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Bridge

The following code skeleton defines a class hierarchy for Queue and 
Stack.

abstract class Dispatcher {

object get() {/*return the first object*/}

void pop() {/*remove the first object*/}

abstract void put(Object o); /*add o to the data structure*/abstract void put(Object o); /*add o to the data structure*/

}

class Queue extends Dispatcher{

void put(Object o); /*append o after the last object of the queue*/

}

class Stack extends Dispatcher{

void put(Object o); /*insert o before the first object of the stack*/

}
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Bridge

Use the Bridge pattern to implement the above class hierarchy. 

You need to use Java ArrayList as the implementation. 

You need to write the following code

� Code for get() and pop() methods and any additional code of 
Dispatcher classDispatcher class

� Code for put() method and any additional code of Queue class

� Code for put() method and any additional code of Stack class
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Bridge Pattern structure
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Problema mal posto

� Put() dovrebbe essere definita in termini di pop() e get(). 

� Come si modifica il caso di studio per applicare Bridge??

� Estendo Dispatcher con  pick(){get();pop();}

� Similmente con le papere: ShowDuck extends Duck{

� Public void show {quack(); fly(); quack();}

� A dx le strategie di volo e quack.
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Adapter (contrived exmple)

� Using object Adapter pattern to implement the above 
interfaces. You need to adapt Java ArrayList class. Note that you 
need to write three adapter classes:

� DispatcherAdapter implements Dispatcher

� QueueAdapter extends DisplatcherAdapter implements Queue� QueueAdapter extends DisplatcherAdapter implements Queue

� StackAdapter extends DispatcherAdapter implements Stack
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Iterators

� The given code (IteratorDoublyLinked folder) defines 
non-circularly double linked lists. Using Iterator pattern, 
write two external iterators for the double linked lists. 

� One iterates every from beginning to end,  the other from end 
to beginning. 

� Assume the iterator classes can access any member of � Assume the iterator classes can access any member of 
DoubleLinkedList and Cell classes, but modification is not 
allowed.

� Remember: 

� The Iterator interface has two methods: hasNext(),   next()

� the collection must implement Iterator createIterator()

� Solution: folder IteratorDoublyLinked
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Flyweight

� In Flyweight pattern, a Flyweight object has intrinsic state that 
cannot be changed. This also means that a Flyweight object 
cannot have any public-accessible set() method to set a new 
value for some instance variable of the object. 

�

� Consider a variation of Flyweight pattern to allow a Flyweight � Consider a variation of Flyweight pattern to allow a Flyweight 
object to have set() methods. When a set() method of a 
Flyweight object is called, the object becomes a non-Flyweight, 
non-shared object. This idea is similar to copy-on-write.
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Solution

� See folder FlyweighjtBlueTree
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