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Who am I 
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http://sssa.bioroboticsinstitute.it/user/1507


https://www.reddit.com/r/ludobots/wiki/index 

http://www.reddit.com/r/ludobots 

http://www.meclab.org/  

Part of this material is inspired by or 

adapted from: 
 

• Floreano, Matiussi, “Bio-Inspired Artificial 

Intelligence - Theories, Methods, and 

Technologies”, MIT press (2008). 

• Pfeifer, Bongard, “How the body shapes the 

way we think: a new view of intelligence”. MIT 

press (2006). 

• “Evolutionary Robotics” class (CS206) at 

University of Vermont (USA), Prof. J. Bongard 

• LudoBots, a Reddit-based MOOC on 

Evolutionary Robotics 
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• Introduction and motivation 

• Evolutionary Algorithms 

• Human-competitive design and “perverse instantiation” 

• Developmental encodings and co-evolution of artificial brains and 

bodies 

• The “reality gap” problem 

 

Appendix: 

• VoxCad, multi-material physics engine for soft-robot analysis, design 

and evolution 
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Outline 

https://youtu.be/XqIUJcuOgmw
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Introduction and motivation 
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Biorobotics: sometimes successful… 

Passive dynamic walker, Mc Geer 1990 

https://youtu.be/WOPED7I5Lac
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Biorobotics: sometimes successful… 

Koh et al. 2015, Science 

https://youtu.be/k0_454EDwkk
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…sometimes not so much 

Robots failing at the Darpa Robotic Challenge 2015 (IEEE Spectrum) 

https://youtu.be/g0TaYhjpOfo
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Biorobotics: challenges and risks 

Biorobotics focuses on something usually very complex (e.g. a 

complete creature, a specific behavior, etc.) and tries to extract 

underlying principles, that can guide the design of robotic artifacts 
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Biorobotics: challenges and risks 

 

• Requires a lot of human knowledge 

• Difficult to extract insights, easier to just replicate/add complexity, 

that: 

• may or may not be useful 

• often we don’t know how to handle 

• can hinder underlying principles 

• Top down complexity + attempt to simplify 
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Biorobotics: challenges and risks 

ECCE robot, Embodied Cognition in a Compliantly Engineered Robot 

https://youtu.be/cI9H4FoA0b4
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Sources: 

Boston Dynamics 

http://sti.epfl.ch/page-56108-en.html 

https://www.youtube.com/watch?v=wAGMRQIVsf4 

http://scienceblogs.com/pharyngula/2013/12/27/frugal-to-the-point-of-vacuity 
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Different ways 

to approach 

the same 

problems 
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From: Pfeifer, Bongard, How the body shapes the way we think, MIT press 

A more comprehensive, 

bottom-up approach 
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From: Pfeifer, Bongard, How the body shapes the way we think, MIT press 

Note that mechanisms 

such as development and 

learning are themselves a 

product of evolution 

 Stepping stone 

A more comprehensive, 

bottom-up approach 
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From: Pfeifer, Bongard, How the body shapes the way we think, MIT press 

Note that mechanisms 

such as development and 

learning are themselves a 

product of evolution 

 Stepping stone 

 

 

 

Actually, the mechanisms 

at the base of evolution 

are, somehow, 

themselves a product of 

evolution! 

A more comprehensive, 

bottom-up approach 
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A bottom-up perspective can simplify hard problems 

Bongard, Josh. "Morphological change in machines accelerates the evolution of robust behavior." Proceedings of the 

National Academy of Sciences 108.4 (2011): 1234-1239. 

- Physically realistic virtual 

environment 

- Robot: rigid segments 

- Control: Continuous Time 

Recurrent Neural Network 

(CTRNN) 
 

 Morphological scaffolding 

(or, training wheels for your 

robot) 
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A bottom-up perspective can simplify hard problems 

Bongard, Josh. "Morphological change in machines accelerates the evolution of robust behavior." Proceedings of the 

National Academy of Sciences 108.4 (2011): 1234-1239. 

 Morphological scaffolding allows to find faster and more robust gaits 
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Biorobotics and biology look at a single instance of natural processes 

But: 

- The tips of this tree are not necessarily optimal (evolutionary vestiges and 

compromises) 

- We can only observe and manipulate certain aspects of living systems 

- «Fossils tell no tales», John Long, most features of extinct creatures can only be 

guessed from indirect observations 
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What if we could: 

- Tame and steer natural processes at our leisure 

- Look at many possible instances of such processes 

- Have complete access to evolving individuals, and complete control over the 

environment in which they evolve 

? 

Biorobotics and biology look at a single instance of natural processes 

? 
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Why not focusing on natural processes (evolution, development) instead 

of on their products? 

 

Why not building up complexity (morphological, neurological) in a 

bottom-up fashion, only when and where needed? 

 

Overall, instead of imitating nature’s designs… 

 

…why not imitating nature’s approach to design? 

A more fundamental, bottom up approach to 

bioinspiration 
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“If you wish to make an apple pie from scratch you 

must first invent the universe” 
 

Carl Sagan, astronomer, cosmologist, astrophysicist, astrobiologist  

 

 

“Nothing in Biology Makes Sense Except 

in the Light of Evolution” 
 

Theodosius Dobzhansky, geneticist and evolutionary biologist 



Evolution: Nature’s approach to design 
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Natural Evolution 

The four pillars of Evolution: 

1. Population: Evolution is based on groups of individuals 

2. Diversity: Individuals in a population have different characteristics / traits 

3. Heredity: The characteristics of an individual can be transmitted over 

generations through reproduction. Mechanisms involved in this process are 

error-prone  Novel traits can arise from random variations 

4. Selection: Limited resources in the environment  Not all individuals will 

survive and reproduce. Better individuals (food gathering, mating)  Higher 

chance to survive and reproduce  Higher chance to find their characteristics in 

later generations  Useful traits become more frequent (innovation) 

“All species derive from a common 

ancestor”, Charles Darwin, “On the 

Origins of Species”, 1859 
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A bit of terminology 

Genotype: 

• “Blueprint” of an organism 

• Individual’s traits (observable features) are encoded there 

• It is transmitted and manipulated by error-prone mechanisms 

(recombination, mutation)  Novel traits arise 

• Through processes called translation and transcription, the 

genotype of an individual ultimately results in its… 

Phenotype: 

• Observable features of an organism (physical appearance, 

behavior, …) 

• Selection operates on the phenotype 
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• In biology, the genetic material is based on the  

DNA 

• DNA is organized in separated molecules 

 Chromosomes 

• In sexual reproduction the genetic material of the 

parents is combined (genetic recombination) 

• Genes: Functionally relevant sub-sequences of 

the DNA chain 

• The characteristics encoded in genes ultimately 

result in specific phenotypic traits through a 

process called gene expression 
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A bit of terminology 



Genetic mutation and recombination 

Error-prone replication mechanisms 

 Novel traits arise from these random variations 

 Those that confer an advantage have more chances of being selected 
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Parent 1 Parent 2 



From an algorithmic / engineering point of view… 

Evolution can be thought of as a trial-and-error 

process, in which  innovation is driven by 

the non-random selection (survival/reproduction) 

of random variations (genetic mutations) 

 

In nature, this process is open-ended and 

non-goal-directed 

F. Corucci - Introduction to Evolutionary Robotics 



Evolved biomechanics 

Cheetah Peregrine falcon 

Manta ray 
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Evolution and adapation to the ecological niche 

Adaptation to the environment: body coverings (mimicry), body parts, behaviors 

Leaf-tailed gecko Walking stick 

Chaetodon capistratus 

Green leaf Katydid 

Non toxic butterfly mimics a toxic one 
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Evolved Sensors – vestibular system 

Semicircular canals, 

detecting angular 

accelerations 

Otoliths, detecting linear 

accelerations and tilting. 

In some animals (e.g. insects) 

adapted to also detect vibrations 

(and thus predators) 

Remarkably sophisticated solutions 
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http://en.wikipedia.org/wiki/Semicircular_canal
http://en.wikipedia.org/wiki/Otolith
http://en.wikipedia.org/wiki/Otolith


Evolved Complexity at the micro scale 

ATP Synthase – a protein-based micro rotational motor 
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https://www.youtube.com/watch?v=PjdPTY1wHdQ


Evolved Complexity at the micro scale 

The inner life of the Cell - BioVisions, Harvard University – http://multimedia.mcb.harvard.edu  

F. Corucci - Introduction to Evolutionary Robotics 

http://multimedia.mcb.harvard.edu/
https://www.youtube.com/watch?v=FzcTgrxMzZk


Another product of Evolution… 
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If we could replicate evolution in an artificial form, we could: 
 

 

 

• Obtain a methodology to automatically design as many robots as we 

would like, for all possible tasks and environments 

 

• Achieve similar levels of sophistication in the final solutions 

  

  Potentially outperforming human design skills 

 (machines are better than us already in many tasks) 

 Potentially outperforming bio-inspired designs 

 (artificial evolution would find a way to exploit the provided artificial substrate, 

i.e. our technology, instead of mimicking solutions arising from a biological 

one) 
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If we could replicate evolution in an artificial form, we could: 
 

 

 

 

 

 

• Produce machines that can adapt to different tasks and 

environments, like the products of natural evolution (biological 

creatures) do  Current robotic technology lacks of adaptivity 

 

• Give rise to other desirable phenomena that natural evolution 

produced, that are difficult to comprehend and replicate in artificial 

form (e.g. intelligence) 
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If we could replicate evolution in an artificial form, we could: 
 

 

 

 

• Simulate many alternative evolutionary trajectories 

(e.g. What life on a different planet may look like, given the different 

environmental conditions?) 

 

 With computers we can simulate  

many possible worlds in a matter 

of hours 
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Christopher Langton, Artificial Life (ALife): 

study of life as it is… and as it could be 

www.evolutionaryrobotics.org 



Evolutionary robotics 

F. Corucci - Introduction to Evolutionary Robotics 



What is Evolutionary Robotics? 

