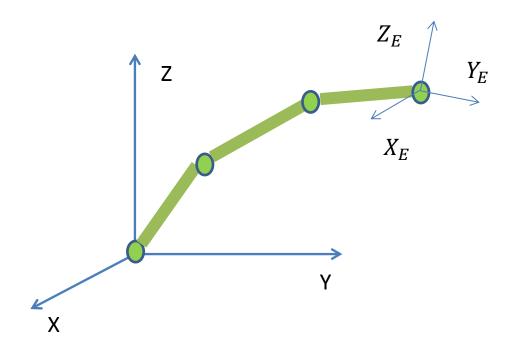
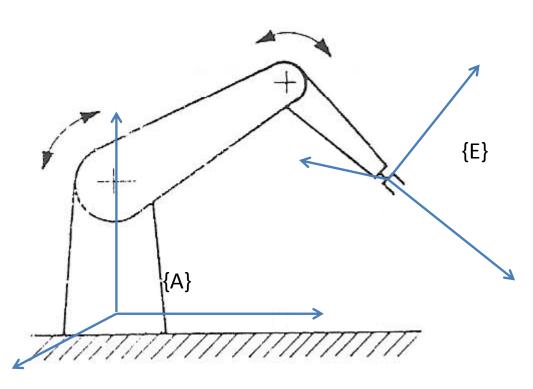
Cinematica dei robot

 Posizionare l'end effector nello spazio in una data posizione e con un dato orientamento rispetto ad un sistema di riferimento assoluto



Cinematica dei robot (II)



Cinematica diretta

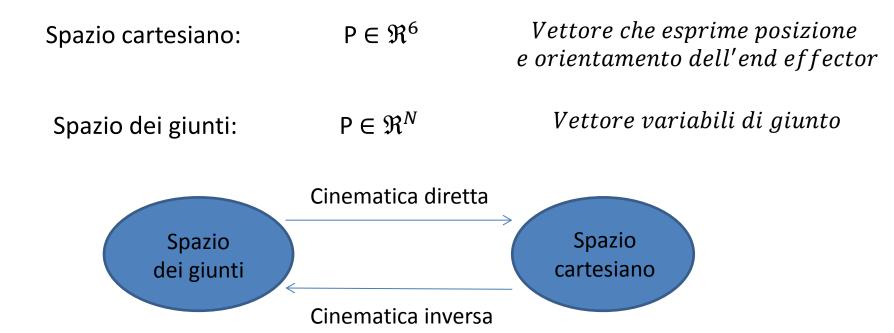
$$^{A}T_{E}(\theta_{1},...,\theta_{n})$$

Cinematica inversa

$$\theta_i = f_i (x,y,z,\alpha,\beta,\gamma)$$

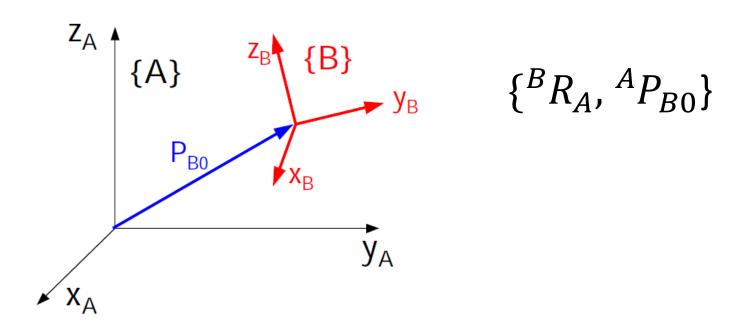
Spazio cartesiano e spazio dei giunti

 La configurazione di un manipolatore a N gradi di libertà è descritta all'interno dei seguenti spazi di rappresentazione:

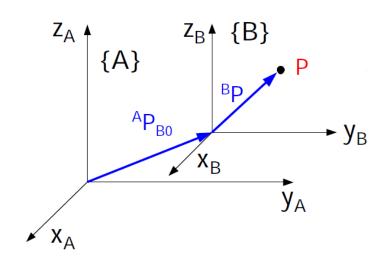


Sistemi di riferimento

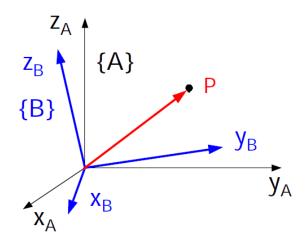
Un sistema di riferimento {B} può essere descritto dalla posizione della sua origine e dalla rotazione dei suoi assi rispetto ad {A}



Rotazioni e Traslazioni



$$^{A}P = ^{B}P + ^{A}P_{B0}$$



$$^{A}P = {^{A}R_{B}}$$
 ^{B}P

Rotazioni di base

Le seguenti tre matrici di rotazione di base ruotano vettori di un angle θ sugli assi x, y, z, utilizzando la regola della mano destra

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Esempio di rotazione sull'asse zeta del vettore [0 0 1]

$$R_z(90^\circ) \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} \cos 90^\circ & -\sin 90^\circ & 0\\ \sin 90^\circ & \cos 90^\circ & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\1 & 0 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Trasformazioni omogenee

