Business Processes Modelling MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni
08 - Petri nets basics

Object

Formalization of the basic concepts of Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

Petri nets: basic definitions

Success due to simple and clean graphical and conceptual representation

Von der Fakultät für Mathematik und Physik der Technischen Ilochschule Darmstadt
zur Erlangung des Grades eines
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
Doktors der Naturwissenschaften
(Dr. rer.nat.)
(Dr. rer.nat.)
genehmigte
genehmigte
Dissertation
Dissertation
vorgelegt von
vorgelegt von
Carld_damPetri
Carld_damPetri
aus Leipzig
aus Leipzig
Referent: Prof.Dr.rer.techn.A.Walther Korreferent: Prof.Dr.Ing.Il.Unger
Tag der Einreichung:
Tag der mündlichen Prüfung:

Petri nets for us

Formal and abstract business process specification
Formal: the semantics of process instances becomes well defined and not ambiguous

Abstract: execution environment is disregarded
(Remind about separation of concerns)

Places

A place can stand for
a state
a medium
a buffer
a condition
a repository of resources
a type
a memory location

Transitions

A transition can stand for an operation
a calculation an evaluation
a transformation
a transportation
a task
an activity
a decision

Tokens

A token can stand for a physical object a piece of data a record a resource an activation mark a message a document
a case a value

Notation: from sets...

Let S be a set.
Let $\wp(S)$ denote the set of sets over S.

Elements $A \in \wp(S)$ (i.e., $A \subseteq S$)
are in bijective correspondence with functions $f: S \rightarrow\{0,1\}$
$x \in A$ iff $f_{A}(x)=1$

Sets vs Multisets

Set

Order of elements does not matter Each element appears at most once

Multiset

Order of elements does not matter

Each element can appear multiple times

Notation: ... to multisets

Let $\mu(S)$ (or S^{\oplus}) denote the set of multisets over S.

Elements $B \in \mu(S)$ are in bijective correspondence with functions $M: S \rightarrow \mathbb{N}$
$M_{B}(x)$ is the number of instances of x in B
$x \in B$ iff $M_{B}(x)>0$

Marking

A marking $M: P \rightarrow \mathbb{N}$ denotes the number of tokens in each place

The marking of a Petri net represents its state
$M(a)=0$ denotes the absence of tokens in place a

Notation: sets

Empty set:
$\emptyset=\{ \}$ is such that $x \notin \emptyset$ for all $x \in S$

Set inclusion:
we write $A \subseteq B$ if $x \in A$ implies $x \in B$

Set strict inclusion:
we write $A \subset B$ if $A \subseteq B$ and $A \neq B$

Set union:
$A \cup B$ is the set s.t. $x \in(A \cup B)$ iff $x \in A$ or $x \in B$

Set difference:
$A-B$ is the set s.t. $x \in(A-B)$ iff $x \in A$ and $x \notin B$

Notation: multisets

Empty multiset:
\emptyset is such that $\emptyset(x)=0$ for all $x \in S$

Multiset containment:
we write $M \subseteq M^{\prime}$ if $M(x) \leq M^{\prime}(x)$ for all $x \in S$

Multiset strict containment:
we write $M \subset M^{\prime}$ if $M \subseteq M^{\prime}$ and $M \neq M^{\prime}$

Multiset union:
$M+M^{\prime}$ is the multiset s.t. $\left(M+M^{\prime}\right)(x)=M(x)+M^{\prime}(x)$ for all $x \in S$
Multiset difference (defined only if $M \supseteq M^{\prime}$):
$M-M^{\prime}$ is the multiset s.t. $\left(M-M^{\prime}\right)(x)=M(x)-M^{\prime}(x)$ for all $x \in S$

Operations on Multisets

Notation: multisets

Multiset $M=\left\{k_{1} x_{1}, k_{2} x_{2}, \ldots, k_{n} x_{n}\right\}$ as formal sum:
$k_{1} x_{1}+k_{2} x_{2}+\ldots+k_{n} x_{n}$
$\sum_{i=1}^{n} k_{i} x_{i}$