Evolutionary Robotics is an 

interdisciplinary research field, at the 

intersection of: 

• Robotics 

• Artificial intelligence  

• Cognitive sciences 

• Computational and evolutionary 

biology 

• Artificial Life 

• … 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms 

inspired by natural evolution in order 

to automatically design complete, 

adaptive and intelligent machines 

 

 

 Paradigm shift:  

Replicating natural processes instead of 

their end-products 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 
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https://youtu.be/zhqfC70IgGg


What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms 

inspired by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 
 

 

Although natural evolution does not have 

a goal, in evolutionary robotics we 

usually have one, which is formulated in 

the form of an optimization problem 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms 

inspired by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 
 

 

 

Example: find the optimal morphology and 

controller for fast locomotion in a given 

environment 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms inspired 

by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 

 

 

Darwinian evolution: 

1. Descent with modification 

2. Natural selection 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms inspired 

by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 
 

 

Design automation technique: once we 

set up the process, it requires no human 

intervention 

 When coupled with techniques such as 

3D printing, potential for a completely 

automated design and fabrication pipeline 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms inspired 

by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 
 

 

All aspects of a robot can be co-optimized 

at once: 

1. Morphology (remember the passive dynamic walker) 

2. Sensory and actuation systems 

3. Controller 

 Unique advantage of this type of technique 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms inspired 

by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 

 

The lack of adaptation of current robotic 

technology is a limiting factor to the 

widespread of robotics outside controlled 

environments 

 Evolving robots can adapt to unknown 

and possibly dynamic environments 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



What is Evolutionary Robotics? 

Core idea:  

To apply optimization algorithms inspired 

by natural evolution in order to 

automatically design complete, adaptive 

and intelligent machines 
 

 

Biological intelligence was created by 

natural evolution: artificial evolution may 

be the most reasonable path to produce 

truly intelligent and cognitive machines 
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Josh C. Bongard. 2013. “Evolutionary 

robotics”. Commun. ACM 56, 8 (August 2013), 74-83 



Anatomy of an Evolutionary Robotics experiment 

Main components: 

1. An environment (real/virtual) 

2. A task that we want the robot to solve (e.g. walk) 

  1+2: ”task environment” 

3. A robot (real/simulated), or (usually) a population of them, some 

aspects of which (e.g. morphology, control, both) should be optimized 

( they will be under evolutionary control) 

4. A fitness function, measuring how well each robot performs (e.g. speed) 

5. An evolutionary algorithm, trial-and error iterative procedure which 

optimizes the robot(s) over a number of generations, until a desired 

solution is found 

F. Corucci - Introduction to Evolutionary Robotics 
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Desired 
outcome 

Problem 
formulation 



The first attempt 

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015 

Sims, Karl. "Evolving virtual creatures." Proceedings of the 21st annual conference on Computer graphics and interactive 

techniques. ACM, 1994. 

https://youtu.be/JBgG_VSP7f8


Example I 
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From: YouTube (Arseniy Nikolaev, virtual spiders evolution) 

https://www.youtube.com/channel/UCXu6HiuLx1D5FJ82EJT1EHg
https://www.youtube.com/channel/UCXu6HiuLx1D5FJ82EJT1EHg
https://www.youtube.com/channel/UCXu6HiuLx1D5FJ82EJT1EHg
https://youtu.be/mss8WYVVf3o


Example II 
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QuadraTot: A Learning Quadruped Robot Demo, Cornell University, Hidalgo, Nguyen, Yosinski 

https://youtu.be/ODoiOj9DdGg


Example II (cont’d) 
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From: YouTube, Jeff Clune, Univ. of Wyoming, “Evolving Gaits for Legged Robots: Neural 

Networks with Geometric Patterns Perform Better“ 

https://youtu.be/V2ADU8YWIug


Example III 
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Bongard, J. (2008) Behavior Chaining: Incremental Behavior Integration for Evolutionary Robotics, Artificial Life XI, MIT 

Press, Cambridge, MA. 



Example IV 
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Tuci et al., “Active categorical perception in an evolved anthropomorphic robotic arm“ 



Evolutionary Algorithms 

1001101010001 
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Optimization, candidate solutions, fitness 

• Evolutionary Algorithms are optimization algorithms 

• Individuals in a population  Candidate solutions to an optimization 

problem 

• Fitness: success of an individual in its environment (affects its 

reproduction rate)  Should capture what we want the robot to do 

 A function to be maximized/minimized (objective) 

  Simplest case: single-objective, real-valued function 

  More complex case: multi-objective (later) 
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Genetic representation, genotype-phenotype mapping 

• Solutions (robots) must be encoded somehow in order to be 

manipulated by the algorithm  Genetic representation 

• The genotype is then somehow expressed to form the phenotype 

( Genotype-to-phenotype mapping), that is evaluated (fitness) in 

the task environment 
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Fitness value = scalar quantifying 

how well the robot performed 

( will affect the probability of 

surviving to the next generation) 

Fitness = number of 

offsprings 

Environment 

Task 

environment 

Embryogenesis 

Artificial 

embryogenesis 

Genotype 

Genotype 



Genetic representation, genotype-phenotype mapping 

• Complex encodings are often used in evolutionary robotics in order to 

efficiently encode both robot brains and bodies and increase 

evolvability  Indirect/generative/developmental encodings (later) 

• For the time being, imagine: 

• Genotype: vector of N numbers (genes) (parameters) 

• Direct encoding: 1:1 genotype-to-phenotype mapping, each gene 

represents a specific phenotypic trait 

F. Corucci - Introduction to Evolutionary Robotics 

Fitness value = 

measured locomotion 

speed 

Task environment: 

flat ground where 

the robot can walk 

0.1 1.5 0.01 3.1 2.7 

Example: 

Genetic representation: vector of 

control (e.g. synaptic weights) and 

morphological (e.g. mass and 

length of each limb) parameters 



Genetic representation, genotype-phenotype mapping 

• Complex encodings are often used in evolutionary robotics in order to 

efficiently encode both robot brains and bodies and increase 

evolvability  Indirect/generative/developmental encodings (later) 

• For the time being, imagine: 

• Genotype: vector of N numbers (genes) (parameters) 

• Direct encoding: 1:1 genotype-to-phenotype mapping, each gene 

represents a specific phenotypic trait 

 

 The optimization algorithm will return a particular choice of values 

for the genes/parameters that maximizes/minimizes the fitness 

function (objective) 

F. Corucci - Introduction to Evolutionary Robotics 



Fitness landscape 

• Represents the mapping between genotypes and fitness values* 

• If the genotype is a vector of 𝑁 real values, the fitness landscape is a 

multi-dimensional surface in ℜ𝑁+1 

• This mapping is usually unknown and non intuitive, which is why we 

need algorithms that can sample and navigate this surface until good 

solutions (ideally, global maxima/minima)  are found 

• Useful way to mentally visualize high-dimensional problems 

 

* Keep in mind that the fitness is, however, always computed on the 

phenotype associated to a genotype 
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Fitness landscape 
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Fitness landscape – Assumptions  

• Differently from other methods (e.g. gradient-based methods), 

evolutionary algorithms do not require a priori assumptions/knowledge 

regarding the properties of the function to be optimized (e.g. it doesn’t 

have to be differentiable)  black box 

• Drawback: they usually cannot guarantee convergence to a global 

optimum 
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The simplest algorithm 
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Generate a single 

initial random solution 

(parent) and evaluate 

it (fitness) 

Generate a child by 

randomly perturbing 

(mutating) the parent 

If fitness(child) > 

fitness(parent),  

parent = child 

Repeat until sufficiently fit solution is found, or for a fixed number of iterations 

Recall: ”Evolution can be thought of as a trial-and-error process, in which 

innovation is driven by the non-random selection of random variations” 



How does it operate on the fitness landscape? 
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First mutation 

leads to 

decrease in 

fitness 

How does it operate on the fitness landscape? 



F. Corucci - Introduction to Evolutionary Robotics 

 Discarded, 

no progress 

How does it operate on the fitness landscape? 



F. Corucci - Introduction to Evolutionary Robotics 

How does it operate on the fitness landscape? 

This mutation leads to 

an increase in fitness 

 Retained, progress 
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How does it operate on the fitness landscape? 

It can take many 

mutations before we 

make some 

progress… 
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How does it operate on the fitness landscape? 

But after sufficient 

time, if we are lucky… 
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How does it operate on the fitness landscape? 



 The «Serial Hill Climber» 
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The Serial Hill Climber 
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Pro: 

• Very simple to implement 

• Only one hyperparameter: mutation rate 

Cons:    ? 



Different initial condition? 
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Initial random 

solution 
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Different initial condition 

We would probably 

reach this local 

optima instead 



The Serial Hill Climber 

Pro: 

• Very simple to implement 

• Only one hyperparameter: mutation rate 

Cons: 

• In general climbs the closest local peak 

 Very sensitive to the starting condition 
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Different initial condition 

What if we start in a 

flat region (plateau)? 
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Different initial condition 

Most mutations are neutral 

(no change in fitness) 

 No local gradient to climb! 

 Slow, or no progress at all 



Different fitness landscape 

 

 

 

 

 

What if the fitness landscape was like the 

one on the right (ridge) and our mutation 

operator only perturbs one gene (x0 or 

x1) at a time? 
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Different fitness landscape 

 

 

 

 

 

What if the fitness landscape was like the 

one on the right (ridge) and our mutation 

operator only perturbs one gene (x0 or 

x1) at a time? 



