
Neural Networks and

Neurocontrollers

03/30/2017

Outline

 Introduction to Neural Network

 Biological Neuron

 Artificial Neural Network

 Supervised Learning

 Perceptron

 Multilayer Perceptron

 Back Propagation

 Recurrent Neural Network

 Unsupervised Learning

 Competitive Learning

 Kohonen Networks

 Reinforcement Learning

 Neurocontrollers

History

 Artificial Neural Networks (ANNs) are an abstract

simulation of the nervous system, which contains a set

of neurons exchanging information through

connections (axons)

 The ANN model try to mimic axons and dendrites of

the nervous system.

 The first neural model was proposed by McCulloch

and Pitts (1943). The model was presented as a

computational model of the nervous activity. After

this, other models were proposed John von Neumann,

Marvin Minsky, Frank Rosenblatt, etc.

Two types of neuron models…

 Biological model. It has the objective of replicating

biological neural systems, i.e. visual and auditive

functionalities. These models are used to validate and

verify hypothesis about biological systems.

 The second type is focused on the applications. The

models are strongly influenced by application needs.

They are called connectionist architectures.

We will focus on the second one!

Biological neuron

soma

dendrites

synapse

Biological neuron

 Human brain contain 100 million neurons. Neuroscientific

evidences show each neuron can have 10000 sinapses in input

or output

 Switching time of a neuron is few milliseconds. It is slower

than a logic gate, but it has a greater connectivity

 A neuron receives from synapses information which are

summed

 If the excitatory signal is leading, the neuroni s activated and it

generates information through the synapse

Neural Network structure

A neural network is composed by:

 A set of nodes (neurons), which is the basic unit

 A set of weights linked to connections.

 A set of thresholds or activation levels

The network design requires:

1. Number of basic unit.

2. Morphological structure.

3. Learning example encoding (input and output of the

net)

4. Initialization and training of the weights linked to

the connections, through a learning example set.

Neural network applications

Main features:

 The objective function can have discrete/continuos values

 Learning data can be noisy

 Learning time is NOT real-time

 Fast evaluation of the learning rate of the neural network

 It is not crucial to get the semantics of the learned function

Robotics, Image Understanding, Biological Systems

Learning strategies

• Supervised Learning

 -MLP and recurrent NN

• Unsupervised Learning

 - Clustering

• Competitive Learning

 - Kohonen networks

• Reinforcement Learning

The perceptron

• The perceptron is the neural network basic unit

• It was defined by Rosenblatt (1962)

• Try to replicate the single neuron function

x1

x2

xn
. . .

SUM Threshold

w1

w2

wn

The perceptron

• Output values are boolean: 0 – 1

• Inputs xi and weights wi are real (positive or

negative)

• Learning consists in selecting value for weights and

threshold
x1

x2

xn
. . .

SUM Thr

w1

w2

wn

Sum and activation functions

a) Input funtion, linear (SUM)

ini  wijx j
j
  wixi

b) Activation function, non linear (THRESHOLD)

oi  g(ini)  g wijx j
j
















x0

x1

xn g ∑
ni

w0i

wni
oi

Activation functions



 


else ,0

 if ,1
)(

tx
xstept










else ,1

0 if ,1
)(

x
xsign

xe
xsigmoid




1

1
)(

Objective function

• If the threshold function is sign() and x1..xn are the input

values:

• Vector notation:

elsexo

xwxwxwwifxo nn

1)(

0...1)(22110





)()(xwsignxo



The Perceptron (classification

generalization)

• Learning problem:

• Set of points in a n-dimensional space

1 classify into two groups (positives and negatives)

2 Then, given a new point P, associate P with one group

1 Classification problem

2 generalizzation problem (learning concepts)

Perceptron – Training algorithm

• Initialize weights randomly

• Gives an example from the dataset<x,c(x)>

• Compute o(x)

• IF o(x)c(x) then update:

•  is the learning rate

• xi is the ith feature value of x

• The perceptron error (E) is equal to (c-o)

wi  wi  wi

wi  (c(x) o(x))xi

Example test

• Suppose that o(x)=-1 (if the threshold function is sign(x))

and c(x)=1

• It is needed to modify weights

• Example:

• The wi. value increases in order to reduce the error

• IF c(x)=-1 e o(x)=1

xi  0, 8,   0,1, c  1, o  1

wi  (c o)xi  0,1(1 (1))0, 8 0,16

wi  (c o)xi  0,1(1 (1))0,8  0,16

The perceptron

• Convergence theorem of percepton (Rosemblatt,

1962)
• The perceptron is a linear classifier, therefore it will never get

to the state with all the input vectors classified correctly if the

training set is not linearly separable

• In other words.. No local minima!
• The way to solve nonlinear problems is using multiple layers

