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History 

 Artificial Neural Networks (ANNs) are an abstract 

simulation of the nervous system, which contains a set 

of neurons exchanging information through 

connections (axons)  

 

 The ANN model try to mimic axons and dendrites of 

the nervous system. 

 

 The first neural model was proposed by McCulloch 

and Pitts (1943). The model was presented as a 

computational model of the nervous activity. After 

this, other models were proposed John von Neumann, 

Marvin Minsky, Frank Rosenblatt, etc. 
 



Two types of neuron models… 

 Biological model. It has the objective of replicating 

biological neural systems, i.e. visual and auditive 

functionalities. These models are used to validate and 

verify hypothesis about biological systems.  

 

 The second type is focused on the applications. The 

models are strongly influenced  by application needs. 

They are called connectionist architectures.  

 

We will focus on the second one! 
 



Biological neuron 
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Biological neuron 

 Human brain contain 100 million neurons. Neuroscientific 

evidences show each neuron can have  10000 sinapses in input 

or output 

 

 Switching  time of a neuron is few  milliseconds. It is slower 

than a logic gate, but it has a greater connectivity  

 

 A neuron receives from synapses information which are 

summed 

 

 If the excitatory signal is leading, the neuroni s activated and it 

generates information through the synapse  
 



Neural Network structure 

 

A neural network is composed by: 

 

 A set of nodes  (neurons), which is the basic unit 

 A set of weights linked to connections. 

 A set of thresholds or activation levels  

 

The network design requires: 

 

1. Number of basic unit. 

2. Morphological structure. 

3. Learning example encoding  (input and output of the 

net) 

4. Initialization and training of the weights linked to 

the connections, through a learning example set. 



Neural network applications 

Main features: 

 

 The objective function can have discrete/continuos values  

 Learning data can be noisy 

 Learning time is NOT  real-time 

 Fast evaluation of the learning rate of the neural network 

 It is not crucial to get the semantics of the learned function 

 

Robotics, Image Understanding, Biological Systems 
 



Learning strategies 

• Supervised Learning   

 -MLP and recurrent NN 

  

• Unsupervised Learning 

 - Clustering 

 

• Competitive Learning 

 - Kohonen networks 

 

• Reinforcement Learning 

 



The perceptron 

• The perceptron is the neural network basic unit 

• It was defined by Rosenblatt (1962) 

• Try to replicate the single neuron function 

x1 

x2 

xn 
. . . 

SUM Threshold 

w1 

w2 

wn 



The perceptron 

• Output values are boolean: 0 – 1 

 

• Inputs xi  and weights wi  are real (positive or 

negative) 

 

• Learning consists in selecting value for weights and 

threshold 
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Sum and activation functions 
 

a) Input funtion, linear (SUM) 

ini  wijx j
j
  wixi  

b) Activation function, non linear (THRESHOLD) 
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Activation functions 
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Objective function 

• If the threshold function is sign() and x1..xn are the input 

values: 
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The Perceptron (classification  

generalization) 

• Learning problem: 

• Set of points in a n-dimensional space  

1 classify into two groups (positives and negatives) 

2 Then, given a new point P, associate P with one group  

 

1 Classification problem 

2 generalizzation problem (learning concepts) 



Perceptron – Training algorithm 

• Initialize weights randomly 

• Gives an example from the dataset<x,c(x)> 

• Compute o(x) 

• IF o(x)c(x) then update: 

•  is the learning rate 

• xi is the ith feature value of x  

• The perceptron error (E) is equal to (c-o)  

wi  wi  wi

wi  (c(x) o(x))xi



Example test 

• Suppose that o(x)=-1 (if the threshold function is sign(x)) 

and c(x)=1 

• It is needed to modify weights 

• Example: 

 

 

 

