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Chapter 2

Introduction to modeling: Linear
Programming

Our approach to address and solve logistics decision problems is the following:

1. to formulate a suitable mathematical model to represent the decision problem;

2. to implement and solve the model.

See Figure 2.1 for a graphical representation of the considered problem solving approach.
Precisely, we move within Management Science, and specifically Operations Research,
field of study which uses computer science, mathematics and statistics to solve decision
problems.

Today, electronic spreadsheets provide a simple and useful way for business people
to implement a model and analyze decision alternatives, although many other, more
sophisticated and powerful solvers exist: spreadsheet models (i.e. models implemented
via a spreadsheet) will be used hereafter.
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Figure 2.1: The problem solving approach
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14 2.1. Optimization problems

2.1 Optimization problems

The addressed problems consist in deciding how to use the limited resources available
in an efficient way. Typically, this must be accomplished by maximizing profits or
minimizing costs: i.e. the addressed problems are optimization problems.

Mathematical Programming (MP) is the area of Operations Research aiming at mod-
eling and solving optimization problems. Its applications include, among the others,
manufacturing, financial planning and logistics.

In any case, an optimization problem involves:

• decisions to be taken (e.g. how much of each product should be produced, shipped,
etc.);

• restrictions, or constraints, to be placed on the alternatives available to the deci-
sion maker (e.g. limited amount of raw materials and labor when producing);

• the goal, or objective, to be considered by the decision maker when deciding (e.g.
to choose the mix of products that maximizes profits).

2.1.1 Expressing optimization problems via mathematical models

How can we mathematically represent decisions, constraints and objective?

• decisions are represented by decision variables: x1, x2, . . . xn;

• constraints are formulated by (in)equalities:
f(x1, x2, . . . xn) ≤ b or
f(x1, x2, . . . xn) ≥ b or
f(x1, x2, . . . xn) = b

• the objective is modelled by an objective function to be maximized or minimized:
max f(x1, x2, . . . xn) or min f(x1, x2, . . . xn).

Therefore, the general mathematical model for an optimization problem is:

max /min f0(x1, x2, . . . xn) subject to

f1(x1, x2, . . . xn) ≤ b1
...
fk(x1, x2, . . . xn) ≥ bk
...
fm(x1, x2, . . . xn) = bm
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2.2 Linear Programming

Linear Programming can be used to model and solve very complicated business prob-
lems, saving companies millions of dollars. A Linear Programming (LP) problem is
a special case of the mentioned optimization problem where constraints and objective
function are linear, i.e. f0, f1, . . . fm are weighted sums (linear combinations) of the
decision variables.

An LP problem has, therefore, the following general form:

max /min c1x1 + c2x2 + · · ·+ cnxn

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...
ak1x1 + ak2x2 + · · ·+ aknxk ≥ bk
...
am1x1 + am2x2 + . . . amnxn = bm

(2.1)

where:

• c1, . . . cn are the objective function (cost) coefficients; they represent the marginal
profits (or costs) associated with the variables;

• aij denotes the coefficient in constraint i for variable xj , i = 1 . . .m, j = 1 . . . n.

2.2.1 A simple LP example

“Blue Ridge Hot Tubs” produces and sells two types of hot tubs: “Aqua-Spa” and
“Hydro-Lux”. The manager buys hot tub shells from a local supplier, and then adds
pumps and tubing to the shells to create hot tubs.

The resources available in the next production cycle are:

• 200 pumps;

• 2,880 feet of tubing;

• 1,566 production labor hours.

The operating requisites are:

• each Aqua-Spa requires 12 feet of tubing and 9 hours of labor;

• each Hydro-Lux requires 16 feet of tubing and 6 hours of labor.

The profit for the manager is 350 on each Aqua-Spa he sells and 300 on each Hydro-Lux
he sells (the manager is confident to sell each hot tub he/she produces).

The decision problem of Blue Ridge Hot Tubs can be stated in the following way: how
many Aqua-Spa and Hydro-Lux are to be produced, taking into account the limited
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resources and the operating requisites, so as to maximize the profit during the next
production cycle?

In order to express the problem via an LP model, we follow these steps:

• identify the decision variables: what are the fundamental decisions that must be
made to solve the problem?

– x1: number of Aqua-Spa hot tubs to produce;

– x2: number of Hydro-Lux hot tubs to produce;

• state the constraints as linear combinations of the decision variables:

– only 200 pumps are available, and each hot tub requires one pump:

x1 + x2 ≤ 200;

– only 1,566 labor hours are available, and each Aqua-Spa requires 9 labor
hours while each Hydro-Lux requires 6 labor hours:

9x1 + 6x2 ≤ 1,566;

– only 288 feet of tubing is available, and each Aqua-Spa requires 12 feet while
each Hydro-Lux requires 16 feet:

12x1 + 16x2 ≤ 2,880;

• state the objective function as a linear combination of the decision variables: the
manager has a profit of 350 on each Acqua-Spa he/she sells, and of 300 on each
Hydro-Lux he/she sells; therefore the total profit, to be maximized, is

max 350x1 + 300x2;

• nonnegativity constraints: we cannot produce a negative number of hot tubs:

x1 ≥ 0, x2 ≥ 0.