• Solution: Feed forward neural network and

recurrent neural network

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Linearly_separable

Supervised learning

MLP networks

• All the neurons of a layer are connected to all the neurons of the next

layer

• There are no connections between neurons in the same layer and

between non adjacent layers

Feed forward neural network: back

propagation algorithm

• Objectives:

• Perceptron weights initialized randomly

• Fast learning

• Generalization capability

Backpropagation (2)

Threshold function:

sigmoid

Error function is as follow:

o(x)  (w  x) 
1

1 ew x

E(w) 
1

2
(t(x) o(x))2

xD
 

1

2
(tk (x) ok (x))

2

kNout


xD


Ii Input units

Hj Hidden units

Ok Output units

Backpropagation (3)

Gola: minimize error

between expected and real

output

Update weights rule:

wji wji wji

Weights wij (from nj to ni)

NNs produce m output values

w ji   jx ji

 j  o j(1 o j)(t j  o j)

Backpropagation (4)

• While unreached termination condition, execute:

• For each value vD: (x, t(x)) (x=(x1,x2..xn), t(x)=(t1,t2,..tm):
• I set of the input nodes (1,2,,n), O set of output nodes(1,2..m), N set

of the net nodes

• Compute the output of the net generated by the input v and the

output of each node of the net nu  N (xi input of the input node iiI,
oj output yielded by the node nj N)

• Compute error of the output node ok O as follows:

• Compute the error for the hidden units hh H= (N-OI) connected the

the output nodes, as follows:

• Compute the error for the other nodes

• Updates the net weights as follow:

h  oh (1 oh) wkhk
nkO


w ji  w ji  w ji

w ji  j x ji

k  ok (1 ok)(tk  ok)

Gradient computation

w1  
E(w1x1  w2x2)

w1

 
E

net1

net1

w1

 
E

net1

x1

net1  w1x1  w2x2

E 
1

2
(t  o)

2

E

net1

E

o

o

net1

E

o


1

2
2(t  o)

 (t  o)

o
  (t  o)

o

net1

 (net1)

net1

 o(1 o)

((x))  (x)(1  (x))

w1  o(1 o)(t  o)x1

What we used in the BP

algorithm!!

w1
w2

Termination condition

• The process continues until all the examples

(<x,t(x)>) have been processed

• When does the process stop? Minimize errors on

the train set is not the best solution (overfitting)

• Minimize errors on a test set (T), this means to

split D in D’T, training using D’ and using T to

verify the termination condition

Error in the training set

Does the algorithm converge?

• Gradient algorithm issues:
• Can stop on local minima

• A local minimum can give solutions which are far from the

global minimum

• Sometimes there are a lot of local minima…

• A possible solution: training with changing initial weight

values

Weights Updating Rule

• Considering the n-th valueof di D, updating rule becomes:

• Pros:
• Overcoming local minima

• Keeping stable value for the weights in the «flat zones»

• Increase velocity when gradient does not change

• Cons:
• If momentum value is too high can stop on local MAXIMA

• One more tuning value

wij(n) j xij wij (n 1) Momentum

A few considerations…

• Initializing weight values is basic to reach convergence

• BP depends on the learning rate . This can make the net

diverging.

• It can be useful to use different values of  for the network

layers

Recurrent neural networks

They are networks that learn to associate an input

pattern with a sequence of output patterns

Xk ⇒ Yk1, Yk2, …, YkL

A recurrent neural network (RNN) is a class of neural networks where

connections between units form a directed cycle. This creates an internal

state of the network which allows it to exhibit dynamic temporal behavior.

Learning strategies

• Supervised Learning

 -MLP and Recurrent NN

 Unsupervised Learning

 - Clustering

• Competitive Learning

 - Kohonen networks

• Reinforcement Learning

Unsupervised learning

• Split non labeled input values in subsets(cluster)

• Similar input values are in the same subset

• Different input values are in different subsets

• Find new in an subsets in an unsupervised way (no

labels provided)

Learning strategies

• Supervised Learning

 -MLP e reti neurali ricorrenti

 - RBF

• Unsupervised Learning

 - Clustering

• Competitive Learning

 - Reti di Kohonen

• Reinforcement Learning

Competitive Learning

• In some cases, the network output can be ambiguous

• Thanks to the lateral inhibition, neurons start competing

to respond to a stimulus.

