Methods for the specification and

verification of business processes
MPB (6 cfu, 295AA)

Roberto Bruni

'—l O http://www.di.unipi.it/~bruni
:

B i

t Q7 - Introduction to nets

http://www.di.unipi.it/~bruni

Object

55
@
S
Ex
o D
8
S
e}
t3 23
8T
Q c
Q—’ t1 4’0—’ t2 P3 send books PS t5 4>© E 5
» M
p1 receive p2 process " complete p7 3 2
order order order £%
3>
p4 update p6 Qs
inventory to
(2=
O g
=0
s0®

Overview of the basic concepts of
Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

2

https://www7.in.tum.de/~esparza/bookfc.html

Why Petri nets?

Business process analysis:
validation: testing correctness
verification: proving correctness
performance: planning and optimization

Use of Petri nets (or alike)
visual + formal
tool supported

Approaching Petri nets

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems
but do not capture concurrent behaviour directly

A Petri net is a mathematical model
of a parallel and concurrent system

in the same way that a finite automaton is a
mathematical model of a sequential system

Approaching Petri nets

Petri net theory can be studied
at several level of detalls

We study some basics aspects, relevant to the
analysis of business processes

Petri nets have a faithful and convenient graphical
representation, that we introduce and motivate next

Finite automata
examples

Applications

Finite automata are widely used, e.g., In
protocol analysis,
text parsing,
video game character behavior,

security analysis,

CPU control units,

natural language processing,
speech recognition,
mechanical devices
(like elevators, vending machines, traffic lights)

and many more ...

7

How to define an
automaton

1. ldentify the admissible states of the system
(Optional: mark some states as error states)

2. Add transitions
to move from one state to another
(no transition to recover from error states)

3. Set the initial state

4. (Optional: mark some states as final states)

Example: Turnstile

push

YOI

Example:

Vendlng Machine

select select

select select

$0.25

start

$1.00 $1.00
select select
select @
$0.25,$1.00 $0.25,$1.00 $0.25, $1.00

$0.25,$1.00

$0.25

($1.25 per soda)

Computer controlled
characters for games

States = characters behaviours

Transitions = events that cause a change in behaviour

el e et s B
Example: JUU-—="L]UL
Pac-man moves in a maze P33 O
wants to eat pills g N
is chased by ghosts R = =

by eating power pills, pac-man can defeat ghosts

Example:
Pac-Man Ghosts

Spot
Pac-Man
start — Wander the Maze < Chase Pac-Man
Lose
0 Pac-Man
Pac-Man Eats
Reach Power Pellet Pac-Man Eats
Central Base Power Pellet Power Pellet
Expires
Y
Return to Base - Flee Pac-Man
Eaten by

Pac-Man

|18

Exercises

Without adding states, draw the automata for a
SuperGhost that can’t be eaten.
It chases Pac-Man when the power pill is eaten, and
it returns to base if Pac-Man eats a piece of fruit.

Choose a favourite (video) game, and try drawing
the state automata for one of the computer
controlled characters in that game.

From automata
to Petri nets

Some basis

Are you familiar with the following concepts?

Set notation
0D acA ACB AxB p(A
Functions
f:A— B
Predicate logic
tt f PANQ PVQ —-P P—(@Q dz.Plx) Vz.P(x)

Induction principle (base cases + inductive cases)
(P(O) A Vn.(P(n)= P(succ(n)))) = Vn.P(n)

24

DFA

A Deterministic Finite Automaton (DFA) is a tuple A = (Q,X,6,qo, F)),
where

e () is a finite set of states;

e X is a finite set of input symbols;

e 0: () XX — (@ is the transition function;

e (o € (is the initial state (also called start state);

e I C () is the set of final states (also accepting states)

25

Kleene-star notation A*

Given a set A we denote by A*

the set of finite sequences of elements in A, i.e.:
A*={a1---an, | n>0Aaq,...,a, € A}

We denote the empty sequence by [& A*

For example:

A={a,b} A* ={L4&,b,aa,ab,ba,bb,aaa,aab, ...}

26

Inductive definitions

A natural number is either:
-0
= Or the successor n+1 of a natural number n

A sequence over the alphabet A is either:
- the empty sequence!
- or the juxtaposition wa of a sequence w with an
element aof A

