
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

08 - Petri nets basics

1

http://www.di.unipi.it/~bruni

Object

2

Formalization of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

https://www7.in.tum.de/~esparza/bookfc.html

Petri nets:
basic definitions

3

Carl Adam Petri

4

July 12, 1926 - July 2, 2010
http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Introduced in 1962 (Petri’s PhD thesis)
60’s and 70’s main focus on theory
80‘s focus on tools and applications

Now applied in several fields

Success due to simple and clean
graphical and conceptual

representation

http://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Petri nets for us

5

Formal and abstract business process specification

Formal: the semantics of process instances becomes
well defined and not ambiguous

Abstract: execution environment is disregarded

(Remind about separation of concerns)

Places

6

A place can stand for
a state

a medium
a buffer

a condition
a repository of resources

a type
a memory location

...

Transitions

7

A transition can stand for
an operation
a calculation
an evaluation

a transformation
a transportation

a task
an activity

...

Tokens

8

A token can stand for
a physical object
a piece of data

a record
a resource

an activation mark
a message
a document

a case
a value

...

Notation: from sets…

9

Let S be a set.
Let }(S) denote the set of sets over S.

Elements A 2 }(S) (i.e., A ✓ S)
are in bijective correspondence with
functions f : S ! {0, 1}

x 2 A i↵ fA(x) = 1

Sets vs Multisets

10

Multisets

PAGE 62

Set Multiset

• order of elements
 does not matter
• same element may
 appear multiple times

• order of elements
 does not matter
• same element
 appears only once

Multisets

PAGE 62

Set Multiset

• order of elements
 does not matter
• same element may
 appear multiple times

• order of elements
 does not matter
• same element
 appears only once

Order of elements does not matter

Each element appears at most once

Order of elements does not matter

Each element can appear multiple times

Notation: … to multisets

11

Let µ(S) (or S�) denote the set of multisets over S.

Elements B 2 µ(S) are in bijective correspondence with
functions M : S ! N

MB(x) is the number of instances of x in B
x 2 B i↵ MB(x) > 0

Marking

12

A marking M : P ! N denotes the number of tokens in each place

M(a) = 0 denotes the absence of tokens in place a

The marking of a Petri net represents its state

Notation: sets

13

Empty set:
; = { } is such that x 62 ; for all x 2 S

Set inclusion:
we write A ✓ B if x 2 A implies x 2 B

Set strict inclusion:
we write A ⇢ B if A ✓ B and A 6= B

Set union:
A [B is the set s.t. x 2 (A [B) i↵ x 2 A or x 2 B

Set di↵erence:
A�B is the set s.t. x 2 (A�B) i↵ x 2 A and x 62 B

Notation: multisets

14

Empty multiset:
; is such that ;(x) = 0 for all x 2 S

Multiset containment:
we write M ✓ M 0 if M(x) M 0(x) for all x 2 S

Multiset strict containment:
we write M ⇢ M 0 if M ✓ M 0 and M 6= M 0

Multiset union:
M +M 0 is the multiset s.t. (M +M 0)(x) = M(x) +M 0(x) for all x 2 S

Multiset di↵erence (defined only if M ◆ M 0):
M �M 0 is the multiset s.t. (M �M 0)(x) = M(x)�M 0(x) for all x 2 S

Operations on Multisets

15

Calculating with multisets

PAGE 63

+ =

- undefined

Notation: multisets

16

Multiset M = { k1x1, k2x2, ..., knxn} as formal sum:

k1x1 + k2x2 + ...+ knxn

nX

i=1

kixi

Question time

17

3a+ 2b
?
✓ 2a+ 3b+ c

3a+ 2b
?
◆ 2a+ 3b+ c

a+ 2b
?
⇢ 2a+ 3b

(a+ 2b) + (2a+ c) = ?

(2a+ 3b)� (2a+ b) = ?

(2a+ 2b)� (a+ c) = ?

Petri nets

19

A Petri net is a tuple (P, T, F,M0) where

• P is a finite set of places;

• T is a finite set of transitions;

• F ✓ (P ⇥ T) [(T ⇥ P) is a flow relation;

• M0 : P ! N is the initial marking.
(i.e. M0 2 µ(P))

Example

20

P = {p1, p2, p3, p4, p5, p6, p7}
T = {t1, t2, t3, t4, t5}
F = {(p1, t1), (t1, p2), ... ? }
M0 = 2p3 + ... ?