• The neuron having the greatest output wins the

competition and specializes itself to recognize that

stimulus.

• Thanks to the excitatory connections, neurons near the

winner are also sensitive to similar inputs

An isomorphism is created between input and output space

Competitive Learning - Implementation

• The winning neuron is selected using a global strategy

just by comparing the outputs of the other neurons.

• Two techniques can be used:

 1. Select the neuron with the maximum output;

 2. Select the neuron whose weight vector is more similar

to the current input

METHOD 1 - The winner on an input X

is the one with the greatest output

METHOD 2 -The winner neuron on input

X is that having its weight vector more

similar to X

Kohonen networks

The Kohonen network (or "self-

organizing map", or SOM, for short)

has been developed by Teuvo

Kohonen.

The basic idea behind the Kohonen

network is to setup a structure of

interconnected processing units

(neurons) which compete for the

signal.
 The SOM defines a mapping from the input data space spanned by

x1..xn onto a one- or two-dimensional array of nodes. The mapping

is performed in a way that the topological relationships in the n-

dimensional input space are maintained when mapped to the SOM.

In addition, the local density of data is also reflected by the map:

areas of the input data space which are represented by more data

are mapped to a larger area of the SOM.

Learning strategies

• Supervised Learning

 -MLP e reti neurali ricorrenti

 - RBF

• Unsupervised Learning

 - Clustering

• Competitive Learning

 - Reti di Kohonen

• Reinforcement Learning

Reinforcement learning

Several actions are

executed.

Successful actions are

stored

 (by weight variations).

Punishments and rewards

An agent operates in the

environment and modify

actions based on the

produced consequences.

Robot control and neurocontrollers

Robot control

Computing the Inverse Kinematics

solution using a NN

q1 q2 q3

NN

Px Py Pz

How do you make the network learning?

 Creating a dataset of

<joint_posistions, end

effector_positions> using

the direct kinematics

Learning the Inverse Static Solution

• It is not always possible to compute the inverse

kinematic solution using the joint positions

• For soft continuum robots actuated by cables it is

possible to exploit the relation between the cable

tendion and the end effector position, in order to

control the tip

Learning the Inverse Static Solution (II)

• Control of the soft arm through

the learning of the inverse

model that allows to control the

end effector position through

the cable tension

• The inverse problem can be

learned collecting points and

exploiting the approximation

capability of the NN as for the

rigid robots

Cable Tension End effector

position

Learning the Inverse Static Solution: an

adaptive approach (I)

A Neural Network can be used to solve the inverse solution

generating an adaptive approach :

The direct model relation is :

𝒙 = 𝑓 𝒒 (1)

where, 𝒙 ∈ ℜ𝑚 is the position and orientation vector of the

end effector; 𝒒 ∈ ℜ𝑛 is the joint vector 𝑓 is a surjective

function

This particular

representation is not

invertible when m<n

(redundant)

Learning the Inverse Static Solution: an

adaptive approach (II)

We can develop local representations by linearizing the

function at a point (𝒒𝒐) thereby obtaining :

𝛿𝒙 = 𝐽 𝒒𝒐 𝛿𝒒 (I)

 Here 𝐽(𝒒𝒐) is the Jacobian matrix at the point 𝒒𝒐; 𝛿𝒙

and 𝛿𝒒 are infinitesimally small changes in 𝒙 e 𝒒. The

differential IK method involves generating of (𝛿𝒙, 𝛿𝒒,𝒒) and

learning the mapping (𝛿𝒙,𝒒𝒐) →𝛿𝒒

The learning is feasible since the differential IK solutions form

a convex set and therefore averaging multiple solutions still

results in a valid solution

Learning the Inverse Static Solution: an

adaptive approach (III)

The method we have proposed involves expanding

Eq. I and expressing it in terms of absolute positions,

as shown below:
 𝐽 𝒒𝒊 𝒒𝑖+1 = 𝒙𝑖+1 − 𝑓 𝒒𝒊 + 𝐽(𝒒𝒊)𝒒𝒊 (II)

𝒒𝑖+1 is the next actuator configuration for reaching
a point 𝒙𝑖+1 from the present configuration 𝒒𝒊. Note

that Eq. II is only valid when the configurations are

infinitesimally close. However, for practical

purposes this can be a good approximation for

larger regions.