Question time

$$
\begin{aligned}
& 3 a+2 b \stackrel{?}{\subseteq} 2 a+3 b+c \\
& 3 a+2 b \stackrel{?}{\supseteq} 2 a+3 b+c \\
& a+2 b \stackrel{?}{\subsetneq} 2 a+3 b \\
& (a+2 b)+(2 a+c)=? \\
& (2 a+3 b)-(2 a+b)=? \\
& (2 a+2 b)-(a+c)=?
\end{aligned}
$$

Question time

$$
\begin{array}{ll}
3 a+2 b \stackrel{?}{\subseteq} 2 a+3 b+c & \text { No } \\
3 a+2 b \stackrel{?}{\varrho} 2 a+3 b+c & \text { No } \\
a+2 b \stackrel{?}{\subset} 2 a+3 b & \text { Yes } \\
& \\
(a+2 b)+(2 a+c)=? & 3 a+2 b+c \\
(2 a+3 b)-(2 a+b)=? & 2 b
\end{array}
$$

$$
(2 a+2 b)-(a+c)=? \quad \text { Not defined }
$$

Petrinets

A Petri net is a tuple $\left(P, T, F, M_{0}\right)$ where

- P is a finite set of places;
- T is a finite set of transitions;
- $F \subseteq(P \times T) \cup(T \times P)$ is a flow relation;
- $M_{0}: P \rightarrow \mathbb{N}$ is the initial marking. (i.e. $M_{0} \in \mu(P)$)

Example

$$
\begin{aligned}
& P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}\right\} \\
& T=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\} \\
& F=\left\{\left(p_{1}, t_{1}\right),\left(t_{1}, p_{2}\right), \ldots ?\right\} \\
& M_{0}=2 p_{3}+\ldots ?
\end{aligned}
$$

Pre-set and post-set

A place p is an input place for transition t iff

$$
(p, t) \in F
$$

We let $\bullet t$ denote the set of input places of t. (pre-set of t)

A place p is an output place for transition t iff

$$
(t, p) \in F
$$

We let $t \bullet$ denote the set of output places of t. (post-set of t)

Example: pre and post

Pre-set and post-set

Analogously, we let
$\bullet p$ denote the set of transitions that share p as output place $p \bullet$ denote the set of transitions that share p as input place

$$
\begin{array}{rlr}
\text { Formally: } \\
\bullet x=\{y \mid(y, x) \in F\} & \text { pre-set } \\
x \bullet=\{y \mid(x, y) \in F\} & \text { post-set }
\end{array}
$$

Question time

$$
\bullet t_{1}=?
$$

$$
t_{1} \bullet=?
$$

$$
\bullet t_{2}=?
$$

$$
t_{2} \bullet=?
$$

$$
\bullet t_{3}=?
$$

$$
t_{3} \bullet=?
$$

$$
\bullet t_{4}=?
$$

$$
t_{4} \bullet=?
$$

$$
\bullet t_{5}=?
$$

$$
t_{5} \bullet=?
$$

$$
\begin{array}{ll}
\bullet p_{1}=? & p_{1} \bullet=? \\
\bullet p_{2}=? & p_{2} \bullet=? \\
\bullet p_{3}=? & p_{3} \bullet=? \\
\bullet p_{4}=? & p_{4} \bullet=? \\
\bullet p_{5}=? & p_{5} \bullet=? \\
\bullet p_{6}=? & p_{6} \bullet=? \\
\bullet p_{7}=? & p_{7} \bullet=?
\end{array}
$$

Petri nets: enabling and firing

Enabling M[$\dagger>$

A transition t is enabled at marking M iff $\bullet \subseteq M$ and we write $M \xrightarrow{t}$ (also $M[t\rangle)$

A transition is enabled if each of its input places contains at least one token

Question time

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

Which of the following holds true?