The Serial Hill Climber 

Pro: 

• Very simple to implement 

• Only one hyperparameter: mutation rate 

Cons: 

• In general climbs the closest local peak 

 Very sensitive to the starting condition 

• Difficulty in navigating plateau and ridges 

 Can improve very slowly, or not 

improve at all 
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The Parallel Hill Climber 
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The Serial Hill Climber can be improved by executing several 

instances of it, in parallel  Parallel Hill Climber 

 

 

 

 

 

 

Generate a population 

of N initial random 

solutions (parents) 

and evaluate them 

(fitness) 

Generate N children 

by randomly 

perturbing each 

parent 

(e.g. a single gene) 

For each child, if 

fitness(child) > 

fitness(parent) 

parent = child 



The Parallel Hill Climber (ideally) 
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It can climb 

more than one 

peak at a time 



Genetic Algorithms 

• They work with populations of candidate solutions, too (popSize > 1) 

• While hillclimbers only mimic genetic mutations, Genetic Algorithms 

(GA) mimic sexual recombination as well (crossover) 
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Genetic Algorithms 

• They work with populations of candidate solutions, too (popSize > 1) 

• While hillclimbers only mimic genetic mutations, Genetic Algorithms 

(GA) mimic sexual recombination as well (crossover) 

 Recall: crossover entails a child getting part of the genetic material 

from one parent, and part from the other parent 

 

Any idea why this might be useful? 
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Genetic Algorithms – recombination, why? 
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1 1 1 1 1 Optimal solution 

Parent 1 
1 1 1 0 0 

Parent 2 
0 0 0 1 1 

• Children: partially good solutions 

• It would take more than one mutation to reach the optimal solution (e.g. using 

a hillclimber) 

Genotype 



Genetic Algorithms – recombination, why? 
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1 1 1 1 1 Optimal solution 

Parent 1 
1 1 1 0 0 

Parent 2 

 

… 

0 0 0 1 1 

Genotype 

0 1 0 1 1 

1 1 0 1 1 

1 1 1 1 1 

At least three 

mutations, usually 

more (mutations 

can disrupt correct 

bits, too) 



Genetic Algorithms – recombination, why? 
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1 1 1 1 1 Optimal solution 

Parent 1 
1 1 1 0 0 

Parent 2 
0 0 0 1 1 

• Children: partially good solutions 

• It would take more than one mutation to reach the optimal solution (e.g. using 

a hillclimber) 

 

 If we could recombine the two parents (mix their genetic material), a 

single operation could lead to the optimum instead 

Genotype 



0 0 0 0 0 

Genetic Algorithms – recombination, why? 
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1 1 1 1 1 Optimal solution 

Parent 1 
1 1 1 0 0 

Parent 2 
0 0 0 1 1 

Genotype 

Crossover point 

Child 1 1 1 1 1 1 

Child 2 

Some children will, in 

some cases, combine the 

best of both parents 



Genetic Algorithms – recombination, why? 
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Good action 

of front legs 
Good action 

of hind legs 

Best gait exploiting both 

front and hind legs 

(Very extreme) Example: evolving control for a quadruped 



Genetic Algorithms 

• Underlying assumption: partial good solutions can be combined 

to form even better ones  “building block hypothesis” 

• .< While this structure is present in many problems, crossover 

operators must be properly designed in order to exploit it. Their effect 

can be disruptive otherwise (similar to that of big mutations) 

• Crossover + mutation should create a good tradeoff between global 

and local search 

 Exploration (test new solutions) vs exploitation (refining current 

ones) 

 

F. Corucci - Introduction to Evolutionary Robotics 



F. Corucci - Introduction to Evolutionary Robotics 

Initialization 

Generate a 

random 

initial 

population 

Evaluation 

Compute fitness of 

each individual in the 

current population 

Selection 

More fit individuals 

have a higher chance 

to survive and 

reproduce, worse 

ones die out 

Reproduction and 

Variation 

New population is 

created through 

mutation and 

recombination of 

selected individuals 

Generation 

Genetic Algorithms – overall scheme 



F. Corucci - Introduction to Evolutionary Robotics 

Initialization 

Generate a 

random 

initial 

population 

Evaluation 

Compute fitness of 

each individual in the 

current population 

Selection 

More fit individuals 

have a higher chance 

to survive and 

reproduce, worse 

ones die out 

Reproduction and 

Variation 

New population is 

created through 

mutation and 

recombination of 

selected individuals 

Generation 

Genetic Algorithms – overall scheme 



Initialization – Population size 

• Population size = size of the sample of the search space taken at 

every generation 
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Initialization – Population size 

• Population size = size of the sample of the search space taken at 

every generation 

 

 

What are the pros and cons of big / small populations? 
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Initialization – Population size 

• Population size = size of the sample of the search space taken at 

every generation 

• Smaller population  Small portion of the search space is sampled 

at each step  Easier to get stuck on local optima (“narrow eyefield”) 

 “Premature convergence”: fitness quickly reaches a plateau 

• It is also related to the dimensionality of the search space (e.g. 

number of genes)  The higher, the bigger the population should be 

 

  Let’s work with extremely big populations then? 
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Initialization – Population size 

• Population size = size of the sample of the search space taken at 

every generation 

• Smaller population  Small portion of the search space is sampled 

at each step  Easier to get stuck on local optima (“narrow eyefield”) 

 “Premature convergence”: fitness quickly reaches a plateau 

• It is also related to the dimensionality of the search space (e.g. 

number of genes)  The higher, the bigger the population should be 

• But increasing the population size is costly: 

• Bigger population  more fitness evaluations 

 most computational-intensive part of the algorithm 

 E.g. robot needs to behave (or to be simulated) for some time 
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Initialization – Population size (cont’d) 

It is usually experimentally determined, trying to select the biggest 

possible value that allows the algorithm to return in reasonable 

time 
 

E.g. 

Max execution time is roughly T =  Ngenerations ⋅ 𝑇eval ⋅ 𝑃size  

𝑇eval should be reduced as much as possible (e.g. efficient code, …) 

Upper bound on 𝑇 (how long you are willing to wait for the results) 

 A tradeoff between Ngenerations and 𝑃size is found accordingly 
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Initialization – How? 

• The initial population is usually randomly generated (a random 

sample of the search space is taken) 

 Unbiased choice, promotes diversity (if all solutions are similar, 

again, we are looking at a very narrow portion of the search space) 

• In some cases it is possible to seed the algorithm with an initial 

solution (hand crafted, result of another optimization technique, …) 

 In this case: Population = random variations of the seed individual 
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Fitness function 

• It is a function associating a scalar (fitness value/score) to each 

phenotype 

• Evaluating the fitness function is usually the most time-consuming 

part of an evolutionary algorithm 

• e.g. entails running a physics engine (computational intensive), or 

let a robot behave in the real world for some time 

• The fitness usually quantifies individuals’ performance (in terms of 

what you do want to optimize)  domain specific objective 
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Fitness function – aggregation  

• In conventional EA there is a single optimization objective, which 

corresponds to a single fitness function 

• E.g. speed of a walking robot, number of objects grasped by a manipulator, etc 

• It is however possible to aggregate different quantities to be 

maximized/minimized in a single scalar value 
 

E.g. evolving locomotion 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 = 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 = 0.8 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥
2  + 0.2 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑦

2
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 =
0.8 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥

2  + 0.2 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑦
2

𝑒𝑛𝑒𝑟𝑔𝑦𝑆𝑝𝑒𝑛𝑡
 

… 
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Fitness function - Observation 

• The fitness function can be (and usually is) a high-level performance metric 

• Low-level information regarding how the task should be solved is not 

necessary  

 Suitable for difficult problems for which we do not have an intuition 

• You do not need to be able to express (or even be aware of) the ingredients 

that lead to high fitness 

• As long as you can attribute a fitness score to each individual, the algorithm is 

able to maximize/minimize such a score 

• In this field we just provide the space of possible solutions (task environment, 

encoding) and a performance metric to measure if a certain goal was met or 

not (fitness)  The algorithm is then free to find its way to reach the goal 
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Fitness function - Observation 

E.g. Interactive evolution (humans in the loop): a case in which 

fitness is usually high-level (and subjective) 

• Fitness = User appreciation for an evolved picture/song (1 to 

10)  May lead to an artistic agent, although we may not 

know how to mathematically define beauty, or how to 

produce a «beautiful» picture 

• Fitness = Number of times the robot said/did something funny 

 May lead to a comedian robot, although we don’t know 

how to mathematically define what is funny and how to 

generate funny sentences 

• «Number of times the robot appeared to behave intelligently» 

 May lead to an intelligent robot, although we don’t know 

how to define intelligence, nor how to implement it 

 Interesting, and general, from an AI standpoint (creativity…) 
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One example: Interactive Evolution 

• Karl Sim’s “Genetic Images” (1993) is a media installation in which visitors can 

interactively "evolve" abstract still images. 

 

• A computer generates and displays 16 images on an arc of screens  

 

• Pressure sensors are placed in front of each screen 

 

• Fitness: how long people stand in front of each image  the longer, the higher 

the appreciation 
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One example: Interactive Evolution 
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One example: Interactive Evolution 
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Selection and selection pressure 

• Rationale: allocate a larger number of offsprings to the best performing 

individuals of the population 

• Selection pressure: how difficult is for an individual to get a chance to reproduce 

• High selection pressure: small % of individuals is selected for reproduction (e.g. 

only the very best ones) 

 Rapid fitness improvement, but rapid loss of diversity, risk of premature 

convergence to a local optimum 
 

 A balance is needed between selection pressure and factors that instead 

generate diversity (e.g. mutations) 

 

• You should let less fit individuals reproduce too to maintain diversity 

• They may carry traits that will become successfull later on in evolution 
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Proportionate selection (roulette wheel) 

• The probability 𝑝 𝑖  of an individual 𝑖 being selected for reproduction is 

proportional to its fitness relative to the overall population fitness (𝑁 is the 

population size):  

 

𝑝 𝑖 =
𝑓 𝑖

 𝑓(𝑘)𝑁
𝑘=1

 

 

• Like a roulette wheel where each slot corresponds to one individual of the 

population, and has a width that is proportional to 𝑝 𝑖  (and 𝑓 𝑖 ) 

• To build the next generation, you spin the wheel 𝑁 times (individuals can be 

selected several times) 

• Works bad when: some individuals have remarkably bigger fitness than others 

(selected almost every time  diversity loss, premature convergence) 

 

• A solution: fitness scaling (normalization) 

• Or… 

  A                 B 
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Rank-based selection 

• Sort individuals based on their fitness value, from best to worst 

• The place of an individual 𝑖 in this sorted list is called rank 𝒓(𝒊) 

• As in the proportionate selection/roulette wheel, but instead of the fitness 

value use the rank to determine the selection probability of individuals 

 Solves the problems mentioned for proportionate selection, given that the 

absolute value of the fitness does not directly determine the selection 

probability anymore 
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Truncated rank-based selection 

• Select only the top 𝑛 individuals based on their fitness 

• Each of them will produce the same number of offsprings (𝑁/𝑛) 