• The wi. value increases in order to reduce the error 

• IF c(x)=-1 e o(x)=1 

xi  0, 8,   0,1, c  1, o  1

wi  (c o)xi  0,1(1 (1))0, 8 0,16

wi  (c o)xi  0,1(1 (1))0,8  0,16



The perceptron 

• Convergence theorem of  percepton (Rosemblatt, 

1962)  
• The perceptron is a linear classifier, therefore it will never get 

to the state with all the input vectors classified correctly if the 

training set  is not linearly separable 

• In other words.. No local minima! 
• The way to solve nonlinear problems is using multiple layers 

• Solution: Feed forward neural network and 

recurrent neural network 

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Linearly_separable


Supervised learning 

MLP networks 

• All the neurons of a layer are connected to all the neurons of the next 

layer 

• There are no connections between neurons in the same layer and 

between non adjacent layers 



Feed forward neural network: back 

propagation algorithm 

• Objectives: 

• Perceptron weights initialized randomly 

• Fast learning 

• Generalization capability 



Backpropagation (2) 

Threshold function: 

sigmoid 

 

 

 

Error function is as follow: 
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Backpropagation (3) 

Gola: minimize error 

between expected and real 

output 

 

Update weights rule: 
 

 

 

 

wji wji wji

Weights wij (from nj to ni) 

NNs produce m output values 

w ji   jx ji

 j  o j(1 o j )(t j  o j)



Backpropagation (4) 

• While unreached termination condition, execute: 

• For each value vD: (x, t(x))  (x=(x1,x2..xn), t(x)=(t1,t2,..tm):  
• I set of the input nodes (1,2,,n), O set of output nodes(1,2..m), N set 

of the net nodes 

• Compute the output of the net generated by the input v and the 

output of each node of the net nu  N (xi input of the input node iiI,  
oj output yielded by the node nj N)  

• Compute error of the output node ok O as follows: 

 

 

• Compute the error for the hidden units hh H= (N-OI) connected the 

the output nodes, as follows: 

 

• Compute the error for the other nodes  

• Updates the net weights as follow: 
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nkO


w ji  w ji  w ji

w ji  j x ji

k  ok (1 ok )(tk  ok )



Gradient computation 
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Termination condition 

• The process continues until all the examples 

(<x,t(x)>) have been processed 

• When does the process stop? Minimize errors on 

the train set is not the best solution (overfitting) 

• Minimize errors on a test set (T), this means to 

split D in D’T, training using D’ and using T to 

verify the termination condition 



Error in the training set 

 



Does the algorithm converge? 

• Gradient algorithm issues: 
• Can stop on local minima 

• A local minimum can give solutions which are far from the 

global minimum 

• Sometimes there are a lot of local minima… 

• A possible solution: training with changing initial weight 

values 



Weights Updating Rule 

• Considering the n-th valueof di D, updating rule becomes: 

 

 

• Pros: 
• Overcoming local minima 

• Keeping stable value for the weights in the «flat zones» 

• Increase velocity when gradient does not change 

• Cons: 
• If momentum value is too high can stop on local MAXIMA 

• One more tuning value 

 

wij(n) j xij wij (n 1) Momentum 



A few considerations… 

• Initializing weight values is basic to reach convergence  

 

• BP depends on the learning rate . This can make the net 

diverging. 

 

• It can be useful to use different values of  for the network 

layers 

 



Recurrent neural networks 

They are networks that learn to associate an input 

pattern with a sequence of output patterns 

Xk ⇒ Yk1, Yk2, …, YkL 

A recurrent neural network (RNN) is a class of neural networks where 

connections between units form a directed cycle. This creates an internal 

state of the network which allows it to exhibit dynamic temporal behavior. 



