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What is neuromorphic computing?

We can define neuromorphic computing as the act of performing a computation in a

manner similar to the brain.

Our brain elaborates inputs coming from our sensors and produces outputs in term of

generated motions and stored information.

Neuromorphic Computing

Lorenzo Vannucci

Memory



Why neuromorphic computing (in robotics)?

This kind of computing is very similar to what can be found in a robotic controller.

But the sensors and actuators are completely different, compared to the ones of

humans and animals, thus the brain is substituted by a computer.
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Why neuromorphic computing (in robotics)?

Today, bio-inspired sensing and actuation technologies are starting to emerge.
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As such, neuromorphic computing can be used to control this new kind of robots.



Why neuromorphic computing (in robotics)?

Moreover, we found out that classic control techniques fail when applied to complex

robotic platforms.
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Thus, we would like to apply neuromorphic computing to give brains to robots.



Neuromorphic Computing

Lorenzo Vannucci

Outline

1. Introduction

2. Fundamentals of neuroscience

3. Simulating the brain

4. Software and hardware simulations

5. Robotic applications



Neuronal physiology

The neuron is the fundamental structural and functional unit of the brain.
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Neuronal physiology

Many kind of neurons share the same cellular physiology.
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Neuronal physiology

Neuronal electrophysiological activity lies on the cell membrane.
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• Lipid bilayer, impermeable to charged

ions.

• Ionic channels allow ions to flow in or

out, selectively.

• The neuron maintains a potential

difference across it membrane via the

ionic pumps (expelling Na+ and allowing

K+ in).

• When no external stimulus is present, we

can refer to it as resting potential.

0 mV

-70 mV



Action potentials

The activity of a neuron (its “output”) is the action potential (or spike), generated by

voltage-gated ionic channels.
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1. An external electric stimulus reach the

membrane, depolarizing it.

2. Depolarization of the membrane opens

Na+ channels ( even more

depolarization).

3. If membrane potential exceeds the

threshold potential, an action potential

occurs.

4. Afterwards, the membrane repolarize by

expelling K+ ions and the neuron enters

the refractory period.



Action potentials

The action potential is transmitted through the axon towards other neurons.

Each non-myelinated section (node of Ranvier) replicates the spike.
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Propagation speed ranges from 1 to 100 m/s.



Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the

mean number of spikes per second.
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Action potentials

The activity of a neuron is measured by computing its firing rate, expressed as the

mean number of spikes per second.
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1s

It is not always an easy task!

1s
The instantaneous firing rate cannot be computed real-time, due to causality.

𝑟𝑎𝑡𝑒 =
𝑛. 𝑠𝑝𝑖𝑘𝑒𝑠

𝑡𝑖𝑚𝑒



Action potentials

Usually, we are interested in looking at the spike events, instead of the membrane

potential, and for a high number of neurons (a population).

We can do so with raster plots.
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Synapses

Axons and dendrites are connected through synapses. Each neuron has roughly

1000-10000 synapses.
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Synapses can be chemical or electrical, excitatory or inhibitory:

Synapses

Neuromorphic Computing

Lorenzo Vannucci

Spikes
• a chemical excitatory synapse releases

Glutamate  opening of ion channels

for Na+ influx  membrane

depolarization (membrane potential

increases);

• a chemical inhibitory synapse releases

GABA neurotransmitter  K+ leaves cell

through ion channels  membrane

hyperpolarization (membrane potential

decreases).

Every synapse, once reached by an action potential, generates a postsynaptic

current (PSC) which turns in a postsynaptic potential (PSP).



Synapses and action potentials

Each spike coming for presynaptic neurons and activating excitatory synapses

contributes to the generation of an action potential in the postsynaptic neuron.

Conversely, inhibitory synapses reduce the activity of postsynaptic neurons.
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Synaptic plasticity

Synapses are the basis for memory and learning.

If neuron A repeatedly takes part in making neuron B spike, then the synapse from a to

B is strengthened and vice versa. This leads to two phenomena:
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EPSP Before

EPSP After

Difference in 

spike times

Long term potentiation (LTP) Long term depression (LTD)

Spike from A Spike from A



Synaptic plasticity

This adaptation mechanism depends on the timing of the EPSP and the action

potential. Thus, it is called Spike-Timing-Dependent Plasticity (STDP).
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Neural information processing

What kind of information can a neuron process?
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Neural information processing

What kind of information can a neuron process?
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None! (by himself)

Information is processed by means of the network topology and synaptic properties.



Receptive fields

A simple way of processing information is the receptive field topology.
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Each receptive field is made up of several input neurons

and one output neuron that modulates the combination of

their responses.