Pre-set and post-set

21

A place p is an input place for transition t i↵
(p, t) 2 F

We let •t denote the set of input places of t.
(pre-set of t)

A place p is an output place for transition t i↵
(t, p) 2 F

We let t• denote the set of output places of t.
(post-set of t)

Example: pre and post

22

q0 q2

t
•t = { q0, q2 }
t• = { q0 }

Pre-set and post-set

23

Analogously, we let
•p denote the set of transitions that share p as output place
p• denote the set of transitions that share p as input place

Formally:
•x = { y | (y, x) 2 F }
x• = { y | (x, y) 2 F }

pre-set
post-set

Question time

24

•p1 = ?
•p2 = ?
•p3 = ?
•p4 = ?
•p5 = ?
•p6 = ?
•p7 = ?

p1• = ?
p2• = ?
p3• = ?
p4• = ?
p5• = ?
p6• = ?
p7• = ?

t1• = ?
t2• = ?
t3• = ?
t4• = ?
t5• = ?

•t1 = ?
•t2 = ?
•t3 = ?
•t4 = ?
•t5 = ?

Petri nets:
enabling and firing

25

Enabling M[t>

26

A transition t is enabled at marking M i↵ •t ✓ M

and we write M
t�! (also M [ti)

A transition t that is enabled at M can fire.
The firing of t at M changes the state to

M 0 = M � •t+ t•

and we write M
t�! M 0 (also M [tiM 0)

A transition is enabled if each of its input places
contains at least one token

(a set can be seen
as a multiset

whose elements
have multiplicity 1)

Question time

27

M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1�!

• M0
t2�!

• M0
t3�!

• M0
t7�!

Firing M[t>M’

29

A transition t is enabled at marking M i↵ •t ✓ M

and we write M
t�! (also M [ti)

A transition t that is enabled at M can fire.
The firing of t at M changes the state to

M 0 = M � •t+ t•

and we write M
t�! M 0 (also M [tiM 0)

When a transition fires
it consumes a token from each input place
it produces a token into each output place

Question time

30

M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1�! p3 + p4 + p5 + p6

• M0
t2�! p1 + p4 + p6

• M0
t4�! 2p1 + 2p2 + 2p3 + p5

Some remarks

32

Firing is an atomic action

Our semantics is interleaving:
multiple transitions may be enabled,

but only one fires at a time

The network is static, but
the overall number of tokens may vary over time

(if transitions are fired for which the number of input
places is not equal to the number of output places)

http://woped.dhbw-karlsruhe.de/woped/

WoPeD (3.7.1)

http://woped.dhbw-karlsruhe.de/woped/

Notation

34

We write M ! if M
t! for some transition t

We write M ! M 0 if M
t! M 0 for some transition t

We write M 6 t! if transition t is not enabled at M

We write M 6! if no transition is enabled at M

Example

35

M0 = p1 + p2 + p3 + p5 + p6

We can write that

• M0 �!

• M0 �! p1 + p4 + p6

• M0 6 t7�!

• p1 + p5 6�!

(by firing t2)

Firing sequence

36

Let � = t1t2...tn�1 2 T ⇤ be a sequence of transitions.

We write M
�! M 0 (and M

�!) if:

there is a sequence of markings M1, ...,Mn

with M = M1 and M 0 = Mn

and Mi
ti�! Mi+1 for 1 i < n

(i.e. M = M1
t1�! M2

t2�! ...
tn�1�! Mn = M 0)

Reachable markings [M>

37

We write M
⇤! M 0 if M

�! M 0 for some � 2 T ⇤

A marking M 0 is reachable from M if M
⇤! M 0

Note that M
✏! M for ✏ the empty sequence

The set of markings reachable from M is often denoted:

reach(M) or also [Mi

Question time

38

M0 = p1 + p2 + p3 + p5 + p6

Which of the following holds true?

• M0
t1t4t2t3������!

• M0
t2t7t4�����!

• M0
t1t2t7�����!

• M0
t1t4t2t1������!

Example

40

M0 = p1 + p2 + p3 + p5 + p6

We have that

• M0
t1t4t2t3������! p4 + p5 + p6

• M0
t2t7t4�����! 2p1 + 2p2 + p3 + p6

• M0
t1t4t3t2t7�������! p2 + p5 + 2p6

Infinite sequence

41

Let � = t1t2... 2 T! be an infinite sequence of transitions.

We write M
�! if:

there is an infinite sequence of markings M1,M2, ...

with M = M1 and Mi
ti�! Mi+1 for 1 i

(i.e. M = M1
t1�! M2

t2�! ...)

Example

42

M0 = p1 + p2 + p3 + p5 + p6

We have that

• M0
t1t4t1t4t1t4···����������!

• M0
t1t4t7t1t4t7t1t4t7···��������������!

Enabled sequence

43

We say that an occurrence sequence � is enabled if M
��!

(� can be finite or infinite)

Note that an infinite sequence can be represented as
a map � : N ! T , where �(i) = ti

More on sequences:
concatenation & prefix

44

Concatenation:
for ⇥1 = a1...an and ⇥2 = b1...bm, we let ⇥1⇥2 = a1...anb1...bm
for ⇥1 = a1...an and ⇥2 = b1b2..., we let ⇥1⇥2 = a1...anb1b2...

