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Computer vision 

Robot vision – machine vision 

La visione è un campo molto 

studiato, con applicazioni che 

variano dalla medicina 

all’intrattenimento 















Sommario delle lezioni 
 Introduzione: 

 Immagini digitali; operatori; istogrammi;  

 Elaborazione di immagini: 

 Denoising; segmentazione; sogliatura automatica 
(Otsu); individuazione di bordi: Hough; basata sul 
gradiente; rappresentazione di bordi; erosione 

 Ricostruzione tridimensionale 

 Principi di base; Direct Linear Transformation; Flusso 
ottico; controllo di volo ispirato dalle api; 

 Argomenti avanzati 

 Valutazione della sfocatura e auto-focus;  

 Esempi finali: Justin, Circle detection per diagnosi 

 

 

 



Visione per 

Controllo del robot Ricostruzione di posizione e posa 



The 3D positions of the centre of mass of the robot over time is 

extracted to analyze the robot dynamics.   
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Image function 

 f(x,y)  2x 

 (x,y): spatial coordinates 

 f(x,y): value of light intensity in a point 



Image function and digital images 

 f(x,y)  2x 

 (x,y): spatial coordinates 

 f(x,y): value of light intensity in a point 

 

 IMAGE SAMPLING: digitalizing spatial 
coordinates 

 LIGHT INTENSITY (OR GREY LEVEL) 
QUANTIZATION: digitalizing in amplitude 

 

 PIXEL: basic element of a digital image 



Example of digital image 



Space resolution 



Color depth 

Binary – 1 bit 

 

 

 

Grey levels – 8 bit 

 

 

 

True color – 24 bit 



Main classes of image processing 
techniques 

SEGMENTATION 

 Detection of the parts 

that constitute a scene 

 BOUNDARIES: elements 

of a segmented image 

based on discontinuity 

 REGIONS: elements of a 

segmented image based 

on uniformity 

EARLY PROCESSING 

 Processing of pixel 

values, at a pixel/local 

level 

e.g.: 

 FILTERING 

 EDGE DETECTION 

 



cam1 

cam2 

Image 

acquisition  

Denoising Segmentation 

Where we are 



Digital image operators 

 Pixel operators 

 the output value of pixel (i,j) 
depends on the input value of 
pixel (i,j), only 

 Local operators 

 the output value of pixel (i,j) 
depends on the input value of a 
neighborhood of pixel (i,j), only 

 Global operators 

 the output value of pixel (i,j) 
depends on the input value of all 
the image pixels 



Local operators 

Filtering techniques: 

• smoothing 

• mean, median, gaussian  



E’ una delle operazioni più utilizzate: 

Convoluzione 

f 

g 

f * g 

f(t-τ) 

g(τ) 

(f * g)(t) 

Bidimensionale 

τ 

τ 

t 



E’ una delle operazioni più utilizzate: 

Convoluzione 

w1 w2 w3 

w4 w5 w6 

w7 w8 w9 

Convolution mask 



Smoothing 

g(x,y) = 1/P    f(n,m) 

 

S: neighborhood of (x,y) 

P: number of pixels in S 

n,mS 
1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 



Example: Blurring 



Example: Blurring 



Example of noise cleaning 
 impulsive noise 

(salt & pepper): 
characterized by the 
ratio of image modified 
by noise (in %) 

 

 

 

 

 

 white gaussian 
noise: characterized 
by the average and 
variance 

 



Impulsive noise and smoothing 

Original noisy image Smoothing 3x3 

Smoothing 5x5 



Gaussian filter 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 

It induces ringing 



Some common kernel 

Gaussian 

Derivative of 

Gaussian (DoG)  

Laplacian of 

Gaussian (LoG)  



Median filter 

g(x,y) = median of (x,y) 

 

Median M of a set of values:  

 the value by which half values of the set are 

lower than M and half values are higher 

 

Example: 

 



Example of application of a 
Median filter 

Original noisy image Original noisy image 



Neighborhood 
average 5x5 

Median filter 5x5 



Template matching 

The Z-prefix indicates that the measure 

accounts for zero-offset or the 

difference in mean of the two images  

We will consider that the kernel is an image or a part of an image 

and such a kernel is referred to as a template. In template matching 

we wish to find which parts of the input image are most similar to 

the template. 