Receptive fields have been identified in the human brain to

encode sensory information (auditory system,

somatosensory system, visual system).



Receptive fields

The retinal circuit implements receptive fields to process the image.
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Receptive fields

The retinal circuit implements receptive fields to process the image.
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Neural response



Receptive fields

The retinal circuit implements receptive fields to process the image.
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Receptive fields

Receptive fields from the retina are in turn used to create oriented receptive fields in

the visual cortex.
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fields

V1
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Receptive fields and neural coding

Each sensory input has its own dedicated brain areas, with receptive fields. This is

common feature among animals. E.g. cricket cercal cells.
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This kind of information processing, where

an neural population is used to encode

different values of the same information is

called population coding.



Receptive fields and neural coding

Each sensory input has its own dedicated brain areas, with receptive fields. This is

common feature among animals. E.g. cricket cercal cells.
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Is the representation efficient?

Aren’t c1 and c2 enough?

𝑟𝑖 = Ԧ𝑣 ∙ 𝑐𝑖
This kind of information processing, where

an neural population is used to encode

different values of the same information is

called population coding.



Neural coding

There are other ways for neurons to encode information, such as rate coding, where

all the information is encoded by directly translating it into firing rates. This is common

in many sensory afferents, e.g. mammalian muscle spindles.
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Neural coding

A more complex encoding mechanism is temporal coding, where absolute or relative

spike times are used. There are evidence for this kind of encoding in the auditory and

gustative systems.
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Neuron abstractions

In order to simulate the behaviour of neural circuits we have to model the neuron

dynamics.

Thus, we have to translate neurophysiologic properties into equations that we can

implement.
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Abstract neuron models

• Rate-based

• Point neuron

• Detailed neuron



Detailed neural abstraction

In these kind of models every aspect of the cell morphology is taken into account:

diameter of the soma, length of the axon, position of synapses on the dendrites,

distribution of ionic channels, neurotransmitter types, etc…
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Pros:

• very accurate

• can model any aspect of neural

activity

Cons:

• much knowledge is needed to model

networks

• simulation times are high

Some detailed neural simulators exist, i.e.

NEURON (www.neuron.yale.edu/neuron). Too little abstraction!



Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:
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Rate-based abstractions

Each neuron produces spikes with a mean firing rate (in a time interval).

We can sample the firing rate by dividing spikes into bags:
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10 20 10 10 20 40

30 30 60 80 70 70

30 10 40 0 30 50

By doing so, we are:

• discretizing time

• forgetting about single action potential events



Rate-based abstractions

Activity of a postsynaptic neuron can be computed as a function of the rates of

presynaptic neurons.
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Rate-based abstractions

What about synapses? We can add weights on the connections.
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 Rosenblatt’s perceptron and 

Artificial Neural Networks.
Too much abstraction!



Point neuron abstractions

Why are these called point-neuron abstractions?

Because we do not take into account the neuron morphology. Each neuron is

dimensionless and currents propagate instantaneously from all the receiving

synapses.
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Point neuron abstractions – neuron models

The neuron electrical properties can be described through electrical circuits:

• the lipidic membrane acts as a capacitor (Cm);

• all PSP can be summed up and represented as an external current generator (Iext).

We are interested in the voltage between the two termination of the capacitor

(membrane potential, Vm) and we also add the action potential rule:
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If Vm > Vth then Vm resets to

Vreset and a spike is emitted.



Point neuron abstractions – neuron models

A first circuit representing neural activity is the Integrate and fire model (IAF).
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Kirchhoff’s law: 𝐼𝐶(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)



Point neuron abstractions – neuron models

A first circuit representing neural activity is the Integrate and fire model (IAF).
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Kirchhoff’s law: 𝐼𝐶(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)

By deriving the law

of capacitance:

𝑄 𝑡 = 𝐶𝑚𝑉𝑚(𝑡)

𝐼𝐶(𝑡) = 𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡



Point neuron abstractions – neuron models

A first circuit representing neural activity is the Integrate and fire model (IAF).
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Kirchhoff’s law: 𝐼𝐶(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)

By deriving the law

of capacitance:

𝑄 𝑡 = 𝐶𝑚𝑉𝑚(𝑡)

𝐼𝐶(𝑡) = 𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡

Thus, we obtain:
𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚



Point neuron abstractions – simulation loop (I)

We can employ the differential equation to compute the dynamics of the membrane in

a simulation loop, by discretizing time in small intervals.
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Let’s try it out!

𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚

T = 2000.0 // total simulation time, ms
time = 0.0
V = 0.0
dt = 1.0  // simulation step, ms

while (time < T) {

Iext = sum_external_currents()

dVm = membrane_update(Iext)

V += dVm * dt // discrete integration

if (V > Vth) emit_spike();

time += dt

}



Point neuron abstractions – neuron models

Neurons have the refractory period, that must be taken into account for an accurate

simulation. Otherwise, the firing rate will rise indefinitely.
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without: 𝑟 𝐼 =
𝐼

𝐶𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡)
lim
𝐼→+∞

𝑟(𝐼) = +∞



Point neuron abstractions – neuron models

Neurons have the refractory period, that must be taken into account for an accurate

simulation. Otherwise, the firing rate will rise indefinitely.
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without: 𝑟 𝐼 =
𝐼

𝐶𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡)
lim
𝐼→+∞

𝑟(𝐼) = +∞

with: 𝑟 𝐼 =
𝐼

𝐶𝑚(𝑉𝑡ℎ − 𝑉𝑟𝑒𝑠𝑒𝑡) + 𝑡𝑟𝑒𝑓𝐼
lim
𝐼→+∞

𝑟(𝐼) =
1

𝑡𝑟𝑒𝑓



Point neuron abstractions – neuron models

In the IAF model, the membrane continues to keep the gained potential, even if there

is no external input current and the spike threshold is not reached. This is not true for

the biological neuron.
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Point neuron abstractions – neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium

potential of the cell membrane.
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Point neuron abstractions – neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium

potential of the cell membrane.
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𝑅



Point neuron abstractions – neuron models

The Leaky integrate and fire model (LIAF) adds a resistance in the circuit in order to

model the leakage of charge. Moreover, a battery is added to represent the equilibrium

potential of the cell membrane.
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Kirchhoff’s law: 𝐼𝐶 𝑡 + 𝐼𝑅(𝑡) = 𝐼𝑒𝑥𝑡(𝑡)

Ohm’s law: 𝐼𝑅(𝑡) =
(𝑉𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡)

𝑅

Thus, we obtain:
𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚
−
(𝑉𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡)

𝐶𝑚𝑅



There are many others neuron models:

Hodgkin–Huxley: each ionic channel is modelled as a resistance-battery parallel

circuit, with a probabilistic conductance.
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𝑑𝑉𝑚(𝑡)

𝑑𝑡
=
𝐼𝑒𝑥𝑡(𝑡)

𝐶𝑚
−

1

𝐶𝑚


𝑖

𝑔𝑖(𝑉𝑚 𝑡 − 𝐸𝑖)

Point neuron abstractions – neuron models



Point neuron abstractions – neuron models

There are many others neuron models:

Izhikevich: two differential equations can model many different neuron behaviours.
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www.izhikevich.com



Point neuron abstractions – synapses models

Each action potential is transmitted as an event to all postsynaptic neurons connected,

after a transmission delay (travel time on the axon). When such event is received a

proper EPSC or IPSC is generated and added to the total input current.
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Transport delay

Time

Amongst the most common PSC types

there is the alpha-shaped one: 𝐼 𝑡 =
𝑡

𝜏𝑠
𝑒
−
𝑡
𝜏𝑠

Presynaptic

neuron

Postsynaptic

neuron



Point neuron abstractions – synapses models

Each synapse has a weight that has two roles:

1. distinguishing between inhibitory and excitatory synapses by being negative or

positive;

2. representing the strength of the connection between the two neurons.

Synaptic weights can be changed via rules implementing STDP, for example:
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∆𝑤𝑖𝑗 =

𝑓



𝑛

𝑊(𝑡𝑖
𝑓
− 𝑡𝑗

𝑛) 𝑊(𝑥) = ൞
𝐴+𝑒

(−
𝑥
𝜏+
)
𝑓𝑜𝑟 𝑥 > 0

−𝐴−𝑒
(−

𝑥
𝜏−
)
𝑓𝑜𝑟 𝑥 < 0



Point neuron abstractions – simulation loop (II)

Given the previous equations we could in principle create a network simulation loop

like the following:
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while (time < T) {

foreach (n : neurons) {

Iext = n.sum_external_currents(n.received_spikes)

dVm = n.membrane_update(Iext, n.V)

n.V += dVm * dt

if (n.V > n.Vth) {

n.send_spike()

n.adjust_weights(n.received_spikes)

}

time += dt
}

}

Send spike through delayed

and weighted connection



Neuromorphic computing resources
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Neurology:

• “Principles of Neural Science” by Kandel et al.

Computational neuroscience:

• “Theoretical Neuroscience: computational and

mathematical modeling of neural systems” by Peter Dayan

and Larry Abbott

• Computational Neuroscience on Coursera

Other info (related):

• lorenzo.vannucci@santannapisa.it