• Le trasformazioni omogenee permettono di descrivere roto-traslazioni attraverso un operatore matriciale:

$$^{A}P = {^{A}R_{B}} {^{B}P} + {^{A}P_{B0}} \longrightarrow {^{A}P} = {^{A}T_{B}} {^{B}P}$$

Nello spazio omogeneo si ha:

$${}^{A}P = {}^{A}T_{B} {}^{B}P$$
 ${}^{A}T_{B} = \begin{pmatrix} {}^{A}R_{B} & | & {}^{A}P_{B0} \\ \hline 0 & 0 & | & 1 \end{pmatrix}$

Trasformazioni omogenee (II)

TRASLAZIONI

$${}^{A}Trasl_{B} = \begin{pmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

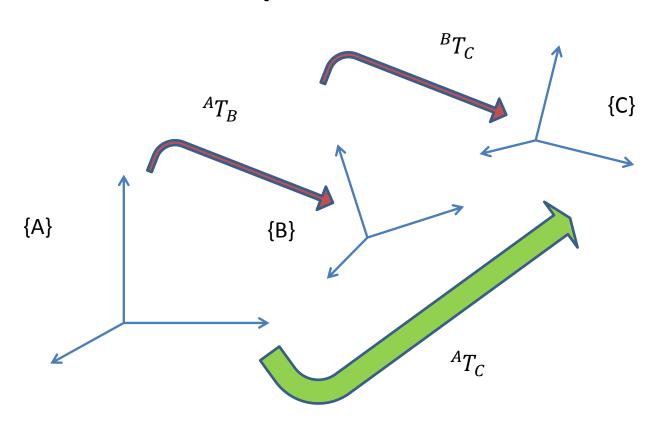
ROTAZIONI

$${}^{A}Trasl_{B} = \begin{pmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad {}^{A}Rot_{B} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ROTO-TRASLAZIONI

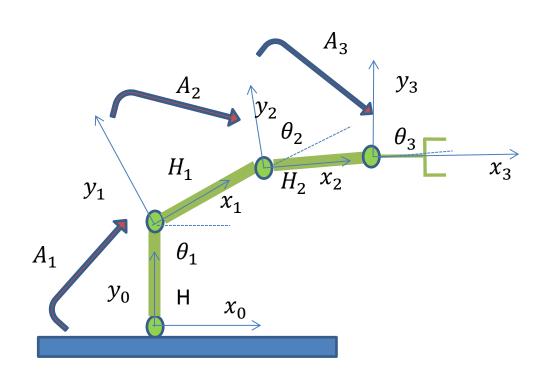
$${}^{A}Rot - Trasl_{B} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & dx \\ r_{21} & r_{22} & r_{23} & dy \\ r_{31} & r_{32} & r_{33} & dz \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Trasformazioni omogenee (III) Componibilità...



$${}^AT_C = {}^AT_B{}^BT_C$$

Esercizio 2D



$$A_1 = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & 0 \\ \sin \theta_1 & \cos \theta_1 & H \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} \cos\theta_2 & -\sin\theta_2 & H_1 \\ \sin\theta_2 & \cos\theta_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

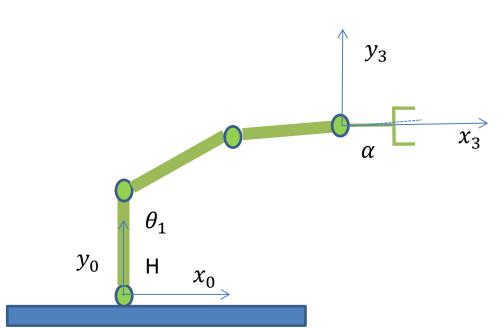
$$A_3 = \begin{pmatrix} \cos\theta_3 & -\sin\theta_3 & H_2 \\ \sin\theta_3 & \cos\theta_3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$T_3 = A_1 A_2 A_3$$

$$T_{3} = \begin{pmatrix} \cos(\theta_{1} + \theta_{2} + \theta_{3}) & -\sin(\theta_{1} + \theta_{2} + \theta_{3}) & \cos(\theta_{1} + \theta_{2}) H_{2} + \cos(\theta_{1}) H_{1} \\ \sin(\theta_{1} + \theta_{2} + \theta_{3}) & \cos(\theta_{1} + \theta_{2} + \theta_{3}) & \text{H} + \sin(\theta_{1} + \theta_{2}) H_{2} + \sin(\theta_{1}) H_{1} \\ 0 & 0 & 1 \end{pmatrix}$$

Esercizio 2D - cinematica inversa

Calcolo coordinate end effector i funzione delle coordinate dei giunti T^* è la trasformazione che descrive l'end effector



$$T^* = \begin{pmatrix} \cos \alpha & -\sin \alpha & x \\ \sin \alpha & \cos \alpha & y \\ 0 & 0 & 1 \end{pmatrix}$$