Template matching: example 

 Similarity measure for images, to compare 

an image function f(x) with a template t(x) 

Rft(y) = xf(x)t(x-y) 

1 1 1 

1 1 1 

1 1 1 

Template Image Correlation 

1 1 0 0 0 

1 1 1 0 0 

1 0 1 0 0 

0 0 0 0 0 

0 0 0 0 8 

7 4 2 x x 

5 3 2 x x 

2 1 9 x x 

x x x x x 

x x x x x 
(corner evaluated)  



Correlation matching 

Invariant features! 

Scale-invariant feature transform 

 SIFT features are located at scale-space maxima/minima of a 

Difference of Gaussian function.  
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Defining r = f(x, y) as the value of the (x, y) pixel for the image 

f(x,y), and s = g(x, y) as the value of the (x, y) pixel for the image 

g(x,y). Thus is possible to write a transformation as: 

   s = T[r] 

with L grey levels (values that the pixels can assume).  

g(x, y) = T[f(x, y)] 

Pixel operators (Monodic) 



Diadic Operations  

Background 

image 
if (OBJ_img==green) 

 copy(BG_img) 

else 

  copy(OBJ_img)   



Example of pixel operator:  
grey level inversion 

g(x,y) = 255 - f(x,y) 

 

Provides the “negative” image 

 



Example of pixel operator:  
contrast enhancement  





Examples  

Power law 

γ = 4  

Power law 

γ = 0.5  

Sigmoid  









Image enhancement is often a preliminary step to another pixel 

operator: 



Transformation of the image in a binary image, 
through comparison with a threshold T: 

 

 

 

     

 T can be constant or variable with respect to x, y, 
f(x,y) or other local properties 

 T can be found empirically or with statistical 
techniques 

Example of pixel operator:  
thresholding 



Threshold with and without contrast enhancement 

 Detect the key features 

• contrast enhancement "increase the distance" among objects of 

interest from the background 

• threshold identifies the objects and the background 



Examples 



The problem is: how is possible to select the correct threshold? 

Original image 



Image histogram 
 Distribution of gray level 

 For each grey level, the histogram gives the 

number of pixels with that grey level. 

 For an image I[m,n]:  

H(k)= number of pixels with value k 

 The sum of all H is exactly mxn 



Examples of istogram 



A limitation of the histogram 

 Does not take into account the spatial distribution 



Istogram transformation 

(equalization) 

Mapping of grey levels p in grey levels q with uniform 
distribution 

 

h(p) = number of pixels with value p (0pn) 

 

g(q) dq = h(p) dp 

g(q) = N2/M 

N2: number of pixels, M: number of grey levels 

g(p) = M/N2  h(s) ds p  

  

0 



Example of histogram equalization 



Example of histogram equalization 



Transformation of the image in a binary image, 
through comparison with a threshold T: 

 

 

 

     

 T can be constant or variable with respect to x, y, 
f(x,y) or other local properties 

 T can be found empirically or with statistical 
techniques 

Thresholding 



Threshold found from the image histogram 



Background and object can be described as classes of the 

image histogram 

 

Otsu thresholding method maximise the variance between 

classes. 



One implementation can be defined as follow: 

1. Obtaining the image histogram 

2. For each threshold value, t = 0, ..., L − 1 the following 

variables should be derived 

3. Compute: 

 

 

 

 

 

 

 

 

4. Maximum σ2
b (t) defines the correct threshold t. 





How to retrieve (automatically) all the objects? 

 It is possible to iterate Otsu on the histogram subset 

 It is needed local threshold strategies  



Background subtraction 

The technique of background subtraction 
removes the slight variations of the background 
grey levels, by approximating them by a 
function and by subtracting such function from 
the image function 

fn(x,y) = f(x,y) - fb(x,y) 

fb(x,y) = c (constant)  or 

fb(x,y)=m1x+m2y+c (linear) 
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Once the objects were separated from the background, the 

shape can be identified: 