• E.g. 𝑁 = 100, select top 𝑛 = 20, 
𝑁

𝑛
= 5 copies of each of the selected 

individuals will be used to form the next generation 

• If 𝑛  is not too small (would entail diversity loss  premature 

convergence), this method allows less fit individuals to produce the 

same number of offsprings as the fittest  maintains diversity 
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Tournament selection 

• For each new offspring to be generated: 

• Randomly select a small subset of 𝑘 individuals (contestants) of 

the current population 

• 𝑘 is the tournament size parameter, the larger, the higher the 

selection pressure) 

• The individual that has the best fitness among the contestants 

wins and generates the new offspring 

• Contestants can participate to multiple tournaments 

 Good trade off between selection pressure and genetic diversity 
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A glimpse of multi-objective optimization 

• So far assumed single-objective 

• Real optimization problems require, however, finding a trade-off between 

multiple (often antagonistic) objectives 

• E.g. maximize performances while minimizing energy expenditure 

 

• When multiple antagonistic objectives are defined, there is no single 

solution that optimizes all objectives at once 

• E.g. fast but inefficient vs slow but efficient 

 

 Different solutions representing different trade-offs between the 

various objectives exist 
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A glimpse of multi-objective optimization – 

Pareto Optimality 

• A solution is pareto optimal (non-dominated) if there is no other solution in the 

search space that is better in all of the objectives 

• Pareto front = set of non-dominated/pareto optimal solutions 

 Without additional subjective preferences, all solutions in the pareto front are to 

be considered equally good 

• Rank = number of solutions that dominate S in one or more objectives 

F. Corucci - Introduction to Evolutionary Robotics 

O
b
je

c
ti
v
e
 1

 

Objective 2 

Min 

objective1, 

objective2 

Example 
Unfeasible 

solutions 

Feasible, dominated 

solutions 

Feasible, non-dominated 

solutions (pareto front) 



A glimpse of multi-objective optimization – 

Pareto Optimality 
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Objective 2 

S2 

S1 

S3 

• U is what you would like ideally, but it is 

impossible to get («utopia») 

• Obj1(S1) < Obj1(S2), but 

Obj2(S2) < Obj2(S1) 

 Both are non-dominated, equally 

good  rank(S1) = rank(S2) = 0 

• Obj2(S3) > Obj2(S2)  S3 is 

dominated by S2 in Obj2 

• Obj1(S3) > Obj1(S1)  S3 is 

dominated by S1 in Obj1 

• Rank(S3) is at least 2 U 

• A solution is pareto optimal (non-dominated) if there is no other solution in the 

search space that is better in all of the objectives 

• Pareto front = set of non-dominated/pareto optimal solutions 

 Without additional subjective preferences, all solutions in the pareto front are to 

be considered equally good 

• Rank = number of solutions that dominate S in one or more objectives 

Min 

objective1, 

objective2 

Example 



A glimpse of multi-objective optimization 

• The selection operators we have seen can be easily adapted to 

implement multi-objective EA 

• E.g. 

• Truncated rank-based selection: pareto rank can be used instead 

of fitness-based rank to sort the population 

• Tries to let non-dominated individuals reproduce first (pareto 

front), then individuals with rank 1, 2, etc. 

• The winner in tournament selection can be determined based on 

the concept of pareto dominance instead of being just based on 

fitness 
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Genetic operators 

• Capture the biological effect of mutations and recombinations on the 

genotype observed in the natural evolution 

• Must match the genetic representation: 

• Genotype is binary  genetic operators must manipulate 

bitstrings 

• Genotype is based on networks  genetic operators must 

manipulate networks 

• Custom encoding/data structures  custom genetic operators are 

needed 

• Introduce diversity and produce innovation by altering and 

combining individuals in the population 

• Determine the tradeoff between exploration and exploitation 
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Genetic operators – Crossover/recombination 

• Emulates the recombination of genetic material from two parents 

• After selection, pairs of individuals are randomly formed… 

• …and their genotypes are combined with a given probability 𝑝𝑐 

• Crossover should allow to effectively merge partial solutions from 

the parents into an offspring that performs better than both of the 

parents with a probability 𝑝 > 0 
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Genetic operators – Crossover/recombination 

Discrete/real valued encodings: 

a) one-point: randomly select a 

crossover point and swap 

chromosomes around that point 

b) multi-point: as before, but 

selecting 𝑛  crossover points 

(here 𝑛 = 2)  

c) arithmetic: creates a single 

offspring by combining the two 

genomes at 𝑛 random positions 

(e.g. AND/OR for binary coded, 

average, or convex combination 

for real-coded, etc) 

a) 

b) 

c) 

d) 

Parents                                    Children 

e) 
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Genetic operators – Crossover/recombination 

Crossover for sequence 

encoding (all symbols must 

occur once and only once): 

d) Randomly copy a part of the 

sequence from one parent, 

then fill-in with remaining 

elements in the order in which 

they appear in the other parent  
 

Crossover for tree/network 

encoding: 

e) Randomly select a node of 

each parent, and exchange 

the two corresponding 

subtrees 

a) 

b) 

c) 

d) 

Parents                                    Children 

e) 
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Genetic operators – Crossover/recombination 

• Crossover is a non trivial operation: it should isolate and recombine 

functionally-relevant chunks of the genome of the two parents 

• Not easy to guarantee this property 

• When crossover does not work properly, it can act as a very large 

mutation  The effect of these mutations is usually detrimental 

(Fisher)    Poor evolvability 

 

 Statistically checking the effect of crossover on fitness can lead to 

insights regarding the behavior of the algorithm (e.g. % of fitness 

increase after crossover) 
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Genetic operators – Mutation 

• Operates on a single individual at a time 

• Applies small random modifications of the genotype 

 Fisher: probability of a mutation being beneficial is inversely 

proportional to its magnitude 

• Allows evolution to explore variations with respect to the current 

solutions 
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Genetic operators – Mutation 

• Mutations are useful to: 

• Produce diversity 

• Promote exploration 

• However, too disruptive mutations can slow down the search, as the 

algorithm can end up  not benefiting from previously discovered 

solutions  random search 

 

 Proper tuning is necessary, analysis of the effect of mutations on the 

fitness can be useful (% of beneficial/detrimental mutations) 
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Bad mutation size 
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Genetic operators – Mutation 

Mutation in simple encodings = 

change the content of each gene 

with probability 𝑝𝑚 (e.g. 𝑝𝑚 = 0.01) 

 

a) Binary encoding: toggle bit 

values 

b) Real-valued encoding: add 

random noise (e.g. from a 

Gauss distribution 𝑁 0, 𝜎  

 most mutations are small, 

few are big. Note that 𝜎 is an 

additional parameter) 

 

a) Binary genotypes 

c) Sequence genotypes 

b) Real-valued 

genotypes 

d) For trees 
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Genetic operators – Mutation 

c) Sequence encoding: swap the 

contents of two randomly chosen 

genes 

 

d) Tree-based/network encoding: 

change the value of a node with 

another from the same set 

(functions set/terminals set) with 

the same number of leaves  

tree-structure unchanged 

a) Binary genotypes 

c) Sequence genotypes 

b) Real-valued 

genotypes 

d) For trees 
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Genetic operators and fitness landscape 
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It is important to note that the 

fitness landscape is 

seen/navigated through genetic 

operators 

Paths towards optimal solutions 

might be less linear than we may 

think 
 

A simple problem (smooth 

fitness landscape) can become 

difficult if genetic operators are 

not properly implemented/tuned 

 

(we saw an example talking about 

mutation size) 



Genetic Algorithms – redistribution of efforts 
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Differently from e.g. hill climbers, genetic algorithms can redistribute efforts 

(i.e. the costly fitness evaluations) during the search procedure as 

promising areas of the search space are discovered 



How to conduct an evolutionary experiment 

• Evolutionary algorithms involve some degree of randomness (random 

initial conditions, random mutations, probabilistic selection…) 

• …but we don’t need random observations (e.g. a particularly lucky or 

unlucky run is not very informative). We want to study actual 

phenomena 

 

 It is necessary to account for this stochasticity when conducting and 

analyzing evolutionary experiments 

 

F. Corucci - Introduction to Evolutionary Robotics 



How to conduct an evolutionary experiment 

Multiple runs: 

• Consider your evolutionary experiment as a stochastic process 

• In order to analyze it, you need multiple observations 

• Computers simulate randomness with deterministic algorithms (pseudo-

random number generators) 

• Once provided with an initial “seed”, the sequence of “random” events 

simulated by a computer is completely deterministic (and so is the 

history of your evolutionary algorithm) 

 Perform different runs providing different seeds to your random 

number generator 

 Saving and loading the state of the random number generator allows 

reproducing results (crucial) 
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How to conduct an evolutionary experiment 

Combining and reporting results: 

• The first and most informative plot you 

should produce is the fitness plot, 

showing how fitness varies over 

evolutionary time (generations) 

• At each generation you can report: 

• average of the best fitness in the 

population, across multiple runs 

• average of the average fitness in 

the population, across multiple runs 

• Report variability plotting the standard 

deviation or the 95% confidence 

intervals 
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How to conduct an evolutionary experiment 

Statistical analysis: 

• Due to the aforementioned stochasticity, 

the statistical significance of every 

statement and comparison arising from 

your evolutionary simulations should be 

tested 

• p-value: ~probability of your statement 

being not significant (at least p < 0.05 is 

usually required  95% confidence) 

• E.g. 

