
Tecniche di Progettazione:

Design Patterns

GoF: Builder, Chain Of Responsibility, Flyweight

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Builder: intent

� As in GoF

� Separate the construction of a complex object from its
representation so that the same construction process can
create different representations

� In simpler worlds

� Separate the logic of the construction of a complex object
(algorithm, recipie…) from the construction of the single
pieces and their assembly.

� Using delegation instead of inheritance as in Factory method.

� Products can be different from each other

Builder: structure

Builder: participants

� Builder

� Specifies an interface for creating/assembling parts of a
product.

� ConcreteBuilder

� Implements the Builder interface

� Director

� Constructs an object of an unknown type using the Builder
interface

� Product

� Complete object returned by invoking getResult() on the
ConcreteBuilder

Design patterns, Laura Semini, Università di Pisa,
Dipartimento di Informatica.

5

Builder: consequences

� Isolates code for construction and representation

� Construction logic is encapsulated within the director

� Product structure is encapsulated within the concrete builder

� => Lets you vary a product's internal representation

� Supports fine control over the construction process

� Breaks the process into small steps

Builder: applicability

� Use the Builder pattern when

� The algorithm for creating a complex object should be
independent of the parts that make up the object and how
they're assembled.

� The construction process must allow different representations
for the object that's constructed

Builder: implementation

� The Builder interface

� Must be general enough to allow construction of many
products

� Abstract base class for all products?

� Usually not feasible (products are highly different)

� Default implementation for methods of Builder?

� "Yes": May decrease amount of code in ConcreteBuilders

� "No:" May introduce silent bugs

Ex. found in the web:

misleading, to be changed

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

GoF example: requirements

� A reader for the RTF (Rich Text Format) document
exchange format should be able to convert RTF to
many text formats.

� The reader might convert RTF documents into plain
ASCII text or into a text widget that can be edited
interactively.

� The problem:
The number of possible conversions is
open-ended. It should be easy to add a
new conversion without modifying the reader.

GoF example: : Solution

� Configure the RTFReader class with a TextConverter object that
converts RTF to another textual representation.
� The RTFReader parses the RTF document,

� When it recognizes an RTF token t

� calls aTextConverter on t.

� TextConverter responsibilities:
� perform data conversion.

� represent the token in a particular format.

� Create and assemble a complex object.

� Hide this process.

� Subclasses of TextConverter specialize in different conversions
and formats.

GoF example: Solution

Ex: MazeBuilder (the abstract builder)

public class MazeBuilder {

public void buildMaze(){ };

public void buildRoom(int r){ };

public void buildDoor(int d);{ }

public Maze getMaze();{ }

}

This interface permits to create three things:

(1) the maze,

(2) rooms with a particular room number, (When a Room is built, also the
walls are.)

(3) doors between numbered rooms.

The GetMaze operation returns the maze to the client.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Ex: MazeBuilder (the builders)

Subclasses of MazeBuilder will override these operations to
return the maze that they build.

Ex.

public class StandardMazeBuilder implements MazeBuilder{ }

public class EnchantedMazeBuilder implements MazeBuilder{ }

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Ex: MazeGame (director)

public class MazeGame {

public Maze createMaze(MazeBuilder builder) {

builder.buildRoom(1); //also builds room’s walls

builder.buildRoom(2);

builder.buildDoor(1,2); // puts walls in common

return builder.getMaze(); }

public Maze createBigMaze(MazeBuilder builder) {

builder.buildRoom(1); … builder.buildRoom(100);

builder.buildDoor(1,2); … builder.buildDoor(99,100);

return builder.getMaze(); }

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Ex: MazeClient

public class Client {

public static void main(String[] args) {

Maze maze;

MazeGame game = new MazeGame(); \\director

MazeBuilder builder = new StandardMazeGame();
game.createMaze(builder);

maze = builder.GetMaze();

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Compare this version of CreateMaze

with the original.

� Notice how the builder hides the internal representation
of the Maze that is, the classes that define rooms, doors,
and walls and how these parts are assembled to complete
the final maze.

� Someone might guess that there are classes for
representing rooms and doors, but there is no hint of one
for walls.

� This makes it easier to change the way a maze is
represented, since none of the clients of MazeBuilder has
to be changed.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

What is the difference between Builder Design

pattern and Factory Design pattern?

� The Factory pattern can almost be seen as a simplified version of the
Builder pattern.

� In the Factory pattern, the factory is in charge of creating various
subtypes of an object depending on the needs.

� The user of a factory method doesn't need to know the exact subtype of
that object. An example of a factory method createCar might return a Ford
or a Honda typed object.

� In the Builder pattern, different subtypes are also created by a builder
method, but the composition of the objects might differ within the same
subclass.

� To continue the car example you might have a createCar builder method
which creates a Honda-typed object with a 4 cylinder engine, or a Honda-
typed object with 6 cylinders. The builder pattern allows for this finer
granularity.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

What is the difference between Builder Design

pattern and Factory Design pattern? Cont’d

� Builder focuses on constructing a complex object step by step.

� Abstract Factory emphasizes a family of product objects (either simple or
complex).

� Builder assembles and returns the product as a final step.

� Builder often builds a Composite.

� Often, designs start out using Factory Method (less complicated, more
customizable, subclasses proliferate) and evolve toward Abstract Factory,
Prototype, or Builder (more flexible, more complex) as the designer
discovers where more flexibility is needed.

� Sometimes creational patterns are complementary: Builder can use one of
the other patterns to implement which components get built. Abstract
Factory, Builder, and Prototype can use Singleton in their implementations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Hemework (after having seen CoR)

� Use CoR to write a program that, given a number n, is
able to return:

1. the number of primes smaller than n

2. the decomposition in prime factors of n

� Hint: build a chain of prime numbers, and assume n is
smaller than 50.

� Use Builder to build the chain, in a situation where there
are two kinds of handlers, and hence two chains (the
client decides which chain to build):

� one only dealing with prime factorization,

� the other only counting the number of primes smaller than n
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