Learning strategies 

• Supervised Learning   

 -MLP and Recurrent NN 

 Unsupervised Learning 

 - Clustering 

• Competitive Learning 

 - Kohonen networks 

• Reinforcement Learning 

 



Unsupervised learning 

• Split non labeled input values in subsets(cluster) 

• Similar input values are in the same subset 

• Different input values are in different subsets 

• Find new in an subsets in an unsupervised way (no 

labels provided) 



Learning strategies 

• Supervised Learning   

 -MLP e reti neurali ricorrenti   

 - RBF 

• Unsupervised Learning 

 - Clustering 

• Competitive Learning 

 - Reti di Kohonen  

• Reinforcement Learning 

 



Competitive Learning 

• In some cases, the network output can be ambiguous 

• Thanks to the lateral inhibition, neurons start competing 

to respond to a stimulus. 

• The neuron having the greatest output wins the 

competition and specializes itself to recognize that 

stimulus. 

• Thanks to the excitatory connections, neurons near the 

winner are also sensitive to similar inputs 

An isomorphism is created between input and output space 



Competitive Learning - Implementation 

• The winning neuron is selected using a global strategy 

just by comparing the outputs of the other neurons. 

• Two techniques can be used: 

   1. Select the neuron with the maximum output; 

   2. Select the neuron whose weight vector is more similar 

to the current input 

 

METHOD 1 - The winner on an input X 

is the one with the greatest output 

METHOD 2 -The winner neuron on input 

X is that having its weight vector more 

similar to X 



Kohonen networks 

The Kohonen network (or "self-

organizing map", or SOM, for short) 

has been developed by Teuvo 

Kohonen.  

The basic idea behind the Kohonen 

network is to setup a structure of 

interconnected processing units 

(neurons) which compete for the 

signal.  
 The SOM defines a mapping from the input data space spanned by 

x1..xn onto a one- or two-dimensional array of nodes. The mapping 

is performed in a way that the topological relationships in the n-

dimensional input space are maintained when mapped to the SOM. 

In addition, the local density of data is also reflected by the map: 

areas of the input data space which are represented by more data 

are mapped to a larger area of the SOM. 



Learning strategies 

• Supervised Learning   

 -MLP e reti neurali ricorrenti   

 - RBF 

• Unsupervised Learning 

 - Clustering 

• Competitive Learning 

 - Reti di Kohonen  

• Reinforcement Learning 

 



Reinforcement learning 

Several actions are 

executed. 

Successful actions are 

stored 

 (by weight variations). 

Punishments and rewards 
 

An agent operates in the 

environment and modify 

actions based on the 

produced consequences. 



Robot control and neurocontrollers 



Robot control 



Computing the Inverse Kinematics 

solution using a NN 

q1 q2 q3

NN 

Px Py Pz 

How do you make the network learning? 

 Creating a dataset of 

<joint_posistions, end 

effector_positions> using 

the direct kinematics 



Learning the Inverse Static Solution 

• It is not always possible to compute the inverse 

kinematic solution using the joint positions 

 

• For soft continuum robots actuated by cables it is 

possible to exploit the relation between the cable 

tendion  and the end effector position, in order to 

control the tip  



Learning the Inverse Static Solution (II) 

• Control of the soft arm through 

the learning of the inverse 

model that allows to control the 

end effector position through 

the cable tension 

 

• The inverse problem can be 

learned collecting points and 

exploiting the approximation 

capability of the NN as for the 

rigid robots 

Cable Tension End effector 

position 



Learning the Inverse Static Solution: an 

adaptive approach (I) 

A Neural Network can be used to solve the inverse solution 

generating an adaptive approach : 

 

The direct model relation is : 

𝒙 = 𝑓 𝒒                                       (1)  

  

where, 𝒙 ∈  ℜ𝑚 is the position and orientation vector of the 

end effector; 𝒒 ∈  ℜ𝑛 is the joint vector  𝑓 is a surjective 

function 

This particular 

representation is not 

invertible when m<n 

(redundant) 



Learning the Inverse Static Solution: an 

adaptive approach (II) 

We can develop local representations by linearizing the 

function at a point (𝒒𝒐) thereby obtaining : 

 

𝛿𝒙 = 𝐽 𝒒𝒐 𝛿𝒒   (I) 