«AlgorithmX outperforms AlgorithmY»:  

meanBestFitnessX > meanBestFitnessY 

with p<0.05 

• Different methods to compute that 

F. Corucci - Introduction to Evolutionary Robotics 



Convergence, stagnation, neutral paths 

• The convergence of an evolutionary algorithm can be observed when the fitness 

plot reaches a plateau 

 “Stagnation”, the fitness does not improve over generations, the algorithm is 

not making any progress 

 

 

 

 

 

 

• Stagnation is often due to diversity loss (population becomes relatively 

homogeneous, genetic operators are not able to produce enough variation to 

produce innovation)  premature convergence to a sub-optimal solution 

• Diversity preserving mechanisms can help avoiding this problem (e.g. some 

are based on injecting new random individuals every generation) 
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Types of evolutionary algorithms 

• Genetic Algorithms (GA) - Holland, 1975 

Binary genotypes, crossover and mutation 

• Genetic Programming (GP) - Koza, 1992 

Tree-based genotypes, crossover and mutations 

• Evolutionary Programming (EP) - Fogel etal., 1966 

Real-valued genotypes, mutations, tournaments, gradual pop. replacement 

• Evolutionary Strategies (ES) - Rechenberg, 1973 

As EP + mutation range encoded in genotype of individual 

• Island Models – Whitley et al., 1998 

Parallel evolving populations with rare migration of individuals  

• Steady-State Evolution – Whitley et al., 1988 

Gradual replacement: Best individuals replace worst individuals 

• … 
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Some pros and cons 

Cons: 

• Weak theoretical basis 

• No guarantees regarding the success and/or the time to get a solution 

• Parameters tuning is needed 

• Often computationally expensive 
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Some pros and cons 

Pros: 

• Evolutionary algorithms can work where other optimization techniques 

cannot (e.g. discontinuous, noisy fitness functions)  robust 

• Can be easily extended to deal with multi-objective, constrained problems 

• Inherently parallel structure (evaluation of a population) 

 Easy to parallelize 
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Some pros and cons 

Pros: 

• They are able to solve extremely difficult problems requiring very little 

knowledge and supervision 

• They often produce solutions that are extremely effective (more effective 

than human-devised ones) yet completely counter-intuitive 

 They “think” outside the box 
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Human-competitive design and 

«perverse instantiation» 

 

 

 

 

 

 

 
From «How The Body Shapes The Way We Think – A new view of Intelligence» (R. Pfeifer & J. Bongard) 
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NASA’s Antenna 

Human-competitive design of an 

antenna for nanosatellites, NASA 

[Lohn, Hornby, Linden, 2004] 

• Meeting several performance 

requirements (gain, sizes, operational 

frequencies, …) is very challenging for 

humans 

• NASA automated its design by using 

evolutionary techniques 

 

• Wiki page 

• Paper 
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http://en.wikipedia.org/wiki/Evolved_antenna
http://ti.arc.nasa.gov/m/pub-archive/1244h/1244 (Hornby).pdf


NASA’s Antenna 

• Tree-based encoding, instructions to “grow” (draw) 

an antenna 

• Function set: 

• f=forward(length) 

• rx/y/z(angle) 

• Terminals: length, angles 

• Technical specs tested in simulation 

• Best designs were built and tested in the real world 

rx f 

f 

f f 

rz rx 

f 

2.5cm 

5.0cm 

Feed 

Wire 
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NASA’s Antenna 

Evolved Human 
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Evolved design is completely not intuitive, but considerably smaller and 

far superior in terms of performances  

 Launched on board of the ST-5 satellite in 2006 

http://en.wikipedia.org/wiki/Evolved_antenna


Evolvable hardware 

Adrian Thompson, Sussex University, 

1996 

• Evolutionary algorithms designing FPGA-

based circuits (modular programmable 

system) 

• Goal: evolve a circuit to distinguish 

between a low and a high input sound 

• Evolution in the real world 

• An effective circuit was evolved, that 

worked properly but… 

F. Corucci - Introduction to Evolutionary Robotics 



Evolvable hardware 

Adrian Thompson, Sussex University, 

1996 

• Evolutionary algorithms designing FPGA-

based circuits (modular programmable 

system) 

• Goal: evolve a circuit to distinguish 

between a low and a high input sound 

• Evolution in the real world 

• An effective circuit was evolved, that 

worked properly but… 

• …once re-created on a custom chip, 

only considering the FPGA 

components connected in the design…      

 Did not work anymore 

F. Corucci - Introduction to Evolutionary Robotics 



Evolvable hardware 

• It was found out that the original evolved circuit was exploiting weak 

electromagnetic interactions between the active components and the 

disconnected ones (that are usually assumed not to play any role) 

 

• The solution devised by evolution broke the human-imposed modular 

design, exploiting to its benefit phenomena of the ecological niche 

that are usually regarded as undesired 

F. Corucci - Introduction to Evolutionary Robotics 



Evolvable hardware 

Another experiment in Sussex, by Jon Bird and Paul Layzell 

• Goal: evolve a circuit producing an oscillatory signal without having 

an internal clock 

F. Corucci - Introduction to Evolutionary Robotics 



Evolvable hardware 

Another experiment in Sussex, by Jon Bird and Paul Layzell 

• Goal: evolve a circuit producing an oscillatory signal without having 

an internal clock 

• Evolved solution: instead of an oscillator, something like a radio 

receiver was evolved from scratch 

       

      ? 
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Evolvable hardware 

Another experiment in Sussex, by Jon Bird and Paul Layzell 

• Goal: evolve a circuit producing an oscillatory signal without having 

an internal clock 

• Evolved solution: instead of an oscillator, something like a radio 

receiver was evolved from scratch 

 The evolved circuit was stealing the oscillating clock signal of a 

nearby computer 

• Another example of how artificial evolution finds clever ways to 

exploit the ecological niche 

 A new sensor modality was evolved from scratch! 

F. Corucci - Introduction to Evolutionary Robotics 



«Perverse instantiation» 

• Artificial Evolution sometimes finds a way to solve the task (optimize the 

fitness)…but not the way you would want/expect to 

• Usually undesired phenomenon (solution is not admissible, i.e. exploits 

a glitch in the physics engine), but highlights interesting properties of 

evolutionary algorithms: 

• Ability to go beyond our intuition devising non-intuitive solutions, 

“thinking” outside the box  creativity? 

• Adaptation to the ecological niche: like biological organisms, evolved 

solutions exploit all opportunities for survival 

• This phenomenon is related with the reality gap problem (later) 
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Developmental encodings and 

Artificial Evolution of brains and bodies 

F. Corucci - Introduction to Evolutionary Robotics 



Why (co-)evolving brains and bodies? 

• Biologically plausible: brains and bodies evolve 

and develop together (nature doesn’t devise 

brains from scratch for already complex bodies) 

• A suitable morphology can simplify control 

(embodied intelligence, passive dynamic walker, 

etc)  It should be evolved, rather than fixed 

       Target: “balanced” brain-body trade-off 

• Even if the dimensionality of the search space 

increases (more parameters), the problem can 

actually become simpler 

Bongard, Paul, "Making Evolution an Offer It Can’t Refuse: 

Morphology and the Extradimensional Bypass" 
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Why (co-)evolving brains and bodies? 
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Fitness landscape (2D) 

? 



Why (co-)evolving brains and bodies? 
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Fitness landscape (2D) 



Why (co-)evolving brains and bodies? 

F. Corucci - Introduction to Evolutionary Robotics 

Adding one extra 

dimension (e.g. 

morphology) can create 

«extradimensional 

bypasses» connecting 

the two peaks  
Extra-dimensional bypass 

(«adaptive ridge» in the 

fitness landscape) 

Fitness landscape (3D) 



Direct encodings - limitations 

• So far, for simplicity: assumed direct encoding, or, genotype-to-

phenotype map (e.g. genotype = a vector of real numbers, 1:1 

mapping between each number and a phenotypic trait) 

• Not very general, nor scalable when co-evolving complex brains and 

bodies 

• Usually requires a priori assumptions, e.g. fix the structure of the 

phenotype (e.g. brain/body topology) and evolve parameters only 

(e.g. synapses of an ANN, length of limbs, …) 

• As the complexity of brains and bodies increases, so does the 

number of parameters to be evolved (the dimensionality of the 

search space can quickly explode) 

 “Curse of dimensionality” 

F. Corucci - Introduction to Evolutionary Robotics 



Genotype-to-phenotype map 

• Genotype-to-phenotype map: function/algorithm that transforms the 

genotype into the phenotype 

• Direct mapping: map = identity 

• Indirect mapping:  

• Map is performed by an algorithm, whose parameters (genotype) 

are under evolutionary control 

• Each element of the genotype (optimization variables) potentially 

influences more than one phenotypic trait  scalability 

 Also known as generative, or developmental encodings 

(bring into play mechanisms inspired by biological development) 

F. Corucci - Introduction to Evolutionary Robotics 



Example - Evolving brains - Conventional 

NeuroEvolution (CNE) 

1. Fix the structure of the NN 

(usually fully connected) 

2. Concatenate synaptic weights 

and biases into a genome 

 direct encoding 

3. Use an evolutionary algorithm 

to evolve the network with 

respect to a given task 

4. Fitness: evaluation of 

network’s performance on a 

task 

F. Corucci - Introduction to Evolutionary Robotics 

http://www.scholarpedia.org/article/Neuroevolution  

http://www.scholarpedia.org/article/Neuroevolution
http://www.scholarpedia.org/article/Neuroevolution


Evolving an ANN with direct encoding 

F. Corucci - Introduction to Evolutionary Robotics 

• Imagine having N sensors and N actuators (e.g. N = 100) 

• Evolve a very simple inputs  outputs map to solve a task 

(sensors  motors) 

• Fully connected network  𝑵𝟐 synapses (quadratic scaling) 

(matrix / picture) ∈ [−1,1] (1: excitatory, 2: inhibitory) 

 

 

 

 

 

 

 

• Direct encoding  By trial and error, evolution must find 

out 𝑵𝟐 numbers (e.g. 10000), independently 

 Not considering hidden layers (scaling is even worse) 

 Not scalable as body, brain, and task complexity go up 

inputs 

(sensors) 

outputs 

(actuators) 

𝑵 

𝑵 

𝑖 

𝑗 

𝑤𝑖,𝑗 

 



Evolving an ANN with direct encoding 

F. Corucci - Introduction to Evolutionary Robotics 

Image credits: Prof. Josh Bongard, UVM 

• Also, imagine this ANN being embedded 

in a robot 

 

 Can you think of other drawbacks of 

a direct encoding here? 