Learning the Inverse Static Solution: an

adaptive approach (IV)

The analytical solution for the equation II can be written as:

𝒒𝑖+1 = 𝐺(𝒙𝑖+1−𝑓 𝒒𝒊 + 𝐽𝒒𝒊) + (𝐼𝑛 − 𝐺𝐽)𝒛

where 𝐺 is a generalized inverse of 𝐽(𝒒𝒊) and 𝐼𝑛 is the identity matrix, and

𝒛 is an arbitrary n-dimensional vector. The first component represents the

particular solution to the non-homogenous problem prescribed in Eq. II and

the second component represents the infinite homogenous solutions. It can

be proved that the solution space still forms a convex set. Therefore, a

universal function approximator (i.e. NN) can be used for learning the

mapping

 (𝒒𝒊, 𝒙𝑖+1)→ (𝒒𝑖+1)

The samples (𝑞𝑖,𝑞𝑖+1, 𝑥𝑖+1) genereted are such that

 ∣ 𝑞𝑖+1 − 𝑞𝑖 ∣ < ϵ

An appropriate value of ϵ is between 10%-5% of the maximum actuator

range

Learning the Inverse Static Solution: an

adaptive approach (V)

• We use a feed-forward NN to learn the relation:
• (𝒒𝒊, 𝒙𝑖 , 𝒙𝑖+1)→ (𝒒𝑖+1)

• The values of 𝒙𝑖 , 𝒙𝑖+1 are genereted using the direct

model as showed for the learning of the IK of a rigid
manipulator

TRAINING PHASE TEST PHASE

 (𝒒𝒊−𝟏, 𝒙𝑖 , 𝒙𝑖−1) (𝒒𝒊, 𝒙𝑖 , 𝒙𝑖+1)

 (𝒒𝑖) (𝒒𝑖+1)

INPUT

Desired

OUTPUT

INPUT

Network

OUTPUT

Learning the Inverse Static Solution: an

adaptive approach (V): real robot

implementation

I-Support Prototype

Six DoF Hybrid System (Pneumatic and Tendon)

Mean Error Standard Deviation

Position (mm) 5.58 3.08

X- axis rotation (degrees) 2.76 5.42

Y- axis rotation (degrees) 1.84 1.83

Z- axis rotation (degrees) 3.85 7.02

Twenty Five random points selected from workspace

• 2000 sample points divided in the ratio 70:30 for training
and testing respectively

• 2 hours for data collection, training and setting-up

LEARNING

TESTS

External Disturbance (Only Position)

Unlike the case of rigid robots external disturbances modify the kinematics of the soft manipulator

This is the first experimental implementation of soft robots tracking under external disturbances

Offline signal prediction

• Using a NN to foresee the signal in the future

• Training the NN using past values

Learning and prediction

• Learning phase

• The NN learns the relation between y(t) and y(t-)

y(t-)

y(t)

yNN(t)

Learning and prediction

• Test phase

• The NN yields an estimation of the y(t+)

y(t)

yNN(t+)

Learning and prediction
Inconsistent training set

Prediction with delays

y(t-)

y(t)

yNN(t)

y(t-2)

y(t-n)

ONLINE prediction

• Generate a prediction with any a-priori knowledge of the

signal

• Fast convergence with less input seen

• Simple model based on a single neuron (PERCEPTRON)

receiving as input current and past values (x(t)-x (t-d))

Es. Ten steps ahead prediction

d=10

 training set (<input, desired

output>) :

<X1-X10, X20>,<X2-X11, X21>,

… <Xn-Xn+10, Xn+20>

Network output: y10,y11… yn+10

Head stabilization in biped locomotion

P
o
z
z
o

 T
.

e
t

a
l.

 (
1

9
9

0
)

Berthoz A., 2002, The sense of movement. Harvard University Press

The brain uses the information coming from vestibular system to generate a

unified inertial reference frame, centred in the head, that allows whole-body

coordinated movements and head-oriented locomotion.

Adaptive head stabilization model

The controller is based on a feed feedback error learning

(FEL) model. This model estimates the orientation of the

head , which allow following a reference orientation .

The output of this model is sent as input to a Neural

Network which computes the joint positions relative to

the estimated orientation

Head stabilization model based on a feedback error learning

Neural

Network

 ,,

FEL

model
System

+
-

321 ,, 

ttt  ˆ,ˆ,ˆ

eee  ,,
rrr  ,,  ˆ,ˆ,ˆ

Adaptive head stabilization model
Neural Network

Head stabilization model based on a feedback error learning

Artificial Neural Network capable of solving the inverse
kinematics problem without using the closed form solution.

The network has one hidden layer of 20 units. It takes as

input the head orientation (,,) and as output the neck
joints angles (q1, q2, q3).