The overall LP model is therefore:

max 350x1 + 300x2

x1 + x2 ≤ 200

9x1 + 6x2 ≤ 1,566

12x1 + 16x2 ≤ 2,880

x1 ≥ 0

x2 ≥ 0
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2.2.2 Solving LP problems: an intuitive approach

How can we compute the best (i.e. optimal) solution? In the case of only two decision
variables, we can use a graphical approach (see G. Bigi, A. Frangioni, G. Gallo, and M.
Scutellà ((2014)) for more rigorous mathematical approaches, based on the LP Duality
Theory):

1. Plot the constraints and identify the LP feasible region; this is done by plotting
the “boundary lines” of the constraints and identifying the points (x1, x2) which
satisfy all the constraints.

For example, the boundary of the first constraint in the Blue Ridge Hot Tubs
model is the straight line defined by x1 + x2 = 200:

x1

x2

(0, 0) (200, 0)

(0, 200) x1 + x2 = 200

The shaded area is the region satisfying the first constraint (x1 + x2 ≤ 200) and
x1 ≥ 0, x2 ≥ 0. However, feasible points must also satisfy the other constraints.
So, plot the boundary line for the second constraint, i.e. 9x1 + 6x2 = 1,566:

x1

x2

(0, 0) (174, 0)

(0, 261) 9x1 + 6x2 = 1,566

Since we have to satisfy both constraints:
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x1

x2

By intersecting the two regions we obtain the region of the graph satisfying the
first two constraints. By plotting the last constraint (we already addressed the
nonnegativity ones), we get:

x1

x2

(122, 78)

optimal solution

350x1 + 300x2 = 60,000

As it is possible to observe, there is an infinite number of feasible solutions: how
can we find the best one? Fortunately, the following property holds: if an LP
problem has an optimal solution, there exists an optimal solution occurring at a
corner point or extreme point of the feasible region (black dots on the graph).
Since the number of corner points is finite, we can find an optimal solution by
comparing the objective function value of such corner points.

2. How can we discover such an optimal solution? Consider the objective function,
and fix a level of profit, e.g. 60,000:

350x1 + 300x2 = 60,000.

This equation defines a straight line, which we can plot on the graph.

If we iterate this process of drawing lines with larger and larger value of the
objective function (profit), we obtain a set of parallel lines (level curves) shifting
away from the origin: the very last level curve which still intersects the feasible
region is an optimal solution (extreme point).

In our example, (x∗1, x∗2) = (122, 78) is an optimal solution, with maximum profit
66,100.
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2.2.3 Other possible outcomes in solving LPs

Other possible outcomes in LP solving are:

1. Alternate optimal solutions; e.g. if we want to maximize x1 (the dashed line in
the figure represents a corresponding level curve) over the feasible region depicted
below:

x1

x2

alternate optimal solutions

2. Unbounded optimal solutions; e.g. if we want to maximize x1+x2 over the feasible
region depicted below:

x1

x2

100 200 300

In this case, the objective function value can be made infinitely large (for a max-
imization problem). In practice, this usually indicates that there is something
wrong with the problem formulation.

3. Infeasibility; for example:

max x1 + x2

x1 + x2 ≤ 150

x1 + x2 ≥ 200

x1 ≥ 0

x2 ≥ 0

This may be due to an error in the problem formulation; some constraints have
to be eliminated or loosened to get feasible solutions.

Finally, observe that redundant constraints may be present. A constraint is redundant
if it has no role in determining the feasible region, therefore we can remove it from the
model.
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x1

x2

redundant

References C. Ragsdale (2004): Chapter 2

2.3 Solving LP models via spreadsheets

Solving LP problems is an easy task by using spreadsheet packages, for example Excel:
just formulate the problem correctly and implement it in an accurate way. The same
concepts and techniques apply to spreadsheet packages other than Excel. Furthermore,
specialized, more powerful optimization packages do exist: Cplex, Lindo, Coin. . .

In order to implement the Blue Ridge Hot Tubs model as a spreadsheet model, we refer
the interested reader to C. Ragsdale (2004): Sections 3.3 to 3.6.

References C. Ragsdale (2004): Chapter 3

2.3.1 A production and inventory planning problem

“Upton Corporation” produces air compressors. The manager wants to plan its pro-
duction and inventory levels for the next 6 months. Table 2.1 summarizes the monthly
production costs, demands and production capacities that are expected over the next 6
months.