Evolving an ANN with direct encoding 

F. Corucci - Introduction to Evolutionary Robotics 

• Biological and artificial brains and bodies 

exhibit regularities (e.g. symmetry, 

repetition) 

• Our evolved ANN may benefit from 

mirroring some of these regularities 

 

 

 

 

 

 

 
Image credits: Prof. Josh Bongard, UVM 
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Evolving an ANN with direct encoding 

F. Corucci - Introduction to Evolutionary Robotics 

Many tasks (e.g. locomotion) require 

coordinated control signals (= regular 

networks) 

 Non coordinated controllers are most 

certainly bad 

 Makes often sense to bias the search 

towards regular solutions 

Image credits: Prof. Josh Bongard, UVM 



Evolving an ANN with direct encoding 

F. Corucci - Introduction to Evolutionary Robotics 

 

With direct encoding, these regularities are 

overlooked: all the algorithm sees is a matrix of 

independent numbers to be optimized by trial and error  

 

 Regular structures can be discovered, but are 

not enforced ( can be inefficient) 

 

 

 

 

 

 
Image credits: Prof. Josh Bongard, UVM 

Matrix of synaptic weights Random init with direct 

encoding 

A potentially desirable 

regular solution, to be 

achieved changing one 

pixel at a time 



Evolving an ANN with direct encoding 

F. Corucci - Introduction to Evolutionary Robotics 

We could manually enforce certain 

regularities for a specific task at hand 

(e.g. enforce bilateral symmetry of synaptic 

weights when evolving locomotion) 

 

Not general, though 

 

 Need for general encodings that allow 

evolution to produce and select general 

regular patterns 

Image credits: Prof. Josh Bongard, UVM 



Evolving an ANN with indirect encoding 

F. Corucci - Introduction to Evolutionary Robotics 

• Keep thinking about the phenotype (2D 

matrix of synaptic weights) as a picture 

within a 2D coordinate frame (x,y) 

• Darkness of a pixel = synaptic weight 

• For a given task, some specific patterns 

of synaptic weights will result in ANNs 

that perform well 

• Can you think of a compact way to 

encode regular patterns within such 

a coordinate frame? 

i.e. a way to describe a 2D picture 

without listing the value of every single 

pixel 

 

𝑵 

𝑵 

? 

𝑤 

𝑥 

𝑦 



Evolving an ANN with indirect encoding 
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 𝑥  𝑦 

𝑤𝑖𝑗 

? 

Coordinate space 𝑥 

𝑦 



Evolving an ANN with indirect encoding 
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𝑤𝑖𝑗 

? 

Coordinate space 

Functional 

transformation 

(genotype) 
 

 Under evolutionary 

control 

Phenotype 

Sample at every (x,y) 

point to «paint» the 

whole matrix  𝑥  𝑦 𝑥 

𝑦 



Evolving an ANN with indirect encoding 
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𝑤𝑖𝑗 

Coordinate space 

Functional 

transformation 

(genotype) 

Phenotype 

(Examples by N. Cheney) 

 𝑥  𝑦 



Evolving an ANN with indirect encoding 
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𝑤𝑖𝑗 

Coordinate space 

Functional 

transformation 

(genotype) 

Phenotype 

(Examples by N. Cheney) 

 𝑥  𝑦 



Evolving an ANN with indirect encoding 
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𝑤𝑖𝑗 

Coordinate space 

Functional 

transformation 

(genotype) 

Phenotype 

gauss sine 

sigmoid 

(Examples by N. Cheney) 

 𝑥  𝑦 



Evolving an ANN with indirect encoding 
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𝑤𝑖𝑗 

Coordinate space 

Functional 

transformation 

(genotype) 

Phenotype 

sigmoid 

(Examples by N. Cheney) 

Complex pattern produced by 

a compact genotype 
 𝑥  𝑦 

gauss sine 



 Compositional Pattern Producing Networks (CPPN) 

F. Corucci - Introduction to Evolutionary Robotics 

CPPN 

Functional 

transformation 

(genotype) 

Composition of 

regular base 

functions 

Outputs: 

Phenotype 

CPPNs are one example of 

indirect/generative/developmental 

encoding 

• The genotype is a network 

• Each node has an activation function 

chosen from a given pool of regular 

base functions 

• Edges are weighted 

 

What would you need to change in 

order to achieve an evolutionary 

algorithm that evolves CPPNs 

(w.r.t. one that evolves a matrix of 

synaptic weights with direct 

encoding)? 

Inputs:  

spatial features 

… 

… 

K. Stanley, “Compositional Pattern Producing Networks: 

A Novel Abstraction of Development” 



 Compositional Pattern Producing Networks (CPPN) 

F. Corucci - Introduction to Evolutionary Robotics 

CPPNs are one example of 

indirect/generative/developmental 

encoding 

• The genotype is a network 

• Each node has an activation function 

chosen from a given pool of regular 

base functions 

• Edges are weighted 

 

 Genetic operators, example: 

Mutation: add/remove node/edge, 

randomly modify the weight of an 

existing edge, or the activation 

function of an existing node 

CPPN 

Functional 

transformation 

(genotype) 

Composition of 

regular base 

functions 

Outputs: 

Phenotype 

Inputs:  

spatial features 

… 

… 

K. Stanley, “Compositional Pattern Producing Networks: 

A Novel Abstraction of Development” 



 Compositional Pattern Producing Networks (CPPN) 

F. Corucci - Introduction to Evolutionary Robotics 

Features: 

• Expressive: A compact genotype can 

generate a very large phenotype 

 Scalability, evolvability 

• Composition of continuous functions  

 can be sampled at any desired 

resolution (phenotype can be 

continuous as well) 

• Composition of regular functions 

 promotes regular phenotypic 

structures (useful both in brains and 

bodies) 

• Starting from simple networks  

(= simple patterns), can encode 

phenotypes of increasing complexity 

(«complexification») 

CPPN 

Functional 

transformation 

(genotype) 

Composition of 

regular base 

functions 

Outputs: 

Phenotype 

Inputs:  

spatial features 

… 

… 

K. Stanley, “Compositional Pattern Producing Networks: 

A Novel Abstraction of Development” 



 Compositional Pattern Producing Networks (CPPN) 

F. Corucci - Introduction to Evolutionary Robotics 

Features: 

• More inputs (spatial features) and 

outputs (phenotypic traits) can be 

added to the same CPPN 

• Once discovered, the same 

pattern can be reused for more 

than one outputs (good) 

• But: pleiotropy: change to one 

gene affects multiple phenotypic 

traits (can be bad/disruptive) 

• Otherwise, different traits can be 

genetically decoupled into different 

networks (greater modularity) 

CPPN 

Functional 

transformation 

(genotype) 

Composition of 

regular base 

functions 

Outputs: 

Phenotype 

Inputs:  

spatial features 

… 

… 

K. Stanley, “Compositional Pattern Producing Networks: 

A Novel Abstraction of Development” 
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(Examples by N. Cheney) 

Regularities without development 
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Online interactive evolution platforms using CPPNs 

http://picbreeder.org/
http://endlessforms.com/


Evolving brains - HyperNEAT 

F. Corucci - Introduction to Evolutionary Robotics 

• The idea of evolving CPPNs that paint the connectivity pattern of an ANN is indeed 

at the core of a state of the art neuro-evolution technique: 

• HyperNEAT (Stanley et al., 2009) 

• Encoding is based on CPPNs 

Scalability (millions of connections) 

 

Stanley et al 2009, “A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks” 

Regular connectivity patterns 

• ANN’s nodes are arranged in a substrate, 

which has a certain topology (a square, a 

cube, etc.) 

Different substrates are 

better suited for different tasks 

Substrate’s structure can be 

evolved itself (ES-HyperNEAT) 

 

 

"Evolving Neural Networks That Are Both Modular 

and Regular", Huizinga, Mouret, Clune 

http://www.isir.upmc.fr/files/2014ACTI3120.pdf
http://www.scholarpedia.org/article/Neuroevolution
https://www.youtube.com/watch?v=FUqYNRZTl3U


Evolving brains - HyperNEAT 

F. Corucci - Introduction to Evolutionary Robotics 

• The idea of evolving CPPNs that paint the connectivity pattern of an ANN is indeed 

at the core of a state of the art neuro-evolution technique: 

• HyperNEAT (Stanley et al., 2009) 

• Evolved CPPN is queried for every 

potential connection to get the associated  

synaptic weight 

• 2D substrate (fig) 

 4D CPPN (x1,y1,x2,y2) 

 
• 3D substrate 

 6D CPPN (x1,y1,z1,x2,y2,z2) 

 “hypercube” 

• A connection is only expressed if the corresponding weight is above a given 

threshold  ANN’s topology is evolved too (not only synaptic weights) 

 

 

http://www.scholarpedia.org/article/Neuroevolution


Evolving brains - HyperNEAT 
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• Consequence of topological arrangement of nodes: 

Correspondence between morphological, neurological, task topology is 

enforced 

Stanley et al 2009, “A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks” Stanley et al 2009, “A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks” 

 

• E.g. 

• Sensors that are close together are 

mapped to sensor neurons that are close 

together too 

• Same for outputs 

 These regularities, usually neglected by 

learning algorithms, can simplify the learning 

problem 



NEAT 
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• In HyperNEAT, the CPPN that “paints” the connectivity pattern of the ANN is 

evolved with NEAT (Neuro Evolution of Augmenting Topologies): 

• Evolves networks: originally ANNs, but with minor changes evolves CPPNs 

too, both topology and weights  CPPN-NEAT 

• “Complexification”: of networks and behaviors (simple  complex) 

• Biologically plausible 

• Helps reducing the search space (starts small, starts simple) 

• Highly evolvable: special crossover operator allows to effectively combine 

sub-functions computed by different ANNs 

• Speciation mechanism protects recent, possibly promising innovations 

from the unfair competition with already mature 

solutions 

Stanley and Miikkulainen 2002, “Evolving Neural Networks through Augmenting Topologies” 



Remarks on neuroevolution 

• Different neuroevolution algorithms allow to evolve different aspects of 

ANNs 

• Everything about an ANN can be evolved 

• Topology (which nodes, which connections) 

• Synaptic weights 

• Nodes activation functions 

• Local learning rules for lifetime learning (evolution of learning) 

• … 

F. Corucci - Introduction to Evolutionary Robotics 



Remarks on neuroevolution 

• Can be thought of as a method to train ANNs in unsupervised settings 

 No input-output examples are provided 

 

• Also very effective as reinforcement learning methods (learn agents’ 

control policies to maximize cumulative reward in a given task 

environment), especially in continuous and partially observable domains 

F. Corucci - Introduction to Evolutionary Robotics 



Neuroevolution – Some applications 

• Proved to be effective in a variety of applications: 

• Adaptive nonlinear control of physical systems (robots, chemical plants, 

etc.) 

