Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

12 - Some Facts

Object

$$
N \vdash \psi
$$

We survey two connectedness theorems and five exchange lemmas

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

Two theorems on strong connectedness

(whose proofs are optional reading)

Strong connectedness theorem

Theorem: If a weakly connected system is live and bounded then it is strongly connected

(the proof requires some Exchange Lemmas that we illustrate later)

Consequences

If a (weakly-connected) net is not strongly connected

then

It is not live and bounded
If it is live, it is not bounded
If it is bounded, it is not live

Example

It is now immediate to see that this system (weakly connected, not strongly connected)
cannot be live and bounded (it is live but not bounded)

Exercise

On the basis of the previous observation:
Draw a net that is bounded but not live
Draw a(nother) net that is live but not bounded
Draw a net that is neither live nor bounded
(all nets must be weakly connected)

Strong connectedness via invariants

Theorem: If a weakly connected net has a positive S-invariant I and a positive T-invariant J then it is strongly connected

Consequences

If a (weakly-connected) net is not strongly connected
then
we cannot find (two) positive S- and T-invariants

Five Exchange Lemmas (whose proofs are optional reading)

Exchange lemma:

 finite sequences (1)Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$. If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$
Let $M \xrightarrow{v} K \xrightarrow{u} M^{\prime}$.
Clearly $M^{\prime}=\underbrace{K-\bullet u}_{K^{\prime}}+u \bullet$, with $K^{\prime}=K-\bullet u$.
Since $\bullet u \cap v \bullet=\emptyset$, then: $M^{\prime \prime} \xrightarrow{v} K^{\prime}$ with $M^{\prime \prime}=M-\bullet u$
Therefore:

$$
M=M^{\prime \prime}+\bullet u \xrightarrow{u} M^{\prime \prime}+u \bullet \xrightarrow{v} K^{\prime}+u \bullet=M^{\prime}
$$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Let $M \xrightarrow{v} K \xrightarrow{u} M^{\prime}$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Let $M \xrightarrow{\hookrightarrow} K \xrightarrow{u} M^{\prime}$ and $K^{\prime}=K-\overbrace{u}$
preset of u

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$. If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$ preserved by the firing of v Let $M \stackrel{v}{\longrightarrow} K \xrightarrow{u} M^{\prime}$ and $K^{\prime}=K-\bullet u$.
Clearly $M^{\prime}=K^{\prime}+u \bullet$.

Since $\bullet u \cap v \bullet=\emptyset$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$. If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Let $M \xrightarrow{v} K \xrightarrow{u} M^{\prime}$ and $K^{\prime}=K-o u$.

Since $\bullet u \cap v \bullet=\emptyset$, then: $M^{\prime \prime} \xrightarrow{v} K^{\prime}$ with $M^{\prime \prime}=M-\bullet u$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Exchange lemma:

finite sequences (1)

Lemma: Let $u, v \in T$ with $\bullet u \cap v \bullet=\emptyset$.
If $M \xrightarrow{v u} M^{\prime}$, then $M \xrightarrow{u v} M^{\prime}$

Exchange lemma:

finite sequences (2)

Lemma: Let $V \subset T$ and $u \in T \backslash V$, with $\bullet u \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma u} M^{\prime}$ with $\sigma \in V^{*}$, then $M \xrightarrow{u \sigma} M^{\prime}$

$$
M^{\stackrel{v_{1}}{\longrightarrow} \xrightarrow{v_{2}} \xrightarrow{\because v_{n-1}} \xrightarrow{v_{n}} \xrightarrow{u} M^{\prime}, ~}
$$

Exchange lemma:

finite sequences (2)

Lemma: Let $V \subset T$ and $u \in T \backslash V$, with $\bullet u \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma u} M^{\prime}$ with $\sigma \in V^{*}$, then $M \xrightarrow{u \sigma} M^{\prime}$

$$
M^{\stackrel{v_{1}}{\longrightarrow} \xrightarrow{v_{2}} \xrightarrow{\because} \xrightarrow{v_{n-1}} \xrightarrow{u} \xrightarrow{v_{n}}} M^{\prime}
$$

Exchange lemma:

finite sequences (2)