Hough transformation 

Gradient 

Erosion 

… 



EDGE: area where grey levels vary significantly 

EDGE OPERATOR: mathematical operator that 

can detect an edge 

Early processing:  
EDGE DETECTION techniques 



Gradient-based operators 

GRADIENT: measure of discontinuity in an image point 

GRADIENT DIRECTION ((x,y)): direction of maximum variation of grey 

levels 

GRADIENT INTENSITY (s(x,y)): intensity of the variation of grey levels 



Gradient-based edge detection 

s(x,y) = (1
2 + 2

2)1/2 

(x,y) = tan-1(2 / 1) 

f 
x 

f 
y 

1 

2 
G[f(x,y)] =        = 

GRADIENT INTENSITY 

GRADIENT DIRECTION 



Approximation of first derivative 
(difference) 



Gradient-based edge detection 
and thresholding 
 g(x,y)=G[f(x,y)] 

 

 

 g(x,y)= 

 

 

T: threshold 

1  if   g[f(x,y)] > T 

0 if   g[f(x,y)] <= T  



Gradient-based edge detection 
and thresholding 

DIFFERENCE OPERATOR: 

1= f(x+a,y) - f(x,y)     

2= f(x,y+a) - f(x,y) 

 

Si, j   1
2

2
2

1 = Ii-a,j - Ii,j 

2 = Ii,j+a - Ii,j 

 

a

a
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 A = 1 

Gradient-based edge detection 
and thresholding 

 A = 2 



Gradient-based edge detection 

ROBERTS’ CROSS OPERATOR: 

1= f(x,y+a) - f(x+a,y)         2= f(x,y) - f(x+a,y+a) 

 

 

 

PREWITT’S OPERATOR: 

1= f(x-1,y+1) + f(x,y+1) + f(x+1,y+1)  

    - f(x-1,y-1) - f(x,y-1) - f(x+1,y-1)  

2= f(x-1,y-1) + f(x-1,y) + f(x-1, y+1) 

    - f(x+1,y-1) - f(x+1)y) - f(x+1,y+1) 

 

0 1 

-1 0 

1 

-1 
2 1 

-1 -1 -1 

0 0 0 

1 1 1 

1 0 -1 

1 0 -1 

1 0 -1 

1 2 



Gradient-based edge detection 

SOBEL’S OPERATOR: 

1= f(x-1,y+1) + 2f(x,y+1) + f(x+1,y+1)  

    - f(x-1,y-1) - 2f(x,y-1) - f(x+1,y-1)  

2= f(x-1,y-1) + 2f(x-1,y) + f(x-1, y+1) 

    - f(x+1,y-1) - 2f(x+1)y) - f(x+1,y+1) 
 

-1 -2 -1 

0 0 0 

1 2 1 

-1 0 1 

-2 0 2 

-1 0 1 

1 2 



Comparison among masks 

Gradient 

Laplacian (by convolution of kernel) 













Hough’s method 

It can detect any boundary that can be 

described by a parametric curve. 

It compares the edge image with all the 

curves obtained by varying the parameter 

values 



It transforms the original image in an accumulation matrix in the 

parameters plane. 

 

Every points that belong to the researched function (line, 

circle,. . . ) increase the accumulation value. 

Hough in a nutshell 



  y = a · x + b → b = −xi · a + yi 

The linear function b = −xi · a + yi in the parameters plane 

represents all the linear functions that belong to the generic 

point (xi , yi ). 

Each point of the same function increase the accumulation (a’, b’). 



Polar parametrization 
The line shown can be 

described by the function 

 

 and identified by the couple 

of parameters: 

(a,b)=(-0.5,0.5) 

or by the function  

 

and identified by the couple: 

(ρ,ϑ)=(0.447,1.107) 

 

y=ax+b 

ρ = x cosϑ + y sin ϑ 



Transformation of the plane 



Transformation of a point 

 In the image plane, one 
point is identified by the 
intersection of lines. 

 

 Each point P 
corresponds, in the 
parameter plane, to the 
curve given by the 
image points of the lines 
passing through P 

 



Transformation of a point 



Detection of a lines on the 
transformed plane 



Hough’s method with the polar 
representation of the line 
 = x cos  + y sin  



Hough’s algorithm 

1. Quantize the parameter space between appropriate 
minimum and maximum values 

2. Create an accumulation array with size equal to the 
number of parameters, initialized to 0 

3. For each edge in the image, increment of the 
element of the accumulation array corresponding to 
the parameter values of the curves on which the 
edge lays 

4. The local maxima in the accumulation array 
represent the parameter values of the curves that 
better approximate the boundary 



Example of accumulation matrix 



Example of the Hough’s method 
to a rectangle 



Algoritmo di Hough 



The problem of selecting the 
‘right’ curves 







Gradient-based accumulation 

Gradient can be used to detect edges. 