- $M_{0} \xrightarrow{t_{1}}$
- $M_{0} \xrightarrow{t_{2}}$
- $M_{0} \xrightarrow{t_{3}}$
- $M_{0} \xrightarrow{t_{7}}$

Question time

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

Which of the following holds true?

- $M_{0} \xrightarrow{t_{1}}$ Yes
- $M_{0} \xrightarrow{t_{2}}$ Yes
- $M_{0} \xrightarrow{t_{3}}$

No (no token in p_{4})

- $M_{0} \xrightarrow{t_{7}} \quad$ No (no token in p_{4})

Firing $M\left[\dagger>M^{\prime}\right.$

A transition t that is enabled at M can fire.
The firing of t at M changes the state to

$$
M^{\prime}=M-\bullet t+t \bullet
$$

and we write $M \xrightarrow{t} M^{\prime}$ (also $M[t\rangle M^{\prime}$)

When a transition fires
it consumes a token from each input place it produces a token into each output place

Question time

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

Which of the following holds true?

- $M_{0} \xrightarrow{t_{1}} p_{3}+p_{4}+p_{5}+p_{6}$
- $M_{0} \xrightarrow{t_{2}} p_{1}+p_{4}+p_{6}$
- $M_{0} \xrightarrow{t_{4}} 2 p_{1}+2 p_{2}+2 p_{3}+p_{5}$

Question time

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

Which of the following holds true?

- $M_{0} \xrightarrow{t_{1}} p_{3}+p_{4}+p_{5}+p_{6}^{\mathrm{No}\left(2 p_{6}\right)}$
- $M_{0} \xrightarrow{t_{2}} p_{1}+p_{4}+p_{6}$ Yes
- $M_{0} \xrightarrow{t_{4}} 2 p_{1}+2 p_{2}+2 p_{3}+p_{5}$ Yes

Some remarks

Firing is an atomic action
Our semantics is interleaving: multiple transitions may be enabled, but only one fires at a time

The network is static, but the overall number of tokens may vary over time (if transitions are fired for which the number of input places is not equal to the number of output places)
http://woped.dhbw-karlsruhe.de/woped/

WoPeD

Workflow Petri Net Designer
 Download WoPeD at sourceforge!

Notation

We write $M \rightarrow$ if $M \xrightarrow{t}$ for some transition t
We write $M \rightarrow M^{\prime}$ if $M \xrightarrow{t} M^{\prime}$ for some transition t
We write $M \stackrel{t}{\rightarrow}$ if transition t is not enabled at M
We write $M \nrightarrow$ if no transition is enabled at M

Example

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

We can write that

- $M_{0} \longrightarrow$
- $M_{0} \longrightarrow p_{1}+p_{4}+p_{6}$ (by firing (2)
- $M_{0} \xrightarrow{\dagger_{7}}$
- $p_{1}+p_{5} \nrightarrow$

Firing sequence

Let $\sigma=t_{1} t_{2} \ldots t_{n-1} \in T^{*}$ be a sequence of transitions.
We write $M \xrightarrow{\sigma} M^{\prime}($ and $M \xrightarrow{\sigma})$ if:
there is a sequence of markings M_{1}, \ldots, M_{n}
with $M=M_{1}$ and $M^{\prime}=M_{n}$
and $M_{i} \xrightarrow{t_{i}} M_{i+1}$ for $1 \leq i<n$
(i.e. $M=M_{1} \xrightarrow{t_{1}} M_{2} \xrightarrow{t_{2}} \ldots \xrightarrow{t_{n-1}} M_{n}=M^{\prime}$)

Reachable markings [M>

We write $M \xrightarrow{*} M^{\prime}$ if $M \xrightarrow{\sigma} M^{\prime}$ for some $\sigma \in T^{*}$
A marking M^{\prime} is reachable from M if $M \xrightarrow{*} M^{\prime}$
Note that $M \xrightarrow{\epsilon} M$ for ϵ the empty sequence
The set of markings reachable from M is often denoted:

$$
\operatorname{reach}(M) \text { or also }[M\rangle
$$

Question time

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

Which of the following holds true?