Lemma: Let $V \subset T$ and $u \in T \backslash V$, with $\bullet u \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma u} M^{\prime}$ with $\sigma \in V^{*}$, then $M \xrightarrow{u \sigma} M^{\prime}$

$$
M \xrightarrow{\underline{u} \xrightarrow{v_{1}} \xrightarrow{v_{2}} \xrightarrow{\because} \xrightarrow{v_{n-1}} \xrightarrow{v_{n}}} M^{\prime}
$$

Exchange lemma:

finite sequences (2)

Lemma: Let $V \subset T$ and $u \in T \backslash V$, with $\bullet u \cap V \bullet=\emptyset$.
If $M \xrightarrow{\sigma u} M^{\prime}$ with $\sigma \in V^{*}$, then $M \xrightarrow{u \sigma} M^{\prime}$
The proof is by induction on the length of σ
base ($\sigma=\epsilon$): trivially $M \xrightarrow{u} M^{\prime}$
induction ($\sigma=\sigma^{\prime} v$ for some $\sigma^{\prime} \in V^{*}$ and $v \in V$):
Let $M \xrightarrow{\sigma^{\prime}} M^{\prime \prime} \xrightarrow{v u} M^{\prime}$. Note that $\bullet u \cap v \bullet=\emptyset$
By exchange lemma 1: $M \xrightarrow{\sigma^{\prime}} M^{\prime \prime} \xrightarrow{u v} M^{\prime}$.
Let $M \xrightarrow{\sigma^{\prime} u} M^{\prime \prime \prime} \xrightarrow{v} M^{\prime}$.
By inductive hypothesis: $M \xrightarrow{u \sigma^{\prime}} M^{\prime \prime \prime} \xrightarrow{v} M^{\prime}$
Thus, $M \xrightarrow{u \sigma} M^{\prime}$

Exchange lemma:

finite sequences (3)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma} M^{\prime}$ with $\sigma \in(U \cup V)^{*}$, then $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid} V} M^{\prime}$

Exchange lemma:

finite sequences (3)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma} M^{\prime}$ with $\sigma \in(U \cup V)^{*}$, then $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid V}} M^{\prime}$

[/

Exchange lemma:

finite sequences (3)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma} M^{\prime}$ with $\sigma \in(U \cup V)^{*}$, then $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid V}} M^{\prime}$

Exchange lemma:

finite sequences (3)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma} M^{\prime}$ with $\sigma \in(U \cup V)^{*}$, then $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid} V} M^{\prime}$

M

$$
\xrightarrow{u_{1}} \stackrel{u_{2}}{\cdots} \xrightarrow{u_{m}} \xrightarrow{u_{1}} \xrightarrow{u_{1} u_{2} \ldots u_{m-1} u_{m}}
$$

$$
\stackrel{v_{1}}{\longrightarrow} \stackrel{v_{2}}{\cdots} \xrightarrow{v_{n-1}} \xrightarrow{v_{n}} \prod / \Gamma
$$

Exchange lemma:

finite sequences (3)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma} M^{\prime}$ with $\sigma \in(U \cup V)^{*}$, then $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid} V} M^{\prime}$

M

M^{\prime}

Exchange lemma:

finite sequences (3)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$.
If $M \xrightarrow{\sigma} M^{\prime}$ with $\sigma \in(U \cup V)^{*}$, then $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid V}} M^{\prime}$
The proof is by induction on the length of $\sigma_{\mid U}$
base ($\sigma_{\mid U}=\epsilon$): trivially $\sigma_{\mid V}=\sigma$
induction ($\sigma_{\mid U}=u \sigma^{\prime}$ for some $u \in U$ and $\sigma^{\prime} \in U^{*}$):
Let $M \xrightarrow{\sigma_{0}} \xrightarrow{u} \xrightarrow{\sigma_{1}} M^{\prime}$, with $\sigma=\sigma_{0} u \sigma_{1}$ and $\sigma_{0} \in V^{*}$.
Note that $\sigma^{\prime}=\left(\sigma_{1}\right)_{\mid U}$ and $\bullet u \cap V \bullet=\emptyset$

