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What Is neuromorphic computing?

We can define neuromorphic computing as the act of performing a computation in a
manner similar to the brain.

Our brain elaborates inputs coming from our sensors and produces outputs in term of
generated motions and stored information.
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Why neuromorphic computing (in robotics)?

This kind of computing is very similar to what can be found in a robotic controller.

But the sensors and actuators are completely different, compared to the ones of
humans and animals, thus the brain is substituted by a computer.
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Why neuromorphic computing (in robotics)?

Today, bio-inspired sensing and actuation technologies are starting to emerge.
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Why neuromorphic computing (in robotics)?

Moreover, we found out that classic control techniques fail when applied to complex
robotic platforms.
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Neuronal physiology

The neuron is the fundamental structural and functional unit of the brain.
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Neuronal physiology

Many kind of neurons share the same cellular physiology.

Dendrite
Axon Terminal

Node of
Ranvier

Cell body

AXON Schwann cell

Myelin sheath
Nucleus
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Neuronal physiology

Neuronal electrophysiological activity lies on the cell membrane.

o |_|p|d b”ayer, impermeable to Charged c;t-::Jre:’:?:ﬁc:n Cﬂﬁg::'l?::?i;n M-.ﬁ-ln::m:er;e menEEIrlnne
I0NS. o j/g ﬂngn\to : Go Ogin ag@n
| gg oDuf::de ;eur;no oo Cn o ) o
* lonic channels allow ions to flow In or OmV © o0 °  ° %ﬂ: ©,9 (0% °
out, selectively. ° o, o °¢D%¢%£%D o
+ The neuron maintains a potential = | Liiidlal
difference across it membrane via the | c0o°\@ 0 6644
ionic pumps (expelling Na* and allowing & = @ ¢ ° P @; e o © ?
K* in). s 70MV 86 0 0o %8P 00" ° o °
g (o) o .;:l_*;. . énﬁdec?augn@ . ; Eé’
 When no external stimulus is present, we . fc. ® feoo X\ ° -
can refer to it as resting potential. conceriraor conceniion “eharged ions

Neuromorphic Computing

Lorenzo VVannucci




Action potentials

The activity of a neuron (its “output”) is the action potential (or spike), generated by

voltage-gated ionic channels.

1. An external electric stimulus reach the
membrane, depolarizing it.

2. Depolarization of the membrane opens
Na* channels (= even more
depolarization).

3. If membrane potential exceeds the
threshold potential, an action potential
OCCurs.

4. Afterwards, the membrane repolarize by
expelling K* ions and the neuron enters
the refractory period.
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Action potentials

The action potential is transmitted through the axon towards other neurons.

Each non-myelinated section (node of Ranvier) replicates the spike.

¢yl

Propagation speed ranges from 1 to 100 m/s.
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Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the
mean number of spikes per second.

n.spikes

rate = 3
time
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Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the
mean number of spikes per second.

n.spikes

rate = .
time

It is not always an easy task!

The instantaneous firing rate cannot be computed real-time, due to causality.
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Action potentials

Usually, we are interested in looking at the spike events, instead of the membrane
potential, and for a high number of neurons (a population).
We can do so with raster plots.
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Synapses

Axons and dendrites are connected through synapses. Each neuron has roughly
1000-10000 synapses.
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Synapses

Synapses can be chemical or electrical, excitatory or inhibitory:
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Every synapse, once reached by an action potential, generates a postsynaptic
current (PSC) which turns in a postsynaptic potential (PSP).

Neuromorphic Computing

Lorenzo VVannucci




Synapses and action potentials

Each spike coming for presynaptic neurons and activating excitatory synapses
contributes to the generation of an action potential in the postsynaptic neuron.
Conversely, inhibitory synapses reduce the activity of postsynaptic neurons.
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Synaptic plasticity
Synapses are the basis for memory and learning.

If neuron A repeatedly takes part in making neuron B spike, then the synapse from a to
B is strengthened and vice versa. This leads to two phenomena:
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Synaptic plasticity

This adaptation mechanism depends on the timing of the EPSP and the action
potential. Thus, it is called Spike-Timing-Dependent Plasticity (STDP).
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Neural information processing

What kind of information can a neuron process?
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Neural information processing

What kind of information can a neuron process?
None! (by himself)

Information is processed by means of the network topology and synaptic properties.
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Receptive fields

A simple way of processing information is the receptive field topology.