It provides also other information: 

 magnitude 

 direction 

It is possible to state that the gradient can characterise a shape 

and the speed of the grey level variation 



By applying again the accumulation: 

We accumulate points in the gradient direction, by drawing 

lines from the edges. 







Boundary representation 

Chain codes 

Characteristic shapes 



Chain code and shape 
numbers 

1 

3 

0 2 



Chain code and shape numbers 

Normalization with respect to rotation: 

use the difference of the chain code by 

counting counterclockwise the number of 

directions which separate two neighboring 

elements 

 

Es:  10103322 

  3133030 

  33133030 



Chain code and shape numbers 



Area computation with chain 
codes 

1. Area=0; 

2. y=0; 

3. For each element of 

the chain code 

case direction: 

0: area+=y; 

1: y++; 

2: area-=y; 

3: y--; x 

y 

1 

3 

0 2 



Characteristic shapes 



Erosion 

Erosion is a specific procedure of the more general 

Morphological Image Processing techniques.   

 

It belongs to the concept of mathematical morphology and it 

is strictly related to the set theory. 

 

Here the concept is roughly introduced to understand the 

basis of erosion. 



Notation 

Let consider A as a set in Z2 

a = (a1,a2) belongs to A   

a = (a1,a2) does not belong to A   

We write: 

We write: 



A set is represented by the parenthesis{·}.  

 

In our case, the elements of a set are the pixels belonging to a certain 

area or object of an image. When we write: 

This means that C is composed by all the elements w which are 

obtained by scalar product of the elements of D and the value -1. 

 

When all elements of A are also elements of  B, we say that A is 

a subset of B. 

 



The translation of a set A by an element z, is represented as 

(A)z and is defined by: 



The verbose definition is: the erosion of A through B is the set of 

all the points z whom the translation of B by z is a subset of A.    

This definition represents an: 

erosion 

Now we can write the morphological operation which interest 

us, thus: 



z=0 

z=b/2 

It’s simple to see that graphically: 



In this case the erosed set will be; 

We can figure the erosion as a “shaped-cutting” of the most 

external part of the set. 



1) Original image 

2) Erosion by the element B 

3) Dilatation (the opposite procedure of the Erosion) 



Pros: 

 It does not need edge detection 

 It removes small noise artifacts (relaxing the denoising phase) 

 

Cons: 

 The object of interest should be bigger than the noise artifcats 

 The erosion mask (shape and dimension) should be carefully 

evaluated  



















Direct Linear Transformation 

It is a simple transformation used for 3D reconstruction, which 

hypothesize the linearity between the object and its projection on 

the acquisition plane.  

It requires more views of the scene and control points in the 

working space 



Let’s consider the object O which is mapped directly on the 

projected image I. 

O  object 

N  projection centre 

I  image pojected 



In the object space: 

And the vector A from the object to the projection centre is: 



It is also possible to write N with respect to the image plane 

reference frame.  

P   is called principal point and d principal distance 

 

The line NP is parallel to the w axis and orthogonal to the uv 

plane 



The vector B is thus: 

And for the co-linearity hypothesis: 

 

                  B = c A 

 

Where c is a scalar.  

It is worth noticing that B is expressed in the image reference 

frame, while A is expressed in the object reference frame.  



We can express A with respect to the image reference frame: 

Where Ai is A expressed with respect to the image reference 

frame, while Ao is expressed with respect to the object space. 

Ti/o is the transformation from the object-to-image reference 

frame. We do not know Ti/o a priori. 



We put in (1) the expression of B and Ao: 

The product is: 



By solving (3) with respect to c: 

and substituting (4) in (3): 



Standard DLT equations: 

Solving (5) for the image coordinates: 

Where L1 … L11 are called DLT parameters. 





Calibration 
For calibration we need to rearrange (6)*: 

where In vectorial form: 

Thus: 

Y=X L 

The aim of the calibration is to find the vector L, thus is required to 

know the matrixes X and Y. 



