Tecniche di Progettazione:
Design Patterns

GoF: Mediator

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Applicability

» When a set of objects communicates in a well-defined,
but complex way

» When reusing an object is difficult because it refers to
and communicates with many other objects (tight
coupling)

» When a behavior that is distributed among several classes
should be customizable without a lot of subclassing



BT Ilediator

s
ok

Flight 111  Flight 1011  Flight 112 Flight 747




Mediator: structure

Mediator +hiediator Colleague

I il

ConcreteMediator ConcreteColleague ConcreteColleague2

q Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Structure

(" aColleague )
o mediator _J
(acotieague )
L\rrwdiatur
! (" aColleague )
aConcreteMediator =—t® mediator )
. _ ’
) )
[( ul:fulllagu-ﬁ
l\medlatnr 32 W, racolhnmnj
mediator )




Mediator

» Encapsulates interconnects between objects
» |s the communications hub

» Is responsible for coordinating and conrolling colleague
Interaction

» Promotes loose coupling between classes

By preventing from referring to each other explicitly

» Arbitrates the message traffic

6 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



How to use Mediator

I, ldentify a collection of interacting objects whose
interaction needs simplification

2. Get a new abstract class that encapsulates that
interaction

3.  Create a instance of that class and redo the interaction
with that class alone

7 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Consequences

» Limits subclassing

Localizes behavior that would be otherwise distributed among
many objects

Changes in behavior require changing only the Mediator class

» Decouples colleagues
Colleagues become more reusable.

You can have multiple types of interactions between colleagues,
and you don’t need to subclass or otherwise change the
colleague class to do that.



Consequences

» Simplifies object protocols

Many-to-many interactions replaced with one-to-many
interactions

More intuitive
More extensible

Easier to maintain
» Abstracts object cooperation

Mediation becomes an object itself

Interaction and individual behaviors are separate concepts that
are encapsulated in separate objects



Consequences

» Centralizes control
Mediator can become very complex

With more complex interactions, extensibility and maintenance
may become more difficult

Using a mediator may compromise performance



Implementation Issues

» Omitting the abstract Mediator class — possible when
only one mediator exists

» Strategies for Colleague-Mediator communication

Observer class

The colleagues are the subjects: any change in their state is notified to
the coordinator that may notify other colleagues.

Pointer / other identifier to “self” passed from colleague to
mediator, so that the mediator can identify the sender.



Related Patterns
» Facade

Unidirectional rather than cooperative interactions between
object and subsystem

Mediator is like a multi-way Fagade pattern.

» Observer

May be used as a means of communication between Colleagues
and the Mediator



Coordination Languages

» "Mediator" constructs as language primitives:

Linda and tuple spaces: late 80’s early 90’s

Middleware acting as a coordinator

» BPEL (Business Process Execution Language) and web
services (BPEL4WS o WS-BPEL)

13 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Homework

» This exercise wants to demonstrate the Mediator pattern
facilitating loosely coupled communication between
different Participants registering with a Chatroom.

The Chatroom is the central hub through which all
communication takes place.

Implement the Chatroom, having the following interface:
public interface AbstractChatroom {
public abstract void register(Participant participant);

public abstract void send(String from, String to, String msg);

}

At this point only one-to-one communication is implemented
in the Chatroom.

Optional: experiment with one-to-many.

14 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