- $M_{0} \xrightarrow{t_{1} t_{4} t_{2} t_{3}}$
$-M_{0} \xrightarrow{t_{2} t_{7} t_{4}}$
- $M_{0} \xrightarrow{t_{1} t_{2} t_{7}}$
- $M_{0} \xrightarrow{t_{1} t_{4} t_{2} t_{1}}$

Question time

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

Which of the following holds true?

- $M_{0} \xrightarrow{t_{1} t_{4} t_{2} t_{3}}$ Yes
- $M_{0} \xrightarrow{t_{2} t_{7} t_{4}} \quad$ Yes
- $M_{0} \xrightarrow{t_{1} t_{2} t_{7}}$ No (t_{2} not enabled)
- $M_{0} \xrightarrow{t_{1} t_{4} t_{2} t_{1}}$

No (t_{1} not enabled)

Example

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

We have that

- $M_{0} \xrightarrow{t_{1} t_{4} t_{2} t_{3}} p_{4}+p_{5}+p_{6}$
- $M_{0} \xrightarrow{t_{2} t_{7} t_{4}} 2 p_{1}+2 p_{2}+p_{3}+p_{6}$
- $M_{0} \xrightarrow{t_{1} t_{4} t_{3} t_{2} t_{7}} p_{2}+p_{5}+2 p_{6}$

Infinite sequence

Let $\sigma=t_{1} t_{2} \ldots \in T^{\omega}$ be an infinite sequence of transitions.
We write $M \xrightarrow{\sigma}$ if:
there is an infinite sequence of markings M_{1}, M_{2}, \ldots
with $M=M_{1}$ and $M_{i} \xrightarrow{t_{i}} M_{i+1}$ for $1 \leq i$
(i.e. $M=M_{1} \xrightarrow{t_{1}} M_{2} \xrightarrow{t_{2}} \ldots$)

Example

$$
M_{0}=p_{1}+p_{2}+p_{3}+p_{5}+p_{6}
$$

We have that

- $M_{0} \xrightarrow{t_{1} t_{4} t_{1} t_{4} t_{1} t_{4} \cdots}$
- $M_{0} \xrightarrow{t_{1} t_{4} t_{7} t_{1} t_{4} t_{7} t_{1} t_{4} t_{7} \cdots}$

Enabled sequence

We say that an occurrence sequence σ is enabled if $M \xrightarrow{\sigma}$
(σ can be finite or infinite)

Note that an infinite sequence can be represented as
a map $\sigma: \mathbb{N} \rightarrow T$, where $\sigma(i)=t_{i}$

More on sequences: concatenation \& prefix

Concatenation:
finite + finite $=$ finite
for $\sigma_{1}=a_{1} \ldots a_{n}$ and $\sigma_{2}=b_{1} \ldots b_{m}$, we let $\sigma_{1} \sigma_{2}=a_{1} \ldots a_{n} b_{1} \ldots b_{m}$ for $\sigma_{1}=a_{1} \ldots a_{n}$ and $\sigma_{2}=b_{1} b_{2} \ldots$, we let $\sigma_{1} \sigma_{2}=a_{1} \ldots a_{n} b_{1} b_{2} \ldots$ finite + infinite $=$ infinite
σ is a prefix of σ^{\prime} if $\sigma=\sigma^{\prime}$ or $\sigma \sigma^{\prime \prime}=\sigma^{\prime}$ for some $\sigma^{\prime \prime} \neq \epsilon$ σ is a proper prefix of σ^{\prime} if $\sigma \sigma^{\prime \prime}=\sigma^{\prime}$ for some $\sigma^{\prime \prime} \neq \epsilon$

Enabledness

Proposition: $M \xrightarrow{\sigma}$ iff $M \xrightarrow{\sigma^{\prime}}$ for every prefix σ^{\prime} of σ
(\Rightarrow) immediate from definition
(\Leftarrow) trivial if σ is finite (σ itself is a prefix of σ)
When σ is infinite: taken any $i \in \mathbb{N}$ we need to prove that $t_{i}=\sigma(i)$ is enabled after the firing of the prefix $\sigma^{\prime}=t_{1} t_{2} \ldots t_{i-1}$ of σ.