 Here 𝐽(𝒒𝒐) is the Jacobian matrix at the point  𝒒𝒐; 𝛿𝒙 

and 𝛿𝒒 are infinitesimally small changes in 𝒙 e 𝒒. The 

differential IK method involves generating of (𝛿𝒙, 𝛿𝒒,𝒒) and 

learning the mapping (𝛿𝒙,𝒒𝒐) →𝛿𝒒  

 

The learning is feasible since the differential IK solutions form 

a convex set and therefore averaging multiple solutions still 

results in a valid solution 



Learning the Inverse Static Solution: an 

adaptive approach (III) 

The method we have proposed involves expanding 

Eq. I and expressing it in terms of absolute positions, 

as shown below:   
  𝐽 𝒒𝒊 𝒒𝑖+1 =  𝒙𝑖+1 − 𝑓 𝒒𝒊 + 𝐽(𝒒𝒊)𝒒𝒊 (II) 

𝒒𝑖+1 is the next actuator configuration for reaching  
a point 𝒙𝑖+1 from the present configuration  𝒒𝒊. Note 

that Eq. II is only valid when the configurations are 

infinitesimally close. However, for practical 

purposes this can be a good approximation for 

larger regions.  



Learning the Inverse Static Solution: an 

adaptive approach (IV) 

The analytical solution for the equation II can be written as: 

𝒒𝑖+1 =  𝐺(𝒙𝑖+1−𝑓 𝒒𝒊 + 𝐽𝒒𝒊) + (𝐼𝑛 − 𝐺𝐽)𝒛   

 

where 𝐺  is a generalized inverse of  𝐽(𝒒𝒊) and 𝐼𝑛 is the identity matrix, and  

𝒛 is an arbitrary n-dimensional vector. The first component represents the 

particular solution to the non-homogenous problem prescribed in Eq. II and 

the second component represents the infinite homogenous solutions. It can 

be proved that the solution space still forms a convex set. Therefore, a 

universal function approximator (i.e. NN) can be used for learning the 

mapping 

    (𝒒𝒊, 𝒙𝑖+1)→ (𝒒𝑖+1)  

The samples  (𝑞𝑖,𝑞𝑖+1, 𝑥𝑖+1)  genereted are such that 

 ∣ 𝑞𝑖+1 − 𝑞𝑖 ∣ < ϵ 

 

An appropriate value of ϵ is between 10%-5% of the maximum actuator 

range 



Learning the Inverse Static Solution: an 

adaptive approach (V) 

• We use a  feed-forward NN to learn the relation: 
•                              (𝒒𝒊, 𝒙𝑖 , 𝒙𝑖+1)→ (𝒒𝑖+1)  

 
• The values of 𝒙𝑖 , 𝒙𝑖+1 are genereted using the direct 

model as showed for the learning of the IK of a rigid 
manipulator 

TRAINING PHASE    TEST PHASE 
 
 
 (𝒒𝒊−𝟏, 𝒙𝑖 , 𝒙𝑖−1)    (𝒒𝒊, 𝒙𝑖 , 𝒙𝑖+1) 

 

      (𝒒𝑖)      (𝒒𝑖+1) 
 

INPUT 

Desired 

OUTPUT 

INPUT 

Network 

OUTPUT 



Learning the Inverse Static Solution: an 

adaptive approach (V): real robot 

implementation 

I-Support Prototype 

Six DoF Hybrid System (Pneumatic and Tendon)  
 

 

Mean Error Standard Deviation 

Position (mm) 5.58 3.08 

X- axis rotation (degrees) 2.76 5.42 

Y- axis rotation (degrees) 1.84 1.83 

Z- axis rotation (degrees) 3.85 7.02 

Twenty Five random points selected from workspace 

• 2000 sample points divided in the ratio 70:30 for training 
and testing respectively 

• 2 hours for data collection, training and setting-up 

LEARNING 

TESTS 



External Disturbance (Only Position) 