By exchange lemma 2: $M \xrightarrow{u} \xrightarrow{\sigma_{0}} \xrightarrow{\sigma_{1}} M^{\prime}$.
Note that $\left(\sigma_{0} \sigma_{1}\right)_{\mid U}=\left(\sigma_{1}\right)_{\mid U}=\sigma^{\prime}$ and $\left(\sigma_{0} \sigma_{1}\right)_{\mid V}=\sigma_{\mid V}$.
By inductive hypothesis: $M \xrightarrow{u} \xrightarrow{\sigma^{\prime}} \xrightarrow{\sigma_{\mid V}} M^{\prime}$
Since $\sigma_{\mid U}=u \sigma^{\prime}$, we conclude that $M \xrightarrow{\sigma_{\mid U}} \xrightarrow{\sigma_{\mid V}} M^{\prime}$

Notation A $^{\text {w }}$

Given a set A we denote by A^{ω} the set of infinite sequences of elements in A, i.e.: $A^{\omega}=\left\{a_{1} a_{2} \cdots \mid a_{1}, a_{2}, \ldots \in A\right\}$

Exchange lemma:

infinite sequences (4)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{*}$, then $M \xrightarrow{\sigma_{\mid U \sigma} \sigma^{V}}$

Exchange lemma:

infinite sequences (4)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{*}$, then $M \xrightarrow{\sigma_{\mid U \sigma_{\mid V}}}$

Exchange lemma:

infinite sequences (4)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{*}$, then $M \xrightarrow{\sigma_{\mid U \sigma_{\mid V}}}$

Exchange lemma:

infinite sequences (4)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{*}$, then $M \xrightarrow{\sigma_{\mid U \sigma}{ }^{V}}$

M

$$
\xrightarrow{v_{1}} \stackrel{v_{2}}{\cdots} \stackrel{v_{n-1}}{\square} \xrightarrow{v_{n}} \xrightarrow{\cdots}
$$

Exchange lemma:

infinite sequences (4)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{*}$, then $M \xrightarrow{\sigma_{\mid U \sigma}{ }^{V}}$

Exchange lemma:

infinite sequences (4)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{*}$, then $M \xrightarrow{\sigma_{\mid U \sigma}{ }^{V}}$

Let $\sigma=\sigma^{\prime} \sigma^{\prime \prime}$ with $\sigma_{\mid U}^{\prime}=\sigma_{\mid U}$ and $\sigma_{\mid V}^{\prime \prime}=\sigma^{\prime \prime}$
(i.e., only transitions in V appears in $\sigma^{\prime \prime}$).

Such sequences exist because $\sigma_{\mid U}$ is assumed to be finite.
Let M^{\prime} be such that $M \xrightarrow{\sigma^{\prime}} M^{\prime} \xrightarrow{\sigma^{\prime \prime}}$.
By Exchange Lemma (3) applied to σ^{\prime} we have:
$M \xrightarrow{\sigma_{\mid U}^{\prime} \sigma_{\mid V}^{\prime}} M^{\prime} \xrightarrow{\sigma^{\prime \prime}}$.
We conclude by observing that:
$\sigma_{\mid U}=\sigma_{\mid U}^{\prime}$ and $\sigma_{\mid V}=\sigma_{\mid V}^{\prime} \sigma_{38}^{\prime \prime}$

Exchange lemma:

infinite sequences (5)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{\omega}$, then $M \xrightarrow{\sigma_{\mid U}}$

Exchange lemma:

infinite sequences (5)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$. If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{\omega}$, then $M \xrightarrow{\sigma_{\mid U}}$

Exchange lemma:

infinite sequences (5)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$.
If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{\omega}$, then $M \xrightarrow{\sigma_{\mid U}}$

I/

Exchange lemma:

infinite sequences (5)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$.
If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{\omega}$, then $M \xrightarrow{\sigma_{\mid U}}$

enabled
finite prefix

Exchange lemma:

infinite sequences (5)

Lemma: Let $U, V \subset T$ and $U \cap V=\emptyset$, with $\bullet U \cap V \bullet=\emptyset$.
If $M \xrightarrow{\sigma}$ with $\sigma \in(U \cup V)^{\omega}$ and $\sigma_{\mid U} \in U^{\omega}$, then $M \xrightarrow{\sigma_{\mid U}}$
To prove that $M \xrightarrow{\sigma_{\mid U}}$ it suffices to show that every finite prefix of $\sigma_{\mid U}$ is enabled at M.