But this is obvious, because

$$
M \xrightarrow{t_{1}} M_{1} \xrightarrow{t_{2}} \ldots \xrightarrow{t_{i-1}} M_{i-1} \xrightarrow{t_{i}} M_{i}
$$

is also a finite prefix of σ and therefore $M_{i-1} \xrightarrow{t_{i}}$

More on sequences: projection

Restriction: (also extraction / projection) given $T^{\prime} \subseteq T$ we inductively define $\sigma_{\mid T^{\prime}}$ as:

$$
\epsilon_{\mid T^{\prime}}=\epsilon \quad(t \sigma)_{\mid T^{\prime}}= \begin{cases}t\left(\sigma_{\mid T^{\prime}}\right) & \text { if } t \in T^{\prime} \\ \sigma_{\mid T^{\prime}} & \text { if } t \notin T^{\prime}\end{cases}
$$

Example

$$
\begin{aligned}
& =t_{1}\left(t_{4} t_{7} t_{1} t_{4} t_{7}\right)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4}\left(t_{7} t_{1} t_{4} t_{7}\right)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4}\left(t_{1} t_{4} t_{7}\right)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4} t_{1}\left(t_{4} t_{7}\right)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4} t_{1} t_{4}\left(t_{7}\right)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4} t_{1} t_{4}\left(t_{7} \epsilon\right)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4} t_{1} t_{4}(\epsilon)_{\mid\left\{t_{1}, t_{4}\right\}} \\
& =t_{1} t_{4} t_{1} t_{4} \epsilon \\
& =t_{1} t_{4} t_{1} t_{4}
\end{aligned}
$$

Exercises

Determine the pre- and post-set of each element
Which are the currently enabled transitions?
For each of them, which state would the firing lead to?
What are the reachable states?

Exercises

Which are the currently enabled transitions?
For each of them, which state would the firing lead to?
What are the reachable states?

Petri nets:

occurrence graph

Occurrence graph

(aka Reachability graph)

The reachability graph is a graph that represents all possible occurrence sequences of a net

Nodes of the graphs = reachable markings Arcs of the graphs $=$ firings

Formally, $O G(N)=\left(\left[M_{0}\right\rangle, A\right)$ where $A \subseteq\left[M_{0}\right\rangle \times T \times\left[M_{0}\right\rangle$ s.t.

$$
\left(M, t, M^{\prime}\right) \in A \quad \text { iff } \quad M \xrightarrow{t} M^{\prime}
$$

How to compute $O G(N)$

\author{

1. Initially $R=\left\{M_{0}\right\}$ and $A=\varnothing$
}

How to compute $O G(N)$

1. Initially $R=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a marking $M \in R$ and a transition $t \in T$ such that 1. M enables t and there is no arc labelled t leaving from M

How to compute $O G(N)$

1. Initially $R=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a marking $M \in R$ and a transition $t \in T$ such that 1. M enables t and there is no arc labelled t leaving from M
3. Let $M^{\prime}=M-\cdot t+t \cdot$

How to compute $O G(N)$

1. Initially $R=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a marking $M \in R$ and a transition $t \in T$ such that 1. M enables t and there is no arc labelled t leaving from M
3. Let $M^{\prime}=M-\cdot t+t \cdot$
4. Add M^{\prime} to R and $\left(M, t, M^{\prime}\right)$ to A

How to compute $O G(N)$

1. Initially $R=\left\{M_{0}\right\}$ and $A=\varnothing$
2. Take a marking $M \in R$ and a transition $t \in T$ such that
3. M enables t and there is no arc labelled t leaving from M
4. Let $M^{\prime}=M-\cdot t+t \cdot$
5. Add M^{\prime} to R and (M, t, M^{\prime}) to A
6. Repeat steps $2,3,4$ until no new arc can be added