• Evolution of multi-modal cognitive architectures/behavior (e.g. human-

like game play in videogames) 

• Evolution of large-scale brain-like structures 

F. Corucci - Introduction to Evolutionary Robotics 

Inputs: q1, q2, x          Output: F 

Fitness: nr. of steps when (q1, q2, x) are within range 

http://www.scholarpedia.org/article/Neuroevolution
http://nn.cs.utexas.edu/downloads/papers/gomez.gecco03.pdf
http://lis2.epfl.ch/CompletedResearchProjects/EvolutionOfAnalogNetworks/ArtificialNeuralNetworks/index.php
https://youtu.be/V2ADU8YWIug


Neuroevolution – Some applications 

Neuroevolved AI won 2012’s BotPrize (goal: evolve human-like gameplay, playing against humans as well as other bots) 
 

Rightmostvideo: Neuroevolved bot playing Unreal Tournament, judges viewpoint (aka: what is being killed by an AI like) 
 

 Neuroevolved AI broke the «human-like play barrier» for the first time (~Turing test, judged human > 50% of times ) 

F. Corucci - Introduction to Evolutionary Robotics 

https://youtu.be/qv6UVOQ0F44
http://nn.cs.utexas.edu/?botprize2012


Remarks on neuroevolution 

• As most of the techniques we have seen, usage can be twofold: 

• For practical applications, as tools to solve complex problems (e.g. robot 

control) 

• Given their biological inspiration, as scientific tools (e.g. investigate the 

evolution of brain-like structures  intelligence) 

 

F. Corucci - Introduction to Evolutionary Robotics 



Back to CPPNs: Evolving bodies… with CPPNs 

F. Corucci - Introduction to Evolutionary Robotics 

The same algorithms used to evolve regular ANNs’ connection patterns (NEAT) can 

be used to evolve regular body plans 
 

 

 

 

 

 

 

 

 

 

 

 

 

 What changes is how CPPN outputs are interpreted 

Cheney, Nick, et al. "Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding." 

Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013. 

CPPN 

Phenotype 

For each voxel, 

material type, 

drawn from a 

predefined 

palette 

Workspace / bounding box 



Evolving bodies… with CPPNs 
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Cheney, Nick, et al. "Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding." 

Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013. 



Evolving bodies… with CPPNs 

F. Corucci - Introduction to Evolutionary Robotics 

CPPN-NEAT evolved regular morphologies 

Sample morphology evolved with 

direct encoding  not regular 

Regular morphologies 

 more effective robots 
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F. Corucci et al. "Evolving swimming soft-bodied creatures", ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living 

Systems, 2016 (late breaking abstract) 

https://youtu.be/4ZqdvYrZ3ro


Evolving bodies… with CPPNs 
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F. Corucci et al. "Evolving swimming soft-bodied creatures", ALIFE XV, The Fifteenth International Conference on the Synthesis and Simulation of Living 

Systems, 2016 (late breaking abstract) 

Environment: simple fluid dynamics model is added (mesh-based resistive drag) 

Evolved aspects: topology, active/passive material, actuation frequency and phase offset, stiffness distribution 

Artificial Life experiment: investigating the effect of environmental transitions water  land on evolved 

morphologies and behaviors 

Note the 

emergent 

morphological 

regularity 

(modular 

appendages, 

symmetry) 
 

 Not explicitly 

rewarded 

 

Partly due to the 

regular encoding, 

partly implicitly 

selected by 

evolution 

T
im

e
 



Evolution of development… with CPPNs 
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F. Corucci et al. “Material properties affect evolution’s ability to exploit morphological computation in growing soft-bodied creatures,”  ALIFE XV, The Fifteenth 

International Conference on the Synthesis and Simulation of Living Systems, 2016 

Evolved aspects: topology, parameters of a 

developmental process unfolding over time 
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F. Corucci et al. “Material properties affect evolution’s ability to exploit morphological computation in growing soft-bodied creatures,”  ALIFE XV, The Fifteenth 

International Conference on the Synthesis and Simulation of Living Systems, 2016 

https://youtu.be/Cw2SwPNwcfM


Evolution of development… with CPPNs 
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F. Corucci et al. “Material properties affect evolution’s ability to exploit morphological computation in growing soft-bodied creatures,”  ALIFE XV, The Fifteenth 

International Conference on the Synthesis and Simulation of Living Systems, 2016 

This setup pointed out interesting 

relationships between material 

properties and the evolution of 

morphological computation in growing 

soft robots 

 

Unsuitable material properties can 

prevent evolution from discovering 

and exploiting morphological 

computation, which results in an 

automatic complexification of the 

controller 

 

Morphological computation was 

quantified using information theoretic 

measures (Shannon entropy) 

 For a given fitness level, delta entropy 

between controllers 



Evolution of development… with CPPNs 

F. Corucci - Introduction to Evolutionary Robotics 

F. Corucci et al. “Material properties affect evolution’s ability to exploit morphological computation in growing soft-bodied creatures,”  ALIFE XV, The Fifteenth 

International Conference on the Synthesis and Simulation of Living Systems, 2016 

For the task environment at hand, softer robots achieved better performances with 

simpler controller, thanks to morphological computation 



Other indirect encodings – L-systems 
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Stanley, Kenneth O., and Risto Miikkulainen. "A taxonomy for artificial embryogeny." Artificial Life 9.2 (2003): 93-130. 

(1) Rewriting rules (genotype) Phenotype 

after a fixed number of 

applications of (1) 

(1) (1) 



Other indirect encodings – L-systems 
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Hornby, Gregory S., and Jordan B. Pollack. "Body-brain co-evolution using L-systems as a generative encoding." Proceedings of 

the Genetic and Evolutionary Computation Conference (GECCO-2001). 2001. 

Same grammar-based approach is used to generate both body and brains 



F. Corucci - Introduction to Evolutionary Robotics 

https://en.wikipedia.org/wiki/L-system 

Other indirect encodings – L-systems 

Grammar-based 

approaches are particularly 

suitable to reproduce plant-

like structures and fractal 

patterns 
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Stanley, Kenneth O., and Risto Miikkulainen. "A taxonomy for artificial embryogeny." Artificial Life 9.2 (2003): 93-130. 

• Functionally similar to grammar-based approaches 

• Similarly, they can encode both artificial brains and bodies 

Other indirect encodings – Graph based 



F. Corucci - Introduction to Evolutionary Robotics 

Other indirect encodings – Graph based 

Sims, Karl. "Evolving virtual creatures." Proceedings of the 21st annual 

conference on Computer graphics and interactive techniques. ACM, 1994. 



Other indirect encodings – Gene Regulatory Networks 
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Stanley, Kenneth O., and Risto Miikkulainen. "A taxonomy for artificial embryogeny." Artificial Life 9.2 (2003): 93-130. 

GRN are usually embedded in artificial 

cells. Chemical gradients diffuse in the 

environment, influencing expression 

patterns. 

 
 

Usually same GRN in all cells 
 

 Different products based on local 

environment and feedback loops 
 

 

As before, can implement both 

morphogenesis (development of 

morphology) and neurogenesis 

(development of neural system), 

depending on which gene products 

are defined. 
 

e.g. add/remove a neuron/synapsis, 

add/remove a cell, … 

Networks that represent 

interactions governing gene 

expression 
 

Genetic material composed of two parts: 

 

- Coding region (White): instructions for 

a gene product (e.g. protein) 
 

- Regulatory region (Gray): 

conditions under which the gene is 

expressed (i.e. product is created) 

 

A,B,C,D: chemicals (e.g. proteins’ 

concentration), triggering coding regions 



Other indirect encodings – Gene Regulatory Networks 
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Bongard, Josh C., and Rolf Pfeifer. "Repeated structure and dissociation of genotypic and phenotypic complexity in artificial 

ontogeny." Proceedings of the Genetic and Evolutionary Computation Conference. Vol. 829836. 2001. 

Evolution of Locomotion Example of exaptation (peristaltic locomotion  

manipulation) and evolution of size 
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Bongard, Josh C., and Rolf Pfeifer. "Repeated structure and dissociation of genotypic and phenotypic complexity in artificial 

ontogeny." Proceedings of the Genetic and Evolutionary Computation Conference. Vol. 829836. 2001. 

Growing morphology 

Growing neural structure 

Other indirect encodings – Gene Regulatory Networks 
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Doursat, R. & Sánchez, C. (2014) Growing fine-grained multicellular robots. Soft Robotics 1(2): 110-121 

Other indirect encodings – Gene Regulatory Networks 

GRN are widely adopted in morphogenetic engineering and 

artificial multicellular development 

 

Programmable, self-organizing (“self-architecturing”) 

systems from low-level interactions  



Conclusions 

• Artificial brains and bodies can be co-evolved using similar 

techniques 

• Different developmental encodings replicate different details of 

biological development (different levels of abstraction are 

possible) 
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Conclusions 

• Developmental encodings can empower artificial evolution, 

bringing some aspects of biological development into play 

• Increased biological plausibility: Morphological and neurological 

complexity are not produced by evolution alone in nature, 

development plays a big role 

• Developmental processes are themselves a product of evolution: 

evolution of development (evo-devo) 

• Subtle interactions exist between evolution and development 

(active research area) 
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Conclusions 

Why bother replicating developmental processes too? 

• More comprehensive tools for Artificial Life and Computational 

Biology 

• Implications for evolutionary robotics: 

• Developmental processes can help evolution 

 Can increase evolvability 

 Can increase scalability (information is reused) 

 More effective automated design of robot morphologies and 

controllers 
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The reality gap problem 

F. Corucci - Introduction to Evolutionary Robotics 



The reality gap / transfer problem 

In order to avoid technological limitations, evolutionary robotics 

methodologies are often applied in simulation 

 

Evolutionary simulations allow to study many interesting 

phenomena, having full access to the evolving systems and full 

control over the environment in which they evolve 

 Great tool for Artificial Life, Computational Biology, etc. 
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The reality gap / transfer problem 

However, one of the main goals of evolutionary robotics is to 

evolve real robots for real tasks. 