*Note (example of rearrangement for u): 

111109

4321






zLyLxL

LzLyLxL
u 111109  zLyLxLR

;4321

R

LzLyLxL
u




with 

;4321

R

LzLyLxL
u

R

R 


;432111109

R

LzLyLxL

R

uzuLyuLxuL 




.111094321

R

zuLyuLxuLLzLyLxL

R

u 


Same goes for v. 



We can consider n points in the space reference frame with 

known  3d coordinates X, then we measure the 2d coordinates Y 

in the image reference frame of the same points. These known 

positions are called control points.  



R depends on L9 … L11, thus we need to hypothesize some 

initial values and then proceed in iterative way 

 The system can be solved with the Least Square Method, 

however for this method it is required to have a number of 

control points greater than the parameters to be derived 

Keep in mind that: 

Calibration equations for n control points: 



We have 11 parameters, and since each control point provides 2 

equations, they are required at least 6 control points. 

L is derived as follows:   



Reconstruction 

Once the calibration parameters L were derived, we should rearrange 

(6) to solve the equations with respect to the 3d coordinates: 

Notice that, in analogy with the calibration, also in the 

reconstruction we have 3 variables and only 2 equations each point: 

in this case it is necessary to have more views of the scene, thus the 

number of cameras required are m equal or greater than 2. 



Final remarks 
 Each camera should be calibrated, thus it should be 

performed at least 2 times 

 Camera principal axis should not be collinear, thus the 

cameras should not face each other 

 Control points should not belong to the same plane, 

thus they should define a volume 

 The objects to be reconstructed should belong to the 

calibration space 

 Increasing the number of control points increase the 

accuracy of the reconstrcution 

 Increasing the number of cameras increase the quality 

of the reconstruction and also avoids occlusions 



Accuracy considerations 



Optic flow 

The motion is a significant part of our visual process, and it is 

used for several purposes: 

 to recognize tridimensional shapes 

 to control the body by the oculomotor control 

 to organize perception 

 to recognize object 

 to predict actions 

 … 



Optic flow 

A surface or object moving in the space projects in the image plane 

a bidimensional path of speeds, dx/dt and dy/dt that is often 

referred to as bidimensional motor field. 

The aim of the optic flow is to approximate the variation over time 

of the intensity levels of the image. 



We consider that the intensity I of a pixel (x, y) at the instant t, 

moves to a neighbor pixel in the instant t+dt, thus:  

Expanding in Taylor serie: 

and taking as a reference (7) : 



This is the gradient constraint equation : 

That can be rewritten as: 

with 

Since the gradient constraint equation has two variables, it 

cannot be solved directly. This is called the aperture problem. 



Lucas-Kanade hypothesis 

To solve the aperture problem, they hypothesize: 

 the motion of the intensity of pixel among two subsequent 

frames is small 

 the motion in a small local neighbor of the pixel is constant 

 

This is equivalent to say that the optical flow is constant for each 

pixel centered in p, thus: 

Where q1, …, qn are pixel of the window centered in p and Ix,y,t 

are the derivative with respect to x,y,t 



By writing the equations in vectorial form A·v = b where: 

This system can be solved with the least square method: 



Bee-inspired navigation control 

The optic flow 

provides information 

for wall following and 

landing 

The difference is inversely 

proportional to the distance 

from an obstacle 

The absolute difference defines 

the turning behaviour 











Perception of the distance 

Studies on blurred images demonstrate that blur intensity 

influences the distance perception.   

Focussed images are perceived as closer with respect to blurred 

images, but a precise evaluation of the distance is not provided 

by this clue.  



Accommodation and retinal blur  

Depth perception is mainly monocular over 30 meters, while it is 

mainly binocular under this threshold.  

Several clues are used to perceive and evaluate the depth: 

1. Dimension 

2. Parallaxes 

3. ... 

4. Accommodation 

5. Retinal blur 

Some divergence among clues “deform” the depth evaluation, or 

produce an “unreality” perception. 



Videogames often provide contrasting clues: the accommodation is 

provided for  the actual distance of the screen, but images (blur 

prospective, etc...) provide information about other distances. 

Totally 

sharp 

 

Progressive 

blur 

 

 













Esempio: Justin 





Esempio: Macchina per diagnosi 

Immagine rumorosa 

Immagine ottimale 



Additional topic: cloud of points 
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