
Reactor and Proactor
Examples of event handling patterns

Sara Vitellaro

Design Patterns [TDP]
A.A. 2017/2018

Context
Focus on: event handling programming

Context: develop efficient and robust concurrent
and networked applications

Main traditional and competitive Applications designs:

- thread-based
- event-driven

Concurrency strategies:

- blocking I/O
- non blocking synchronous
- non blocking asynchronous

1

Context

Multi-threaded Architectures
Multiple threads can synchronously process multiple concurrent service
requests:the application spawns a dedicated thread of control to handle
each specific request.

• Thread Pool

2

• Thread-per-connection

Context

Multi-threaded Architectures
Common drawbacks

‒ increased performance overhead:
context switching, synchronization, data movements

‒ increased synchronization complexity:
control schemes for the access to shared resources

‒ threading and concurrency policy correlation:
better to correlate threading strategy to available CPU resources

‒ portability:
different threading semantics in different operating systems

3

Context

Event-driven Architectures

• Designed as Layered architecture

• Inversion of control:
event handlers perform
application-specific operations
in response to callbacks

• Separation of concerns:
between application functionalities
and event-handling subsystem

4

Context

Event-driven Architectures
Components of the event-driven Layered architecture:

• Event sources: detect and retrieve events

• Demultiplexer: waits for events to occur on the event sources set
and dispatches them to their related event handlers callbacks

• Event handlers: executes application-specific operations in response to callbacks

5

Context

Event-driven Architectures
Main differences from traditional ‘self-direct’ flow of control:

‒ the behaviour is caused by asynchronous events;

‒ most events have to be handled promptly;

‒ finite state machines to control event processing;

‒ no control over the order in which events arrive.

6

Reactor and Proactor patterns

Reactor and Proactor are two event handling patterns that
propose two different solutions for concurrent applications.

They indicate how to effectively initiate, receive, demultiplex, dispatch
and perform various types of events in networked software frameworks.

The design of these patterns provides reusable and configurable
solutions and application components.

7

Reactor pattern

The Reactor pattern allows event-driven applications to demultiplex
and dispatch synchronously and serially service requests that are

received simultaneously from one or more clients.

• It waits for indication events to occur on some event sources.

Indication event: event that identify the arrival of a request.

• Non-blocking Synchronous I/O strategy
the control is returned to the caller immediately: the call was
performed and the results are ready, or the system has no
resources to execute the requested operation.

8

Reactor

Participants
• Handle: identifies event sources that can produce and queue indication

events, from either external or internal requests

• Event Handler: defines an interface with a set of hook methods that
represents the dispatching operations available to process events

• Concrete Event Handler: specializes the event handler for a particular
service, and implements the hook methods

• Reactor: specifies an interface to register and remove event handlers and
handles; runs the event loop to react to each indication event by
demultiplexing it from the handle to the event handler and dispatching the
proper hook method

• Synchronous Event Demultiplexer: function that blocks awaiting indication
events to occur on a set of handles 9

Reactor

Structure

10

Reactor

Dynamics

In the Reactor pattern the flow of control alternates between
the Reactor and the Event Handler components:

- the Reactor is responsible to wait for indication events,
demultiplex and dispatch them;

- the Event Handlers components react to the occurrence
of a specific event to process it.

The structure introduced by the Reactor pattern 'inverts' the flow of
control within an application, in a way called “Hollywood principle”.

11

Reactor

Dynamics

12

Reactor

A simple example

13

Telephony scenario:

- Telecommunication network -> Reactor

- Client -> Event Handler
register himself to it to ‘handle’ a call received on his phone number

- Phone number -> the Handle

- Somebody calls the number -> incoming indication event

- the network notifies the client that a request event is pending,
making the phone ring -> demultiplex and dispatch

- the client reacts by picking up the phone and ‘processes’ the request
answering to the connected part -> specific handle_event()

Reactor

Scenario: reactive logging server (1)

14

1. The Server register the Logging Acceptor
Handler to handle client connection
requests indication events;

2. the Server calls the method to start the
event loop in the Reactor. It calls the
Synchronous Event Demultiplexer to wait
for connections;

3. a Client tries to connect to the Server;
4. the Reactor notifies the Logging Acceptor,
5. accepts the new connection,
6. and creates a Logging Handler to serve it;
7. the Logging Handler registers its handle

with the Reactor to be notified when it is
‘ready for reading’;

Reactor

Scenario: reactive logging server (2)

15

1. a Client sends a logging record request.
The Synchronous Event Demultiplexer
notifies the Reactor that an indication event
is pending on a handle in its handle set;

2. the Reactor notifies the Logging Handler
associated with this handle;

3. the Logging Handler begins to receive the
record in a non-blocking manner (loop 2-3);

4. when the reception is completed, the
Logging Handler processes the records and
writes it to the appropriate output;

5. the Logging Handler returns control to the
Reactor events loop to continue to wait for
incoming indication events.