Anticipatory Visual perception as a bio-

inspired mechanism underlying robot

locomotion

Traditional Perception-Action cycle for the AVP

architecture

• Visual Processing module takes as input current images from both robot
cameras to reconstruct the environment producing the relevant feature position.

•The poses of relevant features are sent to a Trajectory Planning module to
generate the walking path

•The Controller module then takes the first robot pose from the sequence of
poses planned by the Trajectory Planning module and produces the
corresponding motor commands

•This cycle continues until the robot reaches the target.

• Visual Processing module takes as input current images from both robot
cameras to reconstruct the environment producing the relevant feature position.

•The poses of relevant features are sent to a Trajectory Planning module to
generate the walking path

•The Controller module then takes the first robot pose from the sequence of
poses planned by the Trajectory Planning module and produces the
corresponding motor commands

•This cycle continues until the robot reaches the target.

AVP based perception action cycle (I)

• Internal Models
of the environment
and of the task to
be performed are
necessary to
predict future
visual perceptions.

•Images of
different features
relevant to the
locomotion task
are captured and
memorized.

• Internal Models
of the environment
and of the task to
be performed are
necessary to
predict future
visual perceptions.

•Images of
different features
relevant to the
locomotion task
are captured and
memorized.

 AVP based perception action cycle (II)

•At every step, the Visual Comparator module compares the

current image of the environment with a synthetic image predicted by

the AVP Generator module.

•To produce the synthetic image, AVP Generator computes the current

robot pose taking into account the initial pose of the robot and the

motor commands executed at the immediately previous time step.

•The current robot pose is sent to the Learning sub-module of Internal

Models, where the neural network predicts the corresponding poses of

the relevant features.

•The AVP Generator then takes as input the memorized images of the

relevant features, and creates a synthetic image by pasting them on

the environmental background at poses predicted by the neural net.

Implementation of internal models for EP

generation

 OF GENERATOR: generates the

Optical Flow from the camera

image with Lucas-Kanade

algorithm.

 OF SIMPLIFIER: generates a

Simple OF dividing in zones the

Optical Flow and calculating the

mean flow vector for each zone.

 OF PREDICTOR: predicts the

next step OF using an ESN.

Learning is performed off-line.

 SYNTHETIC IMAGE CREATOR:

generates a sinthetic image

rapresenting the next step

camera image.

 IMAGE COMPARATOR:

generates the error between the

synthetic image and the

corresponding camera image.

Internal model

ESN GENERAL SETTINGS

 Off-line learning that minimizes the MSE.

 No feedback connections.

 Input signal composed by motor commands and simple

Optic Flow

 Output signal composed by next step simple Optic Flow.

Implementation of internal models for EP

generation

EXPERIMENTS

 Background and floor

were replaced by a white

screen.

 A matrix of coloured

spheres was placed in

front of the robot.

Implementation of internal models for EP

generation

EXPERIMENTS

A) Motor command: sinusoid of
amplitude 15 and frequency

0.1. Dataset of 1500 elements
(1200 training, 300 test).

B) Motor command: sequence of

sinusoids of amplitude 15 and
frequencies between 0.1 and

0.5. Dataset of 1500 elements
(1200 training, 300 test).

C) Training set composed by the

sum of 3 sinusoids with
amplitude 5 and frequency 0.1
0.25 and 0.4 (1200 elements).

Test set composed by a
sinusoid with amplitude 15 and
frequency 0.2 (300 elements).

D) Motor command: same

sinusoid as A. Environment:
the matrix of spheres has

columns more distants than
before. Dataset of 1500

elements (1200 training, 300
test).

Implementation of internal models for EP

generation

Trial 1 - SINUSOID

 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75

 Train Error (pixels MSE): 0.16558 0.15946 0.15664 0.16499

 Test Error (pixels MSE): 0.17732 0.18431 0.15675 0.16521

Implementation of internal
models for EP generation

 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75

 Train Error (pixels MSE): 0.23676 0.23667 0.23405 0.25608

 Test Error (pixels MSE): 0.28956 0.31899 0.31899 0.32285

Trial 2 – SINUSOID SEQUENCE

Implementation of internal models for EP

generation

 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75

 Train Error (pixels MSE): 0.21956 0.2316 0.2188 0.23137

 Test Error (pixels MSE): 0.31305 0.28552 0.28264 0.30684

Trial 3 – SINUSOID SUM

Implementation of internal models for EP

generation

 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75

 Train Error (pixels MSE): 0.50885 0.33475 0.3148 0.44656

 Test Error (pixels MSE): 0.63688 0.6102 0.61788 0.62655

Trial 4 – DISTANT SPHERES

Implementation of internal models for EP

generation

