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N F 1

We survey
two connectedness theorems and
five exchange lemmas

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Two theorems on strong
connectedness
(whose proofs are
optional reading)



Strong connectedness
theorem

Theorem: If a weakly connected system is
live and bounded then it is strongly connected

(the proof requires some Exchange Lemmas
that we illustrate later)



Consequences

If a (weakly-connected) net is not strongly connected
then
It is not live and bounded
If it is live, it is not bounded

If it IS bounded, it is not live



Example

It is now immediate to see that this system
(weakly connected, not strongly connected)
cannot be live and bounded
(it is live but not bounded)

prodl busy

A

prodl s:att\ prodl end A/®\
consl free
prodl free consl staxt
consl end



Exercise

On the basis of the previous observation:
Draw a net that is bounded but not live
Draw a net that is neither live nor bounded

(all nets must be weakly connected)



Exercise

Draw a net that is bounded but not live
(weakly, not strongly connected)

t2
pl t1 p2 p3

t3




D

Exercise

raw a net that is neither live nor bounded
(weakly, not strongly connected)

t2
pl t1 p2 p3




Strong connectedness
via invariants

Theorem: If a weakly connected net has
a positive S-invariant | and a positive T-invariant J
then it is strongly connected



Consequences

If a (weakly-connected) net is not strongly connected
then

we cannot find (two) positive S- and T-invariants



Five Exchange Lemmas
(optional reading)



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M’

\/




Exchange lemma:
finite sequences (2)

Lemma: Let VC T andu e T\V, witheunVe=10.
If M == M’ with o0 € V*, then M == M’




Exchange lemma:
finite sequences (2)

Lemma: Let VC T andu e T\V, witheunVe=10.
If M == M’ with o0 € V*, then M == M’




Exchange lemma:
finite sequences (2)

Lemma: Let VC T andu e T\V, witheunVe=10.
If M == M’ with o0 € V*, then M == M’




More on sequences:
projection

Restriction: (also extraction / projection)
given T C T we inductively define o7 as:

t(or If ¢ - T,
e =c (o) = { g(|T|,T ) if t & T"



Example

(Brtatvtitaty) e, e t1(tatrtitats)|qey 43

— t1t4(t7t1t4t7) {t1,ta}
o > — t1t4(t1t4t7) {t1,ta}

D2 t

p— t1t4t1 (t4t7) {t17t4}
7 N — t1t4t1t4(t7) {t1,ta}

t1 p4 — t1t4t1t4(t7€)|{t1,t4}

= {1l40114 (6) [{t1,t4}

/ ”@ p— t1t4t1t4€
<::f////// i ‘////// = t1l4t1ty
°




Exchange lemma:
finite sequences (3)

Lemma: Let UV C T and UNV =0, with eUNVe = (.

O'|UO'

if M %5 M’ with o € (UUV)*, then M =" M’




Exchange lemma:
finite sequences (3)

Lemma: Let U,V C T and U NV = (), with oUﬂVO = 0.

O\luo

if M %5 M’ with o € (UUV)*, then M =" M’

" ——
qug.uvn_lvn\

UtU9... Um—1Um,
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Exchange lemma:
finite sequences (3)

Lemma: Let U,V C T and U NV = (), with oUﬂVO = 0.

O\luo

if M %5 M’ with o € (UUV)*, then M =" M’

" ——
vlvg...vn_lvn\

Un—1 (V)
’Ul> U2> > > n: /
U1 U9 : Um —1 WU,

— — — > —5

e N ———
ulug...um_lum\
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Exchange lemma:
finite sequences (3)

Lemma: Let U,V C T and U NV = (), with oUﬂVO = 0.

O\luo

if M %5 M’ with o € (UUV)*, then M =" M’

" ——
qug.uvn_lvn\

UtU9... Um—1Um,
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Exchange lemma:
finite sequences (3)

Lemma: Let UV C T and UNV =0, with eUNVe = (.

O'|UO'

if M %5 M’ with o € (UUV)*, then M =" M’

U V1V9...Vp_1Un
\

U1u2uimn_1uWK
/4
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Notation Aw

Given a set A we denote by A%
the set of infinite sequences of elements in A, i.e.:

Aw:{CZlCLQ“' ‘ CL1,CL2,...€A}

24



Exchange lemma:
infinite sequences (4)

Lemma: Let U,V C T and UNV =), with eUNVe =1

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

25



Exchange lemma:
infinite sequences (4)

Lemma: Let U,V CT and UNV =), with eUNVe =10

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

o —
vlvguxun_lvn.”\

u1u2nnmn_1unk
4
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Exchange lemma:
infinite sequences (4)

Lemma: Let U,V CT and UNV =), with eUNVe =10

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

o —
vlvguxun_lvn.”\

UTL—]_ Un o e
’Ul> ’02> > > >
U1 X Um —1 Um,

—L =2 > T

e N ———
u1u2nnmn_1unk
4
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Exchange lemma:
infinite sequences (4)

Lemma: Let U,V CT and UNV =), with eUNVe =10

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

o —
vlvguxun_lvn.”\

u1u2nnmn_1unk
4
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Exchange lemma:
infinite sequences (4)

Lemma: Let U,V CT and UNV =), with eUNVe =10

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

U V1UV2... U5 —1Un ...