Each receptive field is made up of several input neurons 3& llnput é
and one output neuron that modulates the combination of mpmh\ /mput
their responses. \ AN _/
Receptive fields have been identified in the human brain to R
encode  sensory  Iinformation  (auditory  system, i G

somatosensory system, visual system).
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Receptive fields

The retinal circuit implements receptive fields to process the image.

Preferred stimulus?
Linear receptive field model

Photoreceptors
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Receptive fields

The retinal circuit implements receptive fields to process the image.

Preferred stimulus
Linear receptive field model
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Receptive fields

The retinal circuit implements receptive fields to process the image.
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Receptive fields

Receptive fields from the retina are in turn used to create oriented receptive fields In
the visual cortex.

Retina V1
receptive receptive ‘Ill’

fields field
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Receptive fields and neural coding

Each sensory input has its own dedicated brain areas, with receptive fields. This is
common feature among animals. E.g. cricket cercal cells.
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/ This kind of information processing, where
4 an neural population is used to encode
- _C" different values of the same information is
C3 2 called population coding.
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Receptive fields and neural coding

Each sensory input has its own dedicated brain areas, with receptive fields. This is
common feature among animals. E.g. cricket cercal cells.
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> T
7 rn=v-¢
oo v o . . .
/ This kind of information processing, where
4 an neural population is used to encode
- _C" different values of the same information is
C3 2 called population coding.

Is the representation efficient?
Aren’t ¢, and c, enough?
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Neural coding

There are other ways for neurons to encode information, such as rate coding, where
all the information is encoded by directly translating it into firing rates. This is common
IN many sensory afferents, e.g. mammalian muscle spindles.
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Neural coding

A more complex encoding mechanism is temporal coding, where absolute or relative
spike times are used. There are evidence for this kind of encoding in the auditory and
gustative systems.
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Neuron abstractions

In order to simulate the behaviour of neural circuits we have to model the neuron
dynamics.

Thus, we have to translate neurophysiologic properties into equations that we can
Implement.

Neurotransmitter

Abstract neuron models

 Rate-based

« Point neuron

 Detailed neuron
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Detalled neural abstraction

In these kind of models every aspect of the cell morphology is taken into account:
diameter of the soma, length of the axon, position of synapses on the dendrites,
distribution of ionic channels, neurotransmitter types, etc...

Pros: Cons:
* Very accurate  much knowledge is needed to model
networks

« can model any aspect of neural
activity « simulation times are high

}J Some detailed neural simulators exist, I.e.
% NEURON (www.neuron.yale.edu/neuron). Too little abstraction!
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Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:

ad

I I I I I |
100 200 300 400 500 600

time (ms)

spike train id
M3
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Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:

10 20 10 10 20 40

30 30 60 80 70 70

spike train id
M3

30 10 40 0 30 50

0 100 200 300 400 500 600
time (ms)

By doing so, we are:
 discretizing time
 forgetting about single action potential events
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Rate-based abstractions

Activity of a postsynaptic neuron can be computed as a function of the rates of
presynaptic neurons.
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Rate-based abstractions

What about synapses? We can add weights on the connections.

- Rosenblatt’s perceptron and
Artificial Neural Networks.
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Point neuron abstractions

Why are these called point-neuron abstractions?

Because we do not take into account the neuron morphology. Each neuron is

dimensionless and currents propagate Instantaneously from all the receiving
synapses.
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Point neuron abstractions — neuron models
The neuron electrical properties can be described through electrical circuits:
* the lipidic membrane acts as a capacitor (C,);

 all PSP can be summed up and represented as an external current generator (l.,).

We are interested in the voltage between the two termination of the capacitor
(membrane potential, V) and we also add the action potential rule:

If V,, > V,, then V , resets to
V..t and a spike is emitted.
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Point neuron abstractions — neuron models

A first circuit representing neural activity is the Integrate and fire model (I1AF).

| |

Kirchhoff's law: I-(t) = I,,:(t)
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Point neuron abstractions — neuron models

A first circuit representing neural activity is the Integrate and fire model (I1AF).

. |
é lext
Cm ke

Q(t) = CpVin (t) 1 1
By deriving the law 1

of capacitance: dV. (t)
le(t) = Cn—

Kirchhoff's law: I-(t) = I,,:(t)
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Point neuron abstractions — neuron models

A first circuit representing neural activity is the Integrate and fire model (I1AF).

