 1. peci <=> p bounded
T-system: M(c)>0 for all circuits c <=> live

T-system: strongly connected <=> bounded
T-system + str. conn.: deadlock-free <=> live
T-system + str. conn.: infinite run <=> live

T-invariant J =>J=[XX...X]
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Exercises

Which are the circuits of the T-system below?
Is the T-system below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.

prodl busy
I/ \'
/\\\_/ )\
s ~ B
~ ‘\\
f \
'?\\. / \'\ ‘ . l
Py Y P /
prodl start ¥ prodl end \ /\—*’ “\\\
| | e consl free B
\ / \\% . ---"---- g
S > V4 g
pregalf [ | consl staxt A7
\ / —_ consl end
\‘-._.// y -~ ‘\\ U
( |
tem buff N A
consl busy



Exercises

Which are the circuits of the T-systems below?
Are the T-systems below live? (why?)
Which places are bounded? (why?)
Assign a bound to each bounded place.

. N
| j— | Je—|
\ , \ /
NG NG S
pﬂl t3 T p&l t3 T
G PN N TN
\ / \ / \
| —31 | | | @ > | @ |
Nl , No okl N ol , )
plT t1 i psT plT t1 !L psT
Fa= e ~ Ry
l\ j— <(—‘\ ® | | J— <—| |
A e e e
p4l t2 p2 t4 T p4l t2 p2 t4 T
7= N 7= N 7= N N
—> > —>| | —{ o > —{ o |
X 24 X B4 b >, b >,
t6 p7 t p6 t6 p7 t P&
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