Eguagliando T^* e T_3 si ottiene:

$$\begin{cases} \alpha = \theta_1 + \theta_2 + \theta_3 \\ x = \cos(\theta_1 + \theta_2) H_2 + \cos(\theta_1) H_1 \\ y - H = \sin(\theta_1 + \theta_2) H_2 + \sin(\theta_1) H_1 \end{cases}$$

Esercizio 2D cinematica inversa (II)

Sommando i quadrati:

$$x^2 + (y - H)^2 = H_2^2 + H_1^2 + 2H_1H_2 \cos\theta_2$$

Da questi si ricava:

$$\begin{cases} \cos \theta_2 = (x^2 + (y - H)^2 - H_2^2 - H_1^2)/2H_1H_2 \\ \sin \theta_2 = \pm \sqrt{1 - (\cos \theta_2)^2} \end{cases}$$

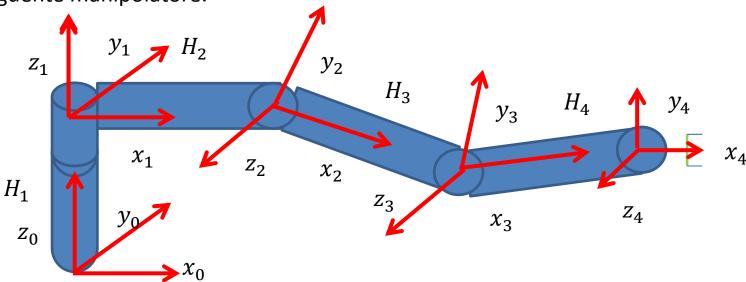
Quindi:

$$\theta_2$$
=atan2 ($\cos\theta_2$, $sin\theta_2$)

Conoscendo θ_2 è quindi possibile ricavare all'interno del sistema anche θ_1 e θ_3

Esercizio 3D cinematica

Dato il seguente manipolatore:

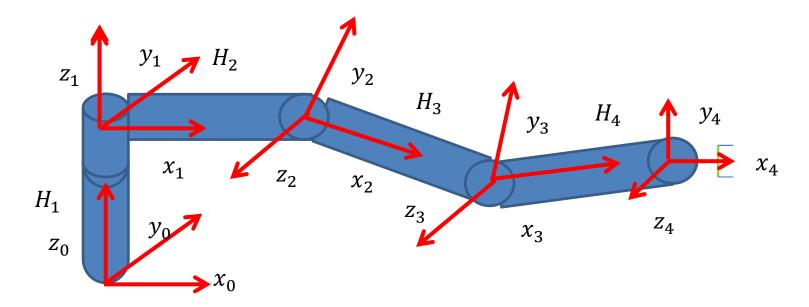


Calcolare matrici di trasformazione da un sistema di riferimento al successivo

$$A_{1} = \begin{pmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & H_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 & H_{3} \\ \sin\theta_{3} & \cos\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & H_3 \\ \sin\theta_3 & \cos\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Esercizio 3D cinematica (II)



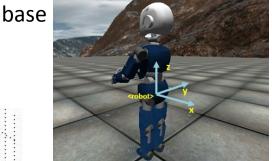
$$A_2 = \begin{pmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & H_2 \\ 0 & 0 & -1 & 0 \\ \sin\theta_2 & \cos\theta_2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A_4 = \begin{pmatrix} \cos\theta_4 & -\sin\theta_4 & 0 & H_4 \\ \sin\theta_4 & \cos\theta_4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_4 = \begin{pmatrix} \cos\theta_4 & -\sin\theta_4 & 0 & H_4 \\ \sin\theta_4 & \cos\theta_4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

La trasformazione T_4 è uguale a:

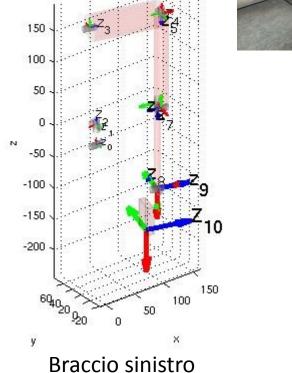
$$T_4 = A_1 A_2 A_3 A_4$$

Cinematica del robot iCub



Parametri Denavit-Hartemberg

Link i / H – D	Ai (mm)	d_i (mm)	alpha_i (rad)	theta_i (deg)
i = 0	32	0	pi/2	-22 -> 84
i = 1	0	-5.5	pi/2	-90 + (-39 -> 39)
i = 2	23.3647	-143.3	-pi/2	105 + (-59 -> 59)
i = 3	0	107.74	-pi/2	90 + (5 -> -95)
i = 4	0	0	pi/2	-90 + (0 -> 160.8)
i = 5	15	152.28	-pi/2	75 + (-37 -> 100)
i = 6	-15	0	pi/2	5.5 -> 106
i = 7	0	137.3	pi/2	-90 + (-50 -> 50)
i = 8	0	0	pi/2	90 + (10 -> -65)
i = 9	62.5	-16	0	(-25 -> 25)



Posizione sistema di riferimento sull'end effector

http://wiki.icub.org/wiki/ICubFowardKinematics_left