
Tecniche di Progettazione:

Design Patterns

Esercitazione

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Bridge

The following code skeleton defines a class hierarchy for Queue and
Stack.

abstract class Dispatcher {

object get() {/*return the first object*/}

void pop() {/*remove the first object*/}

abstract void put(Object o); /*add o to the data structure*/abstract void put(Object o); /*add o to the data structure*/

}

class Queue extends Dispatcher{

void put(Object o); /*append o after the last object of the queue*/

}

class Stack extends Dispatcher{

void put(Object o); /*insert o before the first object of the stack*/

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Bridge

Use the Bridge pattern to implement the above class hierarchy.

You need to use Java ArrayList as the implementation.

You need to write the following code

� Code for get() and pop() methods and any additional code of
Dispatcher classDispatcher class

� Code for put() method and any additional code of Queue class

� Code for put() method and any additional code of Stack class

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Bridge Pattern structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

Problema mal posto

� Put() dovrebbe essere definita in termini di pop() e get().

� Come si modifica il caso di studio per applicare Bridge??

� Estendo Dispatcher con pick(){get();pop();}

� Similmente con le papere: ShowDuck extends Duck{

� Public void show {quack(); fly(); quack();}

� A dx le strategie di volo e quack.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

Adapter (contrived exmple)

� Using object Adapter pattern to implement the above
interfaces. You need to adapt Java ArrayList class. Note that you
need to write three adapter classes:

� DispatcherAdapter implements Dispatcher

� QueueAdapter extends DisplatcherAdapter implements Queue� QueueAdapter extends DisplatcherAdapter implements Queue

� StackAdapter extends DispatcherAdapter implements Stack

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Iterators

� The given code (IteratorDoublyLinked folder) defines
non-circularly double linked lists. Using Iterator pattern,
write two external iterators for the double linked lists.

� One iterates every from beginning to end, the other from end
to beginning.

� Assume the iterator classes can access any member of � Assume the iterator classes can access any member of
DoubleLinkedList and Cell classes, but modification is not
allowed.

� Remember:

� The Iterator interface has two methods: hasNext(), next()

� the collection must implement Iterator createIterator()

� Solution: folder IteratorDoublyLinked
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Flyweight

� In Flyweight pattern, a Flyweight object has intrinsic state that
cannot be changed. This also means that a Flyweight object
cannot have any public-accessible set() method to set a new
value for some instance variable of the object.

�

� Consider a variation of Flyweight pattern to allow a Flyweight � Consider a variation of Flyweight pattern to allow a Flyweight
object to have set() methods. When a set() method of a
Flyweight object is called, the object becomes a non-Flyweight,
non-shared object. This idea is similar to copy-on-write.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

Flyweight

� In Flyweight pattern, a Flyweight object has intrinsic state that
cannot be changed. This also means that a Flyweight object
cannot have any public-accessible set() method to set a new
value for some instance variable of the object.

�

� Consider a variation of Flyweight pattern to allow a Flyweight � Consider a variation of Flyweight pattern to allow a Flyweight
object to have set() methods. When a set() method of a
Flyweight object is called, the object becomes a non-Flyweight,
non-shared object. This idea is similar to copy-on-write.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

Solution

� See folder FlyweighjtBlueTree

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