How to compute $O G(N)$

The occurrence graph can be constructed as follows:

1. Nodes $=\{ \}$, Arcs $=\{ \}$, Todo $=\left\{M_{0}\right\}$
2. $M=n e x t($ Todo $)$
3. Nodes $=$ Nodes $\cup\{M\}$, Todo $=$ Todo $\backslash\{M\}$
4. Firings $=\left\{\left(M, t, M^{\prime}\right) \mid \exists t \in T, \exists M^{\prime} \in \mu(P), M \xrightarrow{t} M^{\prime}\right\}$
5. New $=\left\{M^{\prime} \mid\left(M, t, M^{\prime}\right) \in\right.$ Firings $\} \backslash($ Nodes \cup Todo $)$
6. Todo $=$ Todo \cup New, Arcs $=$ Arcs \cup Firings
7. isEmpty(Todo) ? stop $:_{57}^{\text {goto } 2}$

Example: traffic light

red

Example: traffic light

green

Example: traffic light

Example: traffic light

Example: two traffic

lights
red + red'

Example: two traffic

red + red'

(we omit arc labels
for readability issues)

Example: two traffic

> red + green'

red + red'

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

(we omit arc labels
for readability issues)

Example: two traffic

lights

2 red

Example: two traffic

lights

(2 red

Example: two traffic

lights

Example: two traffic

lights

Example: two traffic

 lights

Example: two traffic

lights

Example: two traffic

lights

Example: two traffic

lights

Question time

Complete the net in such a way that the two lights
can never be green at the same time

Question time

Complete the net in such a way that the two lights can never be green at the same time

Exercises

Draw the reachability graph of the last net

Modify the net so to guarantee that green alternate on the two traffic lights and then draw the reachability graph

Play the "token games" on the above nets using Workflow Petri net Designer:
http://www.woped.org

Exercise:

German traffic lights

German traffic lights have an extra phase: traffic lights turn not suddenly from red to green but give a red light together with a yellow light before turning to green.

Identify the possible states and model the transition system that lists all possible states and state transitions.

Provide a Petri net that is able to behave exactly like a German traffic light. There should be three places indicating the state of each light and make sure that the Petri net does not allow state transitions which should not be possible.

Exercise:

Producer and consumer

Model a process with one producer and one consumer:
Each one is either busy or free.
Each one alternates between these two states
After every production cycle the producer puts a product in a buffer and the consumer consumes one product from this buffer (when available) per cycle.

Draw the reachability graph How to model 4 producers and 3 consumers connected through a single buffer?
How to limit the size of the buffer to 2 items?

Exercise:

Dining philosophers

The problem is originally due to E.W. Dijkstra (and soon elaborated by T. Hoare) as an examination question on a synchronization problem where five computers competed for access to five shared tape drive peripherals.

It can be used to illustrate several important concepts in concurrency (mutual exclusion, deadlock, starvation)

Exercise: Dining philosophers

The life of a philosopher consists of an alternation of thinking and eating

Five philosophers are living in a house where a table is laid for them, each philosopher having his own place at the table

Their only problem (besides those of philosophy) is that the dish served is a very difficult kind of spaghetti, that has to be eaten with two forks. There are two forks next to each plate, so that presents no difficulty: as a consequence, however, no two neighbours may be eating simultaneously.

Exercise: Dining

philosophers

Design a net for representing the dining philosophers problem, then use WoPeD to compute the reachability graph
image taken from wikipedia philosophers clockwise from top: Plato, Konfuzius, Socrates, Voltaire and Descartes

Exercise

Use a Petri net to model a circular railway system with four stations ($\mathrm{st}_{1}, \mathrm{st}_{2}, \mathrm{st}_{3}, \mathrm{st}_{4}$) and one train

At each station passengers may
"hop on" or "hop off"
(this is impossible when the train is moving)
The train has a capacity of 50 persons
(if the train is full no passenger can hop on, if the train is empty no passenger can hop off)

What is the number of reachable states?