1 2 3 4 5 6
unit production cost 240 250 265 285 280 260
units demanded 1,000 4,500 6,000 5,500 3,500 4,000
maximum production 4,000 3,500 4,000 4,500 4,000 3,500

Table 2.1: Production costs, demands and capacities in the next six months for Upton
Corporation

The following constraints must be satisfied:

• size of the warehouse: a maximum of 6,000 units can be held in inventory at the
end of each month;

• safety stock: at least 1,500 units must be held in inventory at the end of each
month, to meet unexpected demand;
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b1 = 2,750 b2 b3 b4 b5 b6 b7

p1

1,000

p2

4,500

p3

6,000

p4

5,500

p5

3,500

p6

4,000

Figure 2.2: Time horizon planning

• current inventory: 2,750 units;

• stable workforce: the production must be greater than or equal to a half of the
monthly production capacity;

• inventory costs: the company estimates that the cost of carrying in inventory a
unit in any month is about 1.5% of the unit production cost in the same month;

• Upton estimates the number of units carried in inventory each month as the
average of the initial and final inventory level in the corresponding month.

The problem of Upton Corporation is to determine the levels of production and inven-
tory for the next 6 months so as to satisfy the monthly demands by minimizing the
overall (production + inventory) costs. This is an example of a simple lot-sizing model.

In order to state the problem, let us define the following decision variables:

• pi: number of units produced in month i, i = 1 . . . 6;

• bi: initial inventory level for month i, i = 1 . . . 6 (while b7 denotes the final
inventory level).

Figure 2.2 shows a schematic representation of the problem of Upton Corporation. For
each month i, bi represents its starting inventory level, the incoming arrow represents
the production level in month i and the outgoing arrow represents the required monthly
demand in month i.

Based on these decision variables, we can state the Upton Corporation problem via the
following linear constraints:

• the production level of each month must not exceed the production capacity and
must be greater than or equal to a half of it:

2,000 ≤ p1 ≤ 4,000

1,750 ≤ p2 ≤ 3,500

2,000 ≤ p3 ≤ 4,000

2,250 ≤ p4 ≤ 4,500

2,000 ≤ p5 ≤ 4,000

1,750 ≤ p6 ≤ 3,500;



22 2.3. Solving LP models via spreadsheets

• the inventory levels at the end of each month must lay between 1,500 and 6,000:

1,500 ≤ b2 ≤ 6,000

1,500 ≤ b3 ≤ 6,000

1,500 ≤ b4 ≤ 6,000

1,500 ≤ b5 ≤ 6,000

1,500 ≤ b6 ≤ 6,000

1,500 ≤ b7 ≤ 6,000;

• the relationship among production variables, inventory variables and monthly
demands can be expressed as follows:

b2 = b1 + p1 − 1,000

b3 = b2 + p2 − 4,500

b4 = b3 + p3 − 6,000

b5 = b4 + p4 − 5,500

b6 = b5 + p5 − 3,500

b7 = b6 + p6 − 4,000;

• the initial inventory level is 2,750:

b1 = 2,750.

The goal is to minimize the total cost. There are two kinds of cost: production costs
and inventory costs. The total production cost is obtained simply by multiplying the
unit production costs by the number of units produced:

240p1 + 250p2 + 265p3 + 285p4 + 280p5 + 260p6.

Inventory costs in each month are estimated as the 1.5% of the unit production cost
multiplied by the average number of units in inventory in that month:

3.6
b1 + b2

2
+ 3.75

b2 + b3
2

+ 3.98
b3 + b4

2
+ 4.28

b4 + b5
2

+ 4.20
b5 + b6

2
+ 3.9

b6 + b7
2

.

Putting all together, the overall LP model is the one presented in Model 2.1. In order to
implement the Upton Corporation model as a spreadsheet model, we refer the interested
reader to C. Ragsdale (2004): Section 3.12.
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min

production cost︷︸︸︷
240 p1 + 250p2 + 265p3 + 285p4 + 280p5 + 260p6 +

+ 3.6(b1 + b2)/2 + 3.75(b2 + b3)/2 + 3.98(b3 + b4)/2 +

+ 4.28(b4 + b5)/2 + 4.20(b5 + b6)/2 + 3.9︸︷︷︸
inventory cost (1.5% of 260)

(b6 + b7)/2

2,000 ≤ p1 ≤ 4,000

1,750 ≤ p2 ≤ 3,500 constraints on
2,000 ≤ p3 ≤ 4,000 monthly production
2,250 ≤ p4 ≤ 4,500 levels
2,000 ≤ p5 ≤ 4,000

1,750 ≤ p6 ≤ 3,500

1,500 ≤ b2 ≤ 6,000

1,500 ≤ b3 ≤ 6,000 constraints on
1,500 ≤ b4 ≤ 6,000 monthly final
1,500 ≤ b5 ≤ 6,000 inventory levels
1,500 ≤ b6 ≤ 6,000

1,500 ≤ b7 ≤ 6,000

b2 = b1 + p1 − 1,000

b3 = b2 + p2 − 4,500 relationship
b4 = b3 + p3 − 6,000 between initial
b5 = b4 + p4 − 5,500 and final inventory
b6 = b5 + p5 − 3,500 levels + demand
b7 = b6 + p6 − 4,000 satisfaction
b1 = 2,750

Model 2.1: The Upton Corporation problem
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