Two options: 

1. Apply evolutionary techniques in the real world, using real 

robots 

 

     Pros? Cons? 
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(time  few evaluations  suboptimal results, hardware 

limitations and resilience, experimental setup must be designed) 
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Two options: 

1. Apply evolutionary techniques in the real world, using real 

robots: Possible, you “get physics for free”, but some limitations 

(time  few evaluations  suboptimal results, hardware 

limitations and resilience, experimental setup must be designed) 

2. Apply evolutionary techniques in simulated worlds, then 

transfer the final products into the real world 

   

    Pros? Cons? 
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The reality gap / transfer problem 

However, one of the main goals of evolutionary robotics is to 

evolve real robots for real tasks. 

Two options: 

1. Apply evolutionary techniques in the real world, using real 

robots: Possible, you “get physics for free”, but some limitations 

(time  few evaluations  suboptimal results, hardware 

limitations and resilience, experimental setup must be designed) 

2. Apply evolutionary techniques in simulated worlds, then 

transfer the final products into the real world: Need to 

simulate the world, but can bypass technological limits, 

computational power  far more fitness evaluations are 

possible  more optimized designs 
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The reality gap / transfer problem 

 Unfortunately, achieving a successful transfer of evolved 

solutions from simulation to reality has proven to be generally 

difficult: reality gap / transfer problem 
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The reality gap / transfer problem 

Why? 

• The smallest discrepancy between the simulated environment 

and the real world can result in an unsuccessful transfer (e.g. 

approximated physics) 

• …and no model is as rich as the physical reality: “There is no 

better model of the world than the world itself”, R. Brooks 

• Also, evolutionary algorithms will especially try to exploit these 

discrepancies whenever this turns out to be beneficial in order to 

maximize fitness (perverse instantiation) 

 Serious problem for evolutionary robotics 
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An example of reality gap – [Koos et al, 2010] 
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http://pages.isir.upmc.fr/~mouret/website/evolution.xhtml


The radical envelope-of-noise hypothesis 

• Jakobi (1997) 

• Observation: 

• Evolution will create solutions that exploit details of the simulation 

• If those details do not exist in reality, the controller will fail to cross 

the reality gap 

• Hypotheses: 

• Properly adding noise to the simulation can prevent evolution from 

relying on those details  makes details unreliable 

 

• Overall, the more complex the simulation, the more difficult to decide which 

aspects to “nosify” and how  Always try to create minimal simulations 

 

F. Corucci - Introduction to Evolutionary Robotics 



Crossing the gap – [Lipson and Pollack 2000] 

First time the reality gap 

was crossed 

 

Robot composed by a set 

of building blocks (bars, 

motors, neurons) 

 

Brain-body co-evolution 

+ 

3D printing 

 

Noise added to the 

simulation 
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http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
https://www.youtube.com/watch?v=qSI0HSkzG1E


Crossing the gap – [Bongard and Lipson, 2006] 
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- Robot first evolves a 

self-model (simulator) 

that matches 

proprioceptive 

information from a 

limited set of 

physical exploratory 

actions 

 

- The self-model is 

then used to evolve a 

behavior (gait) 

 

- The robot can detect 

a damage by noticing 

that predicted and 

actual sensory 

information do not 

match anymore 

 

- Can evolve a new 

self-model, and then 

a new behavior 

http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://science.sciencemag.org/content/314/5802/1118


Crossing the gap – [Cully et al, 2015] 
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- Robot uses a fixed self-

model to evolve (in 

simulation) a map of 

different locomotion 

strategies and 

associated fitness 

(MAP-elites algorithm) 

 

- Initially attributes low 

confidence to these 

behaviors (only tested in 

simulation!) 

 

- Uses an intelligent 

algorithm to test a few 

behaviors in the real 

world and update its 

confidence level on the 

whole map 

 

- Can use this procedure to 

find behaviors that 

transfer well, as well as to 

find behaviors that work 

in the face of a damage 

http://www.isir.upmc.fr/files/2015ACLI3468.pdf
http://www.isir.upmc.fr/files/2015ACLI3468.pdf
http://www.isir.upmc.fr/files/2015ACLI3468.pdf
https://youtu.be/T-c17RKh3uE


MAP-elites 
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Mouret, Clune, "Illuminating search spaces by mapping elites" 

Optimization vs “Illumination”: 

 

Traditional optimization algorithm would 

try to find a single best performing 

solution (e.g. a specific gait, say, a 

tripod gait) 

 

MAP-elites try instead to construct 

instead a whole phenotype-fitness map 

(!= finess landscape), which contains 

many behaviorally different high-

performance solutions 

 

Behavioral difference is quantified in a 

features space, which is task-

dependent (e.g. for locomotion, % of 

time each foot is in contact with the 

ground) 



MAP-elites 
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Mouret, Clune, "Illuminating search spaces by mapping elites" 



MAP-elites 
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Mouret, Clune, "Illuminating search spaces by mapping elites" 

Comparison of phenotype-fitness map: optimization algorithms (first two columns) vs MAP-elites 



Beyond pure fitness: 

novelty search 
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Beyond pure fitness 
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Lehman, Stanley, “Abandoning Objectives: Evolution through the Search for Novelty Alone” 

• MAP-elites is just one example of a recent trend in evolutionary computation 

• Different approaches in which the role of pure performance-based fitness is 

revised 

• A particularly radical one: Novelty Search (Lehman, Stanley, 2011) 

• Performances are completely ignored during search 

• Instead of directly rewarding better solutions, rewards novel solutions 

• Novelty is computed relative to an archive of observed behaviors (novelty 

archive) as well as w.r.t. the current population 

• Novelty score (actual fitness): Euclidean distance in a space of behavioral 

features (like those defined in MAP-elites) 



Recent paradigm shift in evolutionary computation 
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Lehman, Stanley, “Abandoning Objectives: Evolution through the Search for Novelty Alone” 

• It has been shown that by doing so, it is actually 

possible to find better (even in a performance-oriented 

sense) solutions  

 

• How so? Intuitions: 

• Fitness landscapes can be deceptive: greedily 

following fitness gradients can lead to bad local 

optima (e.g. deceptive maze) 

• Different, perhaps initially bad behaviors (e.g. 

falling) can be stepping stones for future effective 

ones (e.g. running is controlled falling: exploring 

different ways to fall can lead to discovering running 

instead of walking) 

Goal 

Start 



Appendix: VoxCad simulator 
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VoxCad (Voxel Cad) 

• Open-source voxel modeling 

and analyzing software (FEM) 

• Originally developed by John 

Hiller (Cornell University) 

• VoxCad: GUI 

• Voxelyze: underlying 3D 

dynamics physics engine 

• Supports multiple-materials 

(soft-stiff) large deformations, 

collision detection, volumetric 

actuation, etc 
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https://sites.google.com/site/voxcadproject/  

https://sites.google.com/site/voxcadproject/
https://sites.google.com/site/voxcadproject/


VoxCad (Voxel Cad) 

• Quickly adopted by researchers 

in evolutionary soft robotics, 

integrated with CPPN-NEAT 

• Has been extended during the 

years with several features 

• Electrical actuation 

• Simplified fluid dynamics 

• Developmental processes 

(some customized versions are yet to 

be published and are available within 

the lab) 
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https://sites.google.com/site/voxcadproject/  

https://sites.google.com/site/voxcadproject/
https://sites.google.com/site/voxcadproject/


Overview of ongoing and past activities 

in this area 
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Ongoing and past activities 

General idea:  

To study and implement artificial evolutionary and developmental processes 

in order to investigate the emergence of adaptive and intelligent behavior in 

biological and artificial systems 

 

Particular attention to the role and implications of a soft morphology in this 

process 

 

“Evolutionary Developmental Soft Robotics: Towards Adaptive and Intelligent Soft Machines Following 

Nature’s Approach to Design”, F. Corucci, Soft Robotics: Trends, Applications and Challenges, 111-116 
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Ongoing and past activities 

• Brain-body co-evolution of generic 

soft-bodied creatures/robots in different 

environments 
 

• Morphological developmental plasticity in soft 

bodied creatures 

• Interaction between evolutionary and 

developmental processes (evo-devo) 
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https://youtu.be/Cw2SwPNwcfM
https://youtu.be/4ZqdvYrZ3ro


Ongoing and past activities 

Using artificial evolution to study 

properties of specific animals 

Example: Artificial Evolution and 

adaptation to different environments of a 

manta-like fin 
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C:/Users/Francesco/Dropbox/PhD/presentazioni e posters/29_07-01_08_2014 Living Machines 2014/FINAL_slidesMantaLivingMachines2014.pptx
http://sssa.bioroboticsinstitute.it/papers/FinEvolution


Ongoing and past activities 

Applying evolutionary design 

techniques to improve soft bio-

inspired robots 
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https://youtu.be/WrLLJMtkuQI


Ongoing and past activities 

• Human-machine collaborative evolutionary design 

• Reconciliating bio-inspired design, human and artificial creativity (novelty) 

 

• Investigating the feasibility and potential benefits of 

shape-changing robots (morphing/morphosis), i.e. robots that can 

reconfigure their body in order to adapt to different 

tasks/environmental conditions 
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Ongoing and past activities 
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Suggested readings 

1. Josh C. Bongard. 2013. “Evolutionary robotics”. 

Commun. ACM 56, 8 (August 2013), 74-83 

 Survey paper on Evolutionary Robotics 

2. “Bio-Inspired Artificial Intelligence: 

Theories, Methods and Technology” 

Dario Floreano and Claudio Mattiussi  

 Chapter 1 

3. “How the body shapes the way we think” 

Rolf Pfeifer and Josh Bongard 

 Chapter 6 

4. “Evolutionary Robotics: The Biology, Intelligence, and 

Technology of Self-Organizing Machines” 

Stefano Nolfi, Dario Floreano 

5. “Evolutionary Developmental Soft Robotics: Towards Adaptive and 

Intelligent Soft Machines Following Nature’s Approach to Design”, 

F. Corucci, Soft Robotics: Trends, Applications and Challenges, 111-

116  Book chapter, short overview of some of our activities in the field 
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For doubts, additional material, 

projects and theses ideas: 

f.corucci      sssup.it 

http://sssa.bioroboticsinstitute.it/user/1507  
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http://sssa.bioroboticsinstitute.it/user/1507
http://sssa.bioroboticsinstitute.it/user/1507