Take any finite prefix τ^{\prime} of $\sigma_{\mid U}$ and a corresponding finite prefix τ of σ such that $\tau_{\mid U}=\tau^{\prime}$.

Clearly $M \xrightarrow{\tau} M^{\prime}$ for some suitable M^{\prime}.
By Exchange Lemma (3), then $M \xrightarrow{\tau_{\mid U} \tau_{\mid V}} M^{\prime}$, i.e.: M enables $\tau_{\mid U}=\tau^{\prime}$.

Proofs of theorems on strong connectedness (optional reading)

Strong connectedness
 theorem

Theorem: If a weakly connected system is live and bounded then it is strongly connected

Since the system is live and bounded, by a previous corollary:(see Lecture 10) exists $M \in\left[M_{0}\right\rangle$ and σ such that $M \xrightarrow{\sigma} M$ and all transitions in T occur in σ.

Take any arc $x \rightarrow y$ in F :
we need to show that there is a path from y to x using arcs of F.
We distinguish two cases:

1. $x \in P$ and $y \in T$
2. $x \in T$ and $y \in P$

Strong connectedness theorem (case 1)

Let $V=\left\{v \in T \mid y \rightarrow^{*} v\right\}$ and $U=T \backslash V$. (V is the set of transitions reachable from y) Note that U and V are disjoint and that ${ }^{\bullet} U \cap V^{\bullet}=\emptyset$.
(to see this, suppose $q \in{ }^{\bullet} U \cap V^{\bullet}$ then $v \rightarrow q \rightarrow u$ for some $v \in V$ and $u \in U$, but then $u \in V$, which is impossible because $U=T \backslash V$)

By the Exchange Lemma (3), there exists M^{\prime} with $M \xrightarrow{\sigma_{\mid U}} M^{\prime} \xrightarrow{\sigma_{\mid V}} M$ We claim that $M \xrightarrow{\sigma_{\mid V}} M$.
(we want to find a path from y to x)

- if $\sigma_{\mid U}=\epsilon$ (i.e., σ does not contain any transition in U), then $\sigma_{\mid V}=\sigma$.
- otherwise $\left(\sigma_{\mid U} \neq \epsilon\right)$, we can apply the Exchange Lemma (5) to $M \xrightarrow{\sigma \sigma \cdots}$ to get $M \xrightarrow{(\sigma \sigma \cdots)_{\mid U}}$, ie., $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid U} \cdots}$.
Since $\sigma_{\mid U}$ can occur infinitely often from M, then $M^{\prime} \supseteq M$.
By the Boundedness Lemma $M^{\prime}=M$ and $M \xrightarrow{\sigma_{\mid V}} M$.
Since $y \in V, y$ occurs in $\sigma_{\mid V}$ and $y \in x^{\bullet}$, then $\quad(y$ subtracts a token from $x)$ there must be some transition v that occurs in $\sigma_{\mid V}$ such that $v \in{ }^{\bullet} x . \quad$ (v adds a token to x)

Since $v \in V$, there is a path $y \rightarrow^{*} v$.
We can extend this path by the arc (v, x) to get a path $y \rightarrow^{*} x$.

Strong connectedness theorem (case 2)

(U is the set of transitions from which x is reachable)
Let $U=\left\{u \in T \mid u \rightarrow^{*} x\right\}$ and $V=T \backslash U$.
Note that U and V are disjoint and that ${ }^{\bullet} U \cap V^{\bullet}=\emptyset$.

By the Exchange Lemma (3), there exists M^{\prime} with $M \xrightarrow{\sigma_{\mid U}} M^{\prime} \xrightarrow{\sigma_{\mid V}} M$
By the Exchange Lemma (5) applied to $M \xrightarrow{\sigma \sigma \cdots}$
we get $M \xrightarrow{(\sigma \sigma \cdots)_{\mid U}}$, ie., $M \xrightarrow{\sigma_{\mid U} \sigma_{\mid U} \cdots}$.
Since $\sigma_{\mid U}$ can occur infinitely often from M, then $M^{\prime} \supseteq M$.
By the Boundedness Lemma $M^{\prime}=M$ and $M \xrightarrow{\sigma_{\mid U}} M$.
Since $x \in U, x$ occurs in $\sigma_{\mid U}$ and $x \in \bullet y$, then (x adds a token to y) there must be some transition u that occurs in $\sigma_{\mid U}$ such that $u \in y^{\bullet}$.
(u subtracts a token from y)
Since $u \in U$, there is a path $u \rightarrow^{*} x$.
We can extend this path by the arc (y, u) to get a path $y \rightarrow^{*} x$.