Reactor

Implementation
• Event handler interface

• create an event handler object
• or register a pointer to a function

• Dispatch interface strategy
• single method, with type parameter
• or multi-method, with several different hooks

• Concrete Event Handlers
• executes operations on a handle
• maintains all useful state information associated with the request
• can be subdivided by functionality, into connection and service ones

16

Reactor

Implementation
• Reactor interface

• registers and remove handlers and handles
• and runs the application reactive event loop

• Demultiplexing table
• stores tuples that associates handles and event handlers
• uses handles as a ‘key’
• various possible search strategies

• Determine the number of Reactors needed
• centralize the work on a single Reactor instance
• or multiple Reactor threads: event handlers in parallel,

but needs additional synchronization mechanisms

• Choose a Synchronous Event Demultiplexing mechanism
• often an existing operating system mechanism 17

• select(): portable but inefficient with O(n) descriptor selection, limited to
1024 descriptors, stateless

• poll(): allows more fine-grained control of events, but still O(n)
descriptor selection, stateless

• epool(): keeps info, dynamic descriptor set, efficient with O(1) descriptor
selection, only on Linux platforms

• kqueue(): more general mechanism, O(1) descriptor selection, only on
OS X and FreeBSD systems

• WaitForMultipleObjects(): works on multiple types of synchronization
objects, only on Windows

 ACE and Boost libraries supply a common interface to choose the best
Reactor implementation depending on the execution platform support

18

Reactor

Types of demultiplexing mechanism

• concurrent Event Handlers: to improve performance, event handlers
can run on their own thread, instead of borrowing the Reactor thread;

• concurrent synchronous event demultiplexers, called on the handle
set by multiple threads, to improve throughput;

• re-entrant Reactors: event loop called by reactive Concrete Event
handlers;

• integrated demultiplexing of Timer and I/O events: allow
applications to register time based event handlers.

19

Reactor

Variants

+ increase separation of concerns

+ improve modularity, reusability and configurability

+ improve application portability

+ low overhead for concurrency control

20

- non pre-emption Proactor

- scalability Proactor

- complexity of debugging and testing

Reactor

Benefits and Liabilities

Proactor pattern

The Proactor pattern allows event-driven applications to
demultiplex and dispatch service requests in an

efficient asynchronous way.

• It waits for completion events to occur on some event sources.

Completion event: event that identify the end of the
execution of an asynchronous operation.

• Non-blocking Asynchronous I/O strategy
the control is returned to the caller immediately,
indicating that the requested operation was initiated.
The called system will notify the caller.

21

Proactor

Participants
• Handle: identifies event sources that can generate completion events,

from either external or internal requests

• Completion Handler: defines an interface with a set of hook methods for
the operations available to process results of asynchronous operations

• Concrete Completion Handler: specializes the completion handler for a
particular service, and implements the hook methods

• Proactor: provides the application’s event loop, demultiplexes
completion events to the related completion handers, and dispatches
hook methods to process the results

• Asynchronous Event Demultiplexer: function that blocks awaiting
completion events to be added to a completion queue, and returns them
to the caller 22

Proactor

Participants
• Completion Event Queue: buffers completion events while they are

waiting to be demultiplexed to the respective completion handlers

• Asynchronous operations: represent potentially long-duration
operations that are used to service on behalf of application

• Asynchronous Operation Processor: executes asynchronous operations
invoked on handles, generates the respective completion event, and
queues it

• Initiator: entity local to the application, initiates an asynchronous
operation, registers a completion handler and a Proactor with an
asynchronous operation processor, which notifies it when operations
completes 23

Proactor

Structure

24

Proactor

Dynamics

In the Proactor pattern, at a high level of abstraction, applications invoke
operations asynchronously and are notified about their completion.

The Proactor solution proposes to split every application service into:

- long-duration operations, that execute asynchronously;

- completion handlers, that processes the results of the associated
asynchronous operations, potentially invoking additional
asynchronous operations.

25

Proactor

Dynamics

26

Proactor

A simple example

27

Telephony scenario:

- You call a friend -> Initiator

- but he cannot answer. You leave a message on his voice mail
-> asynchronous operation processor

- While waiting for the call-back, you can do other things.

- Your friend listen to the voice mail
-> completion event of the asynchronous operation

- he calls you back -> Proactor

- you talk together -> Completion Handler, specific handle_event()

Proactor

Scenario: proactive Web server (1)

28

1. The Server invokes a method to initiate an
asynchronous accept;

2. the Acceptor starts an asynchronous accept
with the operating system;

3. the Server invokes the Proactor’s event loop;
4. a client tries to connect;
5. the Asynchronous Operation Processor serves

the request, and generate and insert the
accept completion event in the queue;

6. the Asynchronous Event Demultiplexer
dequeues the completion event, and the
Proactor dispatches the relative hook method;

7. the Acceptor creates a Handler;
8. this Handler initiates an asynchronous read

operation to obtain the request data sent;
9. control returns to the Proactor’s event loop;

Proactor

Scenario: proactive Web server (2)

29

1. a connected client sends a GET request;
2. the (prev.) read asynchronous operation

completes and is queued by the OS;
3. the Asynchronous Event Demultiplexer dequeues

the completion event, returns it to the Proactor
that dispatches the relative hook method;

4. when the entire request has been received, the
Handler parses the request,

5. reads the requested file form the memory
(can be asynchronous too),

6. and initiates an asynchronous write operation to
transfer the file data to the client;

7. the OS queues a write completion event;
8. the Asynchronous Event Demultiplexer dequeues

the completion event, returns it to the Proactor
that dispatches the relative hook method.