Unlike the case of rigid robots external disturbances modify the kinematics of the soft manipulator  

 

This is the first experimental implementation of soft robots tracking under external disturbances 



Offline signal prediction 

• Using a NN to foresee the signal in the future 

• Training the NN using past values  



Learning and prediction 

• Learning phase 

 

 

 

 

 

 

 

 

 

• The NN learns the relation between y(t) and y(t-) 

y(t-) 

y(t) 

yNN(t) 



Learning and prediction 

• Test phase 

 

 

 

 

 

 

 

 

 

• The NN yields an estimation of the y(t+) 

y(t) 

yNN(t+) 



Learning and prediction 
Inconsistent training set 



Prediction with delays 

 

y(t-) 

y(t) 

yNN(t) 

y(t-2) 

y(t-n) 



ONLINE prediction 

• Generate a prediction with any a-priori knowledge of the 

signal 

• Fast convergence with less input seen 

• Simple model based on a single neuron (PERCEPTRON) 

receiving as input  current and past values (x(t)-x (t-d)) 

Es. Ten steps ahead prediction 

d=10 

 

 training set (<input, desired 

output>) : 

<X1-X10, X20>,<X2-X11, X21>, 

… <Xn-Xn+10, Xn+20> 

 

Network output: y10,y11… yn+10 

 

 



Head stabilization in biped locomotion 
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Berthoz A., 2002, The sense of movement. Harvard University Press 

The brain uses the information coming from vestibular system to generate a 

unified inertial reference frame, centred in the head, that allows whole-body 

coordinated movements and head-oriented locomotion.  



Adaptive head stabilization model 

The controller is based on a feed feedback error learning   

(FEL) model. This model estimates the orientation of the 

head ,  which allow following a reference orientation .  

 

The output of this model is sent as input to a Neural 

Network which computes the joint positions relative to 

the estimated orientation 

Head stabilization model based on a feedback error learning 

Neural 

Network

 ,,

FEL 
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System

+
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Adaptive head stabilization model 
Neural Network 

Head stabilization model based on a feedback error learning 

Artificial Neural Network capable of solving the inverse 
kinematics problem without using the closed form solution.  
 
 
 
 

 
 

 
The network has one hidden layer of 20 units. It takes as 

input the head orientation (,,) and as output the neck 
joints angles (q1, q2, q3).  
 



Anticipatory Visual perception as a bio-

inspired mechanism underlying robot 

locomotion 

 



Traditional Perception-Action cycle for the AVP 

architecture 

• Visual Processing module takes as input current images from both robot 
cameras to reconstruct the environment producing the relevant feature position. 
 

•The poses of relevant features are sent to a Trajectory Planning module to 
generate the walking path 
 

•The Controller module then takes the first robot pose from the sequence of 
poses planned by the Trajectory Planning module and produces the 
corresponding motor commands 
 

•This cycle continues until the robot reaches the target. 

• Visual Processing module takes as input current images from both robot 
cameras to reconstruct the environment producing the relevant feature position. 
 

•The poses of relevant features are sent to a Trajectory Planning module to 
generate the walking path 
 

•The Controller module then takes the first robot pose from the sequence of 
poses planned by the Trajectory Planning module and produces the 
corresponding motor commands 
 

•This cycle continues until the robot reaches the target. 



AVP based perception action  cycle (I) 

• Internal Models 
of the environment 
and of the task to 
be performed are 
necessary to 
predict future 
visual perceptions.  
 

 
•Images of 
different features 
relevant to the 
locomotion task 
are captured and 
memorized.  
 

• Internal Models 
of the environment 
and of the task to 
be performed are 
necessary to 
predict future 
visual perceptions.  
 

 
•Images of 
different features 
relevant to the 
locomotion task 
are captured and 
memorized.  
 