⇥ is a prefix of ⇥� if ⇥ = ⇥� or ⇥⇥�� = ⇥� for some ⇥��

⇥ is a proper prefix of ⇥� if ⇥⇥�� = ⇥� for some ⇥��

Restriction: (also extraction / projection)
given T � � T we inductively define ⇥|T � as:

�|T � = � (t⇥)|T � =

�
t(⇥|T �) if t ⇥ T �

⇥|T � if t ⇤⇥ T �

6= ✏
6= ✏

finite + finite = finite

finite + infinite = infinite

Enabledness

45

Proposition: M
��! i↵ M

�0
�! for every prefix �0 of �

()) immediate from definition

(() trivial if � is finite (� itself is a prefix of �)

When � is infinite: taken any i 2 N we need to prove that ti = �(i) is enabled
after the firing of the prefix �0 = t1t2...ti�1 of �.

But this is obvious, because

M
t1�! M1

t2�! ...
ti�1�! Mi�1

ti�! Mi

is also a finite prefix of � and therefore Mi�1
ti�!

More on sequences:
projection

46

Concatenation:
for ⇥1 = a1...an and ⇥2 = b1...bm, we let ⇥1⇥2 = a1...anb1...bm
for ⇥1 = a1...an and ⇥2 = b1b2..., we let ⇥1⇥2 = a1...anb1b2...

⇥ is a prefix of ⇥� if ⇥ = ⇥� or ⇥⇥�� = ⇥� for some ⇥��

⇥ is a proper prefix of ⇥� if ⇥⇥�� = ⇥� for some ⇥��

Restriction: (also extraction / projection)
given T � � T we inductively define ⇥|T � as:

�|T � = � (t⇥)|T � =

�
t(⇥|T �) if t ⇥ T �

⇥|T � if t ⇤⇥ T �

Example

47

(t1t4t7t1t4t7)|{t1,t4} = t1(t4t7t1t4t7)|{t1,t4}
= t1t4(t7t1t4t7)|{t1,t4}
= t1t4(t1t4t7)|{t1,t4}
= t1t4t1(t4t7)|{t1,t4}
= t1t4t1t4(t7)|{t1,t4}
= t1t4t1t4(t7✏)|{t1,t4}
= t1t4t1t4(✏)|{t1,t4}
= t1t4t1t4✏

= t1t4t1t4

Exercises

48

Determine the pre- and post-set of each element

Which are the currently enabled transitions?
For each of them, which state would the firing lead to?

What are the reachable states?

Which transitions are enabled?

PAGE 66

r1

rg1

g1

go1

o1

or1

r2

rg2

g2

go2

o2

or2

x y

t1

p1

t2

p2

t4

t3

p3

Exercises

49

Which are the currently enabled transitions?

For each of them, which state would the firing lead to?

What are the reachable states?

Petri nets:
occurrence graph

50

Occurrence graph
(aka Reachability graph)

51

The reachability graph is a graph that represents
all possible occurrence sequences of a net

 Nodes of the graphs = reachable markings
Arcs of the graphs = firings

Formally, OG(N) = ([M0i, A) where A ✓ [M0i ⇥ T ⇥ [M0i s.t.

(M, t,M
0) 2 A i↵ M

t�! M
0

52

1. Initially R = { M0 } and A = ∅

How to compute OG(N)

53

1. Initially R = { M0 } and A = ∅
2. Take a marking M ∈ R and a transition t ∈ T such that

1. M enables t and there is no arc labelled t leaving from M

How to compute OG(N)

54

1. Initially R = { M0 } and A = ∅
2. Take a marking M ∈ R and a transition t ∈ T such that

1. M enables t and there is no arc labelled t leaving from M

3. Let M' = M - •t + t•

How to compute OG(N)

55

1. Initially R = { M0 } and A = ∅
2. Take a marking M ∈ R and a transition t ∈ T such that

1. M enables t and there is no arc labelled t leaving from M

3. Let M' = M - •t + t•
4. Add M' to R and (M,t,M') to A

How to compute OG(N)

56

1. Initially R = { M0 } and A = ∅
2. Take a marking M ∈ R and a transition t ∈ T such that

1. M enables t and there is no arc labelled t leaving from M

3. Let M' = M - •t + t•
4. Add M' to R and (M,t,M') to A
5. Repeat steps 2,3,4 until no new arc can be added

How to compute OG(N)

How to compute OG(N)

57

The occurrence graph can be constructed as follows:

1. Nodes = {}, Arcs = {}, Todo = {M0}

2. M = next(Todo)

3. Nodes = Nodes [{M}, Todo = Todo \ {M}

4. Firings = {(M, t,M 0) | 9t 2 T, 9M 0 2 µ(P), M
t�! M 0}

5. New = {M 0 | (M, t,M 0) 2 Firings} \ (Nodes [Todo)

6. Todo = Todo [New , Arcs = Arcs [Firings

7. isEmpty(Todo) ? stop : goto 2

Example: traffic light

58

red

Example: traffic light

59

red

green

go-green

Example: traffic light

60

red

green

go-green

yellow go-yellow

Example: traffic light

61

red

green

go-green

yellow go-yellow

go-red

Example: two traffic
lights

62

red + red’

Example: two traffic
lights

63

red + red’

(we omit arc labels
for readability issues)

Example: two traffic
lights

64

red + red’

green + red’

red + green’

(we omit arc labels
for readability issues)

Example: two traffic
lights

65

red + red’

green + red’

yellow + red’

red + green’

green + green’

(we omit arc labels
for readability issues)

Example: two traffic
lights

66

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’

(we omit arc labels
for readability issues)

Example: two traffic
lights

67

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

(we omit arc labels
for readability issues)

Example: two traffic
lights

68

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’
(we omit arc labels

for readability issues)

Example: two traffic
lights

69

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels
for readability issues)

Example: two traffic
lights

70

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels
for readability issues)

Example: two traffic
lights

71

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels
for readability issues)

Example: two traffic
lights

72

red + red’

green + red’

yellow + red’

red + green’

green + green’

yellow + green’
red + yellow’

green + yellow’

yellow + yellow’

(we omit arc labels
for readability issues)

Example: two traffic
lights

73

2 red

Example: two traffic
lights

74

2 red

green + red

Example: two traffic
lights

75

2 red

green + red

yellow + red

2 green

Example: two traffic
lights

76

2 red

green + red

yellow + red

2 green

green + yellow

Example: two traffic
lights

77

2 red

green + red

yellow + red

2 green

green + yellow

Example: two traffic
lights

78

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow

Example: two traffic
lights

79

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow

Example: two traffic
lights

80

2 red

green + red

yellow + red

2 green

green + yellow

2 yellow

Question time

81

Complete the net in
such a way that
the two lights

can never be green
at the same time

Question time

82

Complete the net in
such a way that
the two lights

can never be green
at the same time

Exercises

83

Draw the reachability graph of the last net

Modify the net so to guarantee that green alternate
on the two traffic lights and then draw the reachability

graph

Play the “token games” on the above nets
using Workflow Petri net Designer:

http://www.woped.org

http://www.woped.org/

Exercise:
German traffic lights

84

German traffic lights have an extra phase: traffic lights turn
not suddenly from red to green but give a red light together

with a yellow light before turning to green.

Identify the possible states and model the transition
system that lists all possible states and state transitions.

Provide a Petri net that is able to behave exactly like a
German traffic light. There should be three places

indicating the state of each light and make sure that the
Petri net does not allow state transitions which should not

be possible.

Exercise:
Producer and consumer

85

Model a process with one producer and one consumer:
Each one is either busy or free.

Each one alternates between these two states
After every production cycle the producer puts a

product in a buffer and the consumer consumes one
product from this buffer (when available) per cycle.

Draw the reachability graph
How to model 4 producers and 3 consumers connected

through a single buffer?
How to limit the size of the buffer to 2 items?

Exercise:
Dining philosophers

86

The problem is originally due to E.W. Dijkstra (and
soon elaborated by T. Hoare) as an examination

question on a synchronization problem where five
computers competed for access to five shared tape

drive peripherals.

It can be used to illustrate several important concepts
in concurrency (mutual exclusion, deadlock, starvation)

Exercise: Dining
philosophers

87

The life of a philosopher consists of
an alternation of thinking and eating

Five philosophers are living in a house where a table is laid
for them, each philosopher having his own place at the table

Their only problem (besides those of philosophy) is that the
dish served is a very difficult kind of spaghetti, that has to be
eaten with two forks. There are two forks next to each plate,
so that presents no difficulty: as a consequence, however,

no two neighbours may be eating simultaneously.

Exercise: Dining
philosophers

88

Design a net for representing the dining
philosophers problem, then use WoPeD to

compute the reachability graph

image taken from wikipedia
philosophers clockwise from top:

Plato, Konfuzius, Socrates,
Voltaire and Descartes

Exercise

89

Use a Petri net to model a circular railway system
with four stations (st1, st2, st3, st4) and one train

At each station passengers may
"hop on" or "hop off"

(this is impossible when the train is moving)

The train has a capacity of 50 persons
(if the train is full no passenger can hop on,

if the train is empty no passenger can hop off)

What is the number of reachable states?