Strong connectedness via invariants

Theorem: If a weakly connected net has a positive \mathbf{S}-invariant I and a positive T-invariant \mathbf{J} then it is strongly connected

Take any arc $x \rightarrow y$ in F :
we need to show that there is a path from y to x using arcs of F. We distinguish two cases:

$$
\begin{aligned}
& \text { 1. } x \in P \text { and } y \in T \\
& \text { 2. } x \in T \text { and } y \in P
\end{aligned}
$$

Strong connectedness

 via invariants: case (1)

 via invariants: case (1)}

Let $V=\left\{v \in T \mid y \rightarrow^{*} v\right\}$ and define:
$J^{\prime}(t)=\left\{\begin{array}{lll}\mathbf{J}(t) & \text { if } t \in V & (V \text { is the set of transitions reachable from } y) \\ 0 & \text { otherwise } & \text { (we want to find a } \\ \text { path from } \mathrm{y} \text { to } \mathrm{x})\end{array}\right.$
Take $p \in P$:

- if $J^{\prime}(u)=0$ for all $u \in{ }^{\bullet} p$, then:

$$
0=\sum_{u \in \bullet p} J^{\prime}(u) \leq \sum_{t \in p^{\bullet}} J^{\prime}(t)
$$

(because J^{\prime} has no negative entries).

- otherwise, assume that $J^{\prime}(u)=\mathbf{J}(u)>0$ for some $u \in{ }^{\bullet} p$, i.e., $y \rightarrow^{*} u \rightarrow p$. Then, for any $t \in p^{\bullet}: y \rightarrow^{*} t$ and $J^{\prime}(t)=\mathbf{J}(t)>0$. So:

$$
0<\sum_{u \in \bullet p} J^{\prime}(u) \leq \sum_{u \in \bullet p} \mathbf{J}(u)=\sum_{t \in p^{\bullet}} \mathbf{J}(t)=\sum_{t \in p^{\bullet}} J^{\prime}(t)
$$

Strong connectedness

 via invariants: case (1)

 via invariants: case (1)}

In both cases:

$$
\sum_{u \in \bullet p} J^{\prime}(u) \leq \sum_{t \in p} J^{\prime}(t)
$$

Then: $\left(\mathbf{N} \cdot J^{\prime}\right)(p)=\sum_{u \in \bullet p} J^{\prime}(u)-\sum_{t \in p^{\bullet}} J^{\prime}(t) \leq 0$ for any $p \in P$,
ie., $\mathbf{N} \cdot J^{\prime}$ has no positive entries.
Since \mathbf{I} is an S-invariant: $\mathbf{I} \cdot\left(\mathbf{N} \cdot J^{\prime}\right)=(\mathbf{I} \cdot \mathbf{N}) \cdot J^{\prime}=0$ and since \mathbf{I} is positive, $\mathbf{N} \cdot J^{\prime}=\mathbf{0}$, ie., J^{\prime} is a T-invariant. Hence:

$$
\sum_{t \in \cdot x} J^{\prime}(t)=\sum_{t \in x} J^{\prime}(t) \geq J^{\prime}(y)=\mathbf{J}(y)>0
$$

So there exists $v \in \bullet x$ with $J^{\prime}(v)>0$, which means $v \in V$, ie., $y \rightarrow^{*} v$. Since $v \in{ }^{\bullet} x$, then $y \rightarrow^{*} x$.

Strong connectedness via invariants: case (2)

Take $N^{\prime}=(T, P, F)$
$\mathrm{N}^{\prime} \quad$ (i.e., invert the roles of places and transitions).

Then, $\mathbf{N}^{\prime}=-\mathbf{N}^{\top}$ (where \mathbf{N}^{\top} is the transposed of \mathbf{N})
I is a positive T-invariant of N^{\prime}.
\mathbf{J} is a positive S -invariant of N^{\prime}.
By case (1), N^{\prime} contains a path from y to x. So, N contains a path from y to x.