27

Recursively defined
functions

Let us define the exponential function

base case: for any natural number k we set
exp(k,0) =1

inductive case: for any natural numbers k, nwe set
exp(k,n+1) = exp(k,nx k

28

Recursively defined
functions

Let us define the exponential function

base case: for any natural number k we set
exp(k,0) =1

inductive case: for any natural numbers k, nwe set

29

Recursively defined
functions

Let us define the exponential function

base case: for any natural number k we set
exp(k,0) =1

inductive case: for any natural numbers k, nwe set

exp() = exp K

30

Extended transition function
(destination function)

GivenA = (Q,! ,!, o, F), we debnd : Q! !'' * Q by induction

base case: For anyg# Q we let
(9, = 4

inductive case: For anyg# Q,a# ! ,w# ! ' we let

Hg.wa) = 1(Ha.w), a)

(! (q,w) returns the state reached from by observingw)

31

Extended transition function
(destination function)

GivenA = (Q,! ,!, o, F), we debnd : Q! !'' * Q by induction

base case: For anyg# Q we let
(9, = 4

inductive case: For anyg# Q,a# ! ,w# ! ' we let

(a,wa) = 1 (|! (g,)], a)

(! (q,w) returns the state reached from by observingw)

32

Extended transition function
(destination function)

GivenA = (Q,! ,!, o, F), we debnd : Q! !'' * Q by induction

base case: For anyg# Q we let
(9, = 4

inductive case: For anyg# Q,a# ! ,w# ! ' we let

L (a[wg) = ! (! (o[, a)

(! (q,w) returns the state reached from by observingw)

33

String processing

GivenA=(Q,!,!,opn,F) andw! ! ' we say thatA accept w !

(oo, W) ! F

The language of A=(Q,! ,!,qp,F) IS

L(A)={w | l(qp,w)! F}

34

Transition diagram

We representA = (Q,! ,!,p, F) as a graph s.
¥ Q Is the set of nodes;
¥{qgr"® d |q=1(qg,a} is the set of arcs.

Plus some graphical conventions:

¥ there is one special arro®tart with ™" g
¥ nodes InF are marked by double circles;

¥ nodes INQ\ F are marked by single circles.

35

String processing as
paths

A DFA accepts a string w, if there is a path in its
transition diagram such that:

It starts from the initial state
It ends in one final state

the sequence of labels in the path is exactly w

36

DFA: example

LL LL
e,
- -
alies
() N um
5 HS-
(@) \
cal-a
<~ -
S 5
~ -
S S
5 =5

DFA: question time

Start

N\

0) 1
SIS

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is L(A) ?

38

Transition table

Conventional tabular representation
its rows are Iin correspondence with states
its columns are in correspondence with input symbols
its entries are the states reached after the transition
Plus some decoration
start state decorated with an arrow

all final states decorated with *

43

Transition table

d

(g, a)

Start

DFA: example

DFA: gxercise

Does it accept 100 ? Does it accept 1010 7?
Write its transition table. What is L(A) ?

46

NF A

A Non-deterministic Finite Automaton (NFA)isatupleA=(Q,! ,!, ,F),
where

¥ Q Is a Pnite set of states;
¥ | Is a Pnite set of input symbols;
powerset of Q = set of sets over Q
¥1:Qr - is the transition function;
¥ (p # Q Is the Initial state (also called start state);

¥ F$ Qis the set of Pnal states (also accepting states)

47

NFA: example

% ——(——

Can you explain why it is not a DFA?

48

Reshaping

S S
tep 1: get a token

% (D——

Step 2: forget initial
state decoration

8 ——(——

0,1

Step 3: transitions as
boxes

3 —@
g

Step 4: forget final
states

S —O—1—®
g

Step 5: allow for more
tokens

& —O—1—®
g

Example: token game

& —O—1—®
g

1010 1

Step 6: allow for more
arcs

oo
N

Terminology

{2 e {]
Transition Place

Example' token game

oo
N

Example' token game

oo
N

Example' token game

fed o
N

Example' token game

oo
N

Example' token game

tod o
N

Some hints

Nets are bipartite graphs:
arcs never connect two places
arcs never connect two transitions

Static structure for dynamic systems:
places, transitions, arcs do not change
tokens move around places

Places are passive components
Transitions are active components:
tokens do not flow!

(they are removed or freshly created)

64