Proactor

Implementation
• Completion handler interface

• create a completion handler object
• or register a pointer to a function;

• Dispatch interface strategy
• single method, with type parameter
• or multi-method, with several separate hooks

• Concrete Completion Handlers
• maintains all useful state information associated with the request
• can be subdivided by functionality, into connection and service ones
• stores a pointer to a Proactor to invoke asynchronous operations themselves

• Implement the Asynchronous Operation Processor
• Asynchronous Completion Token pattern to collect all useful information
• maximize portability and flexibility

30

Proactor

Implementation
• Proactor interface

• runs the application event loop to dequeue, demultiplex and dispatch
completion events

• provides a method to associate a handle to a particular event queue

• Implement Proactor interface
• choose the completion event queue
• choose the asynchronous event demultiplexing mechanism
• determine how to demultiplex and dispatch completion events

• Determine the number of Proactors needed
• centralize the work on a single Proactor instance
• or multiple Proactor threads for run-time diversification

• Implement the initiator
• used to initiate asynchronous operations service processing 31

• Asynchronous Completion Handlers: to improve performance,
completion handlers could act as initiators and invoke long-duration
asynchronous operations;

• concurrent asynchronous event Demultiplexer: a pool of threads that
share an asynchronous event Demultiplexer, particularly scalable;

• shared Completion handlers: multiple asynchronous operations initiated
simultaneously can share the same concrete completion handler;

• Asynchronous operation Processor emulation: in operating system
platforms that do not export asynchronous operations to applications.

32

Proactor

Variants

+ increase separation of concerns

+ improve application portability

+ encapsulate concurrency mechanisms

+ concurrency policy independent from threading policy

+ increase performance

+ simplify application synchronization

33

- no control over scheduling of operations

- efficiency depends on the platform

- complexity of debugging and testing

Proactor

Benefits and Liabilities

Reactor and Proactor

Comparison

34

Both approaches can be used for event-driven programming.

In the Reactor pattern, with non-blocking operations you wait until an
operation can complete immediately before attempting to perform it.

In the Proactor pattern, you start operations that are performed
asynchronously, and then you are notified when they are completed.

Difference (again):

• using Reactor, a program waits for the event of a socket being
readable and then reads from it;

• using Proactor, the program instead waits for the event of a
socket read completing.

Reactor and Proactor

Known uses
Various libraries and implementations have been developed to

abstract from the differences among operating systems and
provide alternatives to satisfy applications performance requirements:

• ACE framework: portable ACE Reactor and ACE Proactor
UniPi project ASSIST: a programming environment for parallel
and distributed programs that uses ACE Reactor library to perform
concurrency and communication handling.

• Boost.Asio library: offers side-by-side support for synchronous and
asynchronous operations, based on the Proactor pattern

• TProactor: emulated Proactor

35

Reactor and Proactor

Known uses: TProactor
High configurable and full portable platform-independent solution.
Emulated Proactor: hides the reactive nature of available APIs and
exposes a common fully proactive asynchronous interface.

Performance comparison

36Executions on Windows Executions on Linux RedHat

Reactor and Proactor

Some code

37

Java has abstracted out the differences between platform specific
system call implementations with its NIO and NIO.2 API.

• https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html

• https://www.ibm.com/developerworks/java/library/j-nio2-1/index.html

Java code references: simple echo server

• https://www.javacodegeeks.com/2012/08/io-demystified.html

Some real world projects and uses:

• Spring Project

• Node.js

https://www.ibm.com/developerworks/java/library/j-nio2-1/index.html
https://www.ibm.com/developerworks/java/library/j-nio2-1/index.html
https://www.javacodegeeks.com/2012/08/io-demystified.html

• Pattern-Oriented Software Architecture, Patterns for Concurrent and Networked Objects,
volume 2; Douglas C Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann; 2000

• Reactor - an Object Behavioral Pattern for Demultiplexing and Dispatching Handlers for
Synchronous events; Douglas C Schmidt; 1995

• Reactor Pattern explained, Tech Stuff; 2013

• Proactor- an Object Behavioral Pattern for Demultiplexing and Dispatching handlers for
Asynchronous events; Irfan Pyarali, Tim Harrison, Douglas C Schmidt, Thomas D Jordan; 1997

• Proactor Pattern: release the power of asynchronous operations, Alexey Shmalko; 2014

• Comparing two high performance I/O design Patterns;
Alexander Libman, Vladimir Gilbourd; 2005

• The implementation of ASSIST, an environment for parallel and distributed programming;
Marco Vanneschi, Massimo Torquati, et al.; 2003

Biblio

38