“ 1 e N———
u1u2nnmn_1uwk
4
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Exchange lemma:
infinite sequences (5)

Lemma: Let U,V CT and UNV =, with eUNVe =10
If M — with ¢ € (U U V) and oy € U¥, then M LN

30



Exchange lemma:
infinite sequences (5)

Lemma: Let U,V CT and UNV =, with eUNVe =10
If M — with ¢ € (U U V) and oy € U¥, then M LN

o —
vlvguxun_lvn.”\

u1u2ulmn_1uwp”\
/4

31



Exchange lemma:
infinite sequences (5)

Lemma: Let U,V CT and UNV =, with eUNVe =10
If M — with ¢ € (U U V) and oy € U¥, then M LN

o ——
vlvg...vn_lvn\

\

Vn—1 U
V1 Vo n N n N
> > > H 4 /4 /4
2 \/2 U1 (%) Um —1 WU,
— — — > — —
#

U1u2...um_1um\

/ finite prefix T
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Exchange lemma:
infinite sequences (5)

Lemma: Let U,V CT and UNV =, with eUNVe =10
If M — with ¢ € (U U V) and oy € U¥, then M LN

y%
T\U vlvg...vn_lvn\
A N oo e
Z\/i U1UQ...Um_1um>

enabled
finite prefix

33



Proofs of exchange
lemmas
(optional reading)



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M’

let M — K —s M’

Clearly M’ = K — eu +ue, with k' = K — eu.
N—_——
K/

Since euNve = (), then: M — K’ with M" = M — eu

Therefore:
M=M"1+ ey — M" +ue — K' + ue = M’
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Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M’

let M — K — M’ lv K
N lu' | W



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M’

Let M — K —s M’ and K’K.uI. I=

pre-set of U ,

ATV



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M’

let M — K —s M and K/ =K — e li

Clearly M' = K" 4+ u

% w K’ is preserved
A2 by the firing of u



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M —> M’

preserved by M
the flrlng of v

let M — K —s M’ and K/ = K — eu.
Clearly M/ = K' +u

%

M Since eu N ve =

AT L



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with eu N ve =
If M — M’ then M%M'
LtM%K%M nd K/ =

%%

uNve =0, then: M" — K’



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with eu N ve =
If M — M’ then M%M'
LtM%K%M nd K/ =

%%

uNve =0, then: M" — K’



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M

iy
DA



Exchange lemma:
finite sequences (1)

Lemma: Let u,v € T with euNve = ().
If M — M’, then M — M’

IO

u

AUV



Exchange lemma:
finite sequences (1)

Lemma: Let u,v €T with eu N ve = ().
If M — M’ thenM%M’

DUINEDY

MMjL uw—s M" 1+ ye —s K' + ye = M’

m%
CHRL P



Exchange lemma:
finite sequences (2)

Lemma: Let VC T andueT\V, With ouNVe=1(.
If M == M’ with o0 € V*, then M == M’

The proof is by induction on the length of o
base (0 = ¢): trivially M — M’
induction (0 = ¢’v for some ¢’ € V* and v € V):

LetMUH,M” % M’. Note that euNve = ()

uv

By exchange lemma 1: M M
Let M 2% M™ -5 M.
By inductive hypothesis: M —» M"" — M’

Thus, M — M' .



Exchange lemma:
finite sequences (3)

Lemma: Let U,V C T and U NV = (), with oUﬂVc = ().

O\luo

if M %5 M’ with o € (UUV)*, then M =" M’

The proof is by induction on the length of oy
base (o = €): trivially oy =0
induction (o = uo’ for some uw € U and o' € U*):

Let M 2525 2% M/, with o = oguoy and oy € V*.
Note that 0’ = (01);y and eu N Ve ={

u o o)
By exchange lemma 2: M ——%— M’

Note that (0g01)jy = (01)jv = ¢’ and (ogo1)|v = oy

/
u o ‘7|V

By inductive hypothesis: M ——— M’

. Olu O|v
Since 0|y = uo’, we conclude that M —— M’
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Exchange lemma:
infinite sequences (4)

Lemma: Let U,V C T and UNV =), with eUNVe =1
o|\Uo|v

If M = with 0 € (UUV)® and oy € U*, then M —

Let 0 = o'0” with o!,, = o7y and ¢!/, = &
U U 1%

(i.e., only transitions in V' appears in ¢"’).
Such sequences exist because oy is assumed to be finite.

4

Let M’ be such that M UH/ M 2.