. |
é lext
Cm ke

Q(t) — Cl'me(t) : \

Kirchhoff's law: I-(t) = I,,:(t)

By deriving the law

of capacitance: dV. (t)
le(t) = Cn—
de(t) _ Iext(t)

Thus, we obtain:

dt C.,
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Point neuron abstractions — simulation loop (1)

We can employ the differential equation to compute the dynamics of the membrane in
a simulation loop, by discretizing time in small intervals.

T = 2000.0 // total simulation time, ms

time = 0.0

V =0.0

dt = 1.0 // simulation step, ms de (t) Iext (t)
while (time < T) { dt o Cm

Iext = sum _external currents()

dVm = membrane_update(Iext)

V += dVm * dt // discrete integration\\\\\ &
if (V > Vth) emit_spike();

time += dt

o[ — _ Let’s try it out!
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Point neuron abstractions — neuron models

Neurons have the refractory period, that must be taken into account for an accurate
simulation. Otherwise, the firing rate will rise indefinitely.

I
without: 7"(1) — llm 7‘(1) = 400
Cm (Vth — Vreset) [=+00
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Point neuron abstractions — neuron models

Neurons have the refractory period, that must be taken into account for an accurate
simulation. Otherwise, the firing rate will rise indefinitely.

I
without: 7"(1) — llm 7‘(1) = 400
Cm (Vth — Vreset) [=+00

| 1

with: 7"(1) — lim 7"(1) —
Con (Vin — Viesetr) + trefI [=+o0 Lref
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Point neuron abstractions — neuron models

In the IAF model, the membrane continues to keep the gained potential, even if there
IS no external input current and the spike threshold is not reached. This is not true for

the biological neuron.
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Point neuron abstractions — neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium
potential of the cell membrane.

[
Kirchhoff's law: IC (t) + IR (t) — Iext (t) ] % \
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Point neuron abstractions — neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium
potential of the cell membrane.

[
Kirchhoff's law: IC (t) + IR (t) — Iext (t) ] % \

Ohm's law: In(t) = (Vm (t) - Vrest) ? ‘

R
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Point neuron abstractions — neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium
potential of the cell membrane.

[
Kirchhoff’s law: IC (t) + IR (t) = Iext (t) ] $ \

Ohm'’s law: I (t) = (Vm(t) — Vres t) ? ‘

R

Thus, we obtain: de (t) — Iext (t) (Vm(t) o VreSt)
dt Cm CmR
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Point neuron abstractions — neuron models

There are many others neuron models:

Hodgkin—Huxley: each ionic channel is modelled as a resistance-battery parallel
circuit, with a probabilistic conductance.

[ I

T

—0

—
|
P

AV () _ Lot ()
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Point neuron abstractions — neuron models

There are many others neuron models:

Izhikevich: two differential equations can model many different neuron behaviours.
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Point neuron abstractions — synapses models

Each action potential is transmitted as an event to all postsynaptic heurons connected,
after a transmission delay (travel time on the axon). When such event is received a

proper EPSC or IPSC is generated and added to the total input current.

Presynaptic
neuron
Time
Postsynaptic
neuron
Transport delay
t C
Amongst the most common PSC types T
there is the alpha-shaped one: I(t) - — € s
T
S
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Point neuron abstractions — synapses models

Each synapse has a weight that has two roles:

1. distinguishing between inhibitory and excitatory synapses by being negative or
positive;

2. representing the strength of the connection between the two neurons.

Synaptic weights can be changed via rules implementing STDP, for example:

(—)
T+ forx >0

F n —A_e(_T_—)forx <0
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Point neuron abstractions — simulation loop (I1)

Given the previous equations we could in principle create a network simulation loop
like the following:

while (time < T) A
foreach (n : neurons) {
Iext = n.sum_external_currents(n.received_spikes)
dVm = n.membrane_update(Iext, n.V)

n.V += dVm * dt Send spike through delayed

if (n.V > n.Vth) { and weighted connection

n.send_spike()
n.adjust_weights(n.received_spikes)

}

time += dt
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Neuromorphic computing resources

Ne“urOI()gy . o THEORETICAL NEUROSCIENCE
* “Principles of Neural Science” by Kandel et al. Computational and Mathems

Computational neuroscience:
* “Theoretical Neuroscience: computational and

mathematical modeling of neural systems™ by Peter Dayan

and Larry Abbott
« Computational Neuroscience on Coursera

Other info (related):
* |orenzo.vannucci@santannapisa.it
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