 

 AVP based perception action  cycle (II) 

 

 

 

 

 

 

 

 

 

 

 

•At every step, the Visual Comparator module compares the 

current image of the environment with a synthetic image predicted by 

the AVP Generator module.  
 
 

•To produce the synthetic image, AVP Generator computes the current 

robot pose taking into account the initial pose of the robot and the 

motor commands executed at the immediately previous time step.  
 
•The current robot pose is sent to the Learning sub-module of Internal 

Models, where the neural network predicts the corresponding poses of 

the relevant features.  

 

•The AVP Generator then takes as input the memorized images of the 

relevant features, and creates a synthetic image by pasting them on 

the environmental background at poses predicted by the neural net. 
 



Implementation of internal models for EP 

generation 

 

 

 

 

 

 

 

 

 

 

 

 OF GENERATOR: generates the 

Optical Flow from the camera 

image with Lucas-Kanade 

algorithm. 

 OF SIMPLIFIER: generates a 

Simple OF dividing in zones the 

Optical Flow and calculating the 

mean flow vector for each zone. 

 OF PREDICTOR: predicts the 

next step OF using an ESN. 

Learning is performed off-line. 

 SYNTHETIC IMAGE CREATOR: 

generates a sinthetic image 

rapresenting the next step 

camera image. 

 IMAGE COMPARATOR: 

generates the error between the 

synthetic image and the 

corresponding camera image. 

 

Internal model 



 

 

 

 

 

 

 

 

 

 

 

ESN GENERAL SETTINGS 

 Off-line learning that minimizes the MSE. 

 No feedback connections. 

 Input signal composed by motor commands and simple 

Optic Flow 

 Output signal composed by next step simple Optic Flow. 

Implementation of internal models for EP 

generation 



EXPERIMENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Background and floor  

were replaced by a white 

screen. 

 A matrix of coloured 

spheres  was placed in 

front of the robot.  

Implementation of internal models for EP 

generation 



EXPERIMENTS 

A) Motor command: sinusoid of 
amplitude 15 and frequency 

0.1. Dataset of  1500 elements 
(1200 training, 300 test). 

 
B) Motor command: sequence of 

sinusoids of amplitude 15 and 
frequencies between 0.1 and 

0.5. Dataset of  1500 elements 
(1200 training, 300 test). 

 
C) Training set composed by the 

sum of 3 sinusoids with 
amplitude 5 and frequency 0.1 
0.25 and 0.4 (1200 elements). 

Test set composed by a 
sinusoid with amplitude 15 and  
frequency 0.2 (300 elements).            

 
D) Motor command: same 

sinusoid as A. Environment:  
the matrix of spheres has  

columns more distants than 
before. Dataset of  1500 

elements (1200 training, 300 
test).  

Implementation of internal models for EP 

generation 



Trial 1 - SINUSOID 

 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75 

 Train Error (pixels MSE): 0.16558 0.15946 0.15664 0.16499 

 Test Error (pixels MSE): 0.17732 0.18431 0.15675 0.16521  

Implementation of internal 
models for EP generation 



 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75 

 Train Error (pixels MSE): 0.23676 0.23667 0.23405 0.25608 

 Test Error (pixels MSE): 0.28956 0.31899 0.31899 0.32285  

Trial 2 – SINUSOID SEQUENCE 

Implementation of internal models for EP 

generation 



 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75 

 Train Error (pixels MSE): 0.21956 0.2316 0.2188 0.23137 

 Test Error (pixels MSE): 0.31305 0.28552 0.28264 0.30684  

Trial 3 – SINUSOID SUM 

Implementation of internal models for EP 

generation 



 Input dim: 5, Spectral radius: 0.7, Reservoir dim: 75 

 Train Error (pixels MSE): 0.50885 0.33475 0.3148 0.44656 

 Test Error (pixels MSE): 0.63688 0.6102 0.61788 0.62655  

Trial 4 – DISTANT SPHERES 

Implementation of internal models for EP 

generation 