By Exchange Lemma (3) applied to ¢’ we have:
M /7

/ /

s M 2

We conclude by observing that:

o\ = (7|’U and oy = U(Va’iﬂ



Exchange lemma:
infinite sequences (5)

Lemma: Let U,V CTand UNV =), with eUNVe =1
If M — with ¢ € (U U V) and oy € U¥, then M LN

To prove that M Z1% it suffices to show that
every finite prefix of o;; is enabled at M.

Take any finite prefix 7' of o)y and
a corresponding finite prefix 7 of o such that
Ty = 7.

Clearly M — M’ for some suitable M’.

T|UT|V\

By Exchange Lemma (3), then M s M i.e.:
M enables 77 = 7.
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Proofs of theorems on
strong connectedness
(optional reading)



Strong connectedness
theorem

Theorem: If a weakly connected system is
live and bounded then it is strongly connected

Since the system is live and bounded, by a previous corollary: (see Lecture 11)
exists M € [My) and o such that M -2+ M and all transitions in T" occur in o.

Take any arc x — y in F"
we need to show that there is a path from y to x using arcs of F'.

We distinguish two cases:
l. xePandyeT
2. xe€Tl andy € P

50



Strong connectedness theorem (case 1)

let V={veT | y—=>"v}andU=T\V. (V is the set of transitions reachable from y)
Note that U and V are disjoint and that *U N V* = .

(to see this, suppose g € *UNV*® then v — ¢ — u for some v € V and u € U,

but then u € V', which is impossible because U =T\ V) Yy

By the Exchange Lemma (3), there exists M’ with M LNy VNV (we want to find a
We claim that M —% M. path from y to x)

o if oy = € (i.e., o does not contain any transition in U),
then oy = 0.

e otherwise (0| # €), we can apply the Exchange Lemma (5) to M ==

(O'O'---)|U O'|U0'|U...

to get M >, l.e., M >
Since o)y can occur infinitely often from M, then M’ O M.

By the Boundedness Lemma M’ = M and M WM.

Since y € V, y occurs in o}y and y € z°, then (y subtracts a token from x)
there must be some transition v that occurs in oy such that v € *x. (v adds a token to z)

Since v € V, there is a path y —* v.
We can extend this path by the arc (v, x) to get a path y —* x.
5



Strong connectedness theorem (case 2) | x

(U is the set of transitions from which x is reachab e)l
let U={uweT | u—="x}and V=T\U.
Note that U and V are disjoint and that *U N V* = 0.
(to see this, suppose g € *UNV*® then v — ¢ — u for some v € V and u € U,

but then v € U, which is impossible because V =T\ U) (we want to find a
path from y to x)

By the Exchange Lemma (3), there exists M’ with M 7% 4 OV
By the Exchange Lemma (5) applied to M ——

we get M s le., M -
Since oy can occur infinitely often from M, then M’ O M.

By the Boundedness Lemma M’ = M and M 2% M.

Since x € U, x occurs in o)y and € *y, then (z adds a token to y)
there must be some transition u that occurs in o)y such that u € y°.
(u subtracts a token from y)
Since u € U, there is a path u —™* x.
We can extend this path by the arc (y,u) to get a path y —* .
52



Strong connectedness
via invariants

Theorem: If a weakly connected net has
a positive S-invariant | and a positive T-invariant J
then it is strongly connected

Take any arc x — y In F":
we need to show that there is a path from y to = using arcs of F'.
We distinguish two cases:

l. xrePandyel
2. re€Tl andye P

53



Strong connectedness CID

via invariants: case (1) [,

Let V={veT | y—*v} and define:
/ J(t) if t €V (V is the set of transitions reachable from y) (
J'(t) = |
0 otherwise

we want to find a
path from y to x)

Take p € P:

o if J'(u) =0 for all u € *p, then:

(because J’ has no negative entries).

e otherwise, assume that J'(u) = J(u) > 0 for some u € ®p, i.e., y =* u — p.
Then, for any t € p*: y —* t and J'(t) = J(t) > 0. So:

0< Dy Jw< )y Juw=>» Jt)=>» J(

54



Strong connectedness ()

via invariants: case (1) i

_ / / (we want to find a
In both cases: Z J'(u) < Z J'(t) sath from v to x)

uc®p tep®

Then: (N -J")(p Z J' (u ZJ’(t) <0 foranype P,
ue®p tep®
i.e., N - J’ has no positive entries.

Since I'is an S-invariant: I- (N -J')=(I-N)-J' =0
and since I is positive, N-J' =0, i.e., J' is a T-invariant. Hence:

YT => JO>JT () =Iy) >0

te®x tex®

So there exists v € *x with J'(v) > 0, which means v € V, i.e., y —* v.

Since v € *z, then y —* x.
55



Strong connectedness I

via invariants: case (2) (y)

(we want to find a
path from y to x)

Take N' = (T, P, F)
N’ (i.e., invert the roles of places and transitions).

I is a positive T-invariant of N’.

J is a positive S-invariant of N'.

By case (1), N’ contains a path from y to .
So, N contains a path from y to x.

@ Then, N’ = —INT (where N is the transposed of N)
y
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