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Outline 

1. Natural Evolution 

2. Artificial Evolution 

3. Some applications of Artificial Evolution 

4. Neuroevolution: how to evolve neural networks  

5. Evolutionary Robotics: how to evolve complete robots 

(The PDF version of these slides contains some links to correlated web 

resources, videos, optional papers… just in case you want to find out 

more!) 
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Natural Evolution 
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Natural evolution 

• All biological systems are the result 

of an evolutionary process 

• Those systems are highly: 

• Robust 

• Complex 

• Adaptive 

• Extremely sophisticated 

• Robots and artificial systems in 

general typically lack of these 

characteristics 

 Source of inspiration 
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Let’s take a look at some of the products of evolution…. 
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Evolved biomechanics 
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Cheetah Peregrine falcon 

Manta ray 



Evolution and adapation to the ecological niche 
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• Adaptation to the environment: body coverings (mimicry), body parts, behaviors 

Leaf-tailed gecko Walking stick 

Chaetodon capistratus 

Green leaf Katydid 

Non toxic butterfly mimics a toxic one 



Evolved Sensors – vestibular system 
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Semicircular canals, 

detecting angular 

accelerations 

Otoliths, detecting linear 

accelerations and tilting. 

In some animals (e.g. insects) 

adapted to also detect vibrations 

(and thus predators) 

Remarkably sophisticated solutions! 

http://en.wikipedia.org/wiki/Semicircular_canal
http://en.wikipedia.org/wiki/Otolith
http://en.wikipedia.org/wiki/Otolith


Evolved Complexity at the micro scale 
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ATP Synthase – a protein-based micro rotational motor 

https://www.youtube.com/watch?v=PjdPTY1wHdQ


Evolved Complexity at the micro scale 
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The inner life of the Cell - BioVisions, Harvard University – http://multimedia.mcb.harvard.edu  

http://multimedia.mcb.harvard.edu/
https://www.youtube.com/watch?v=FzcTgrxMzZk


Another product of Evolution… 
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Biological Inspiration 

• Some of the features exhibited by biological creatures are desirable 

also for artificial ones (e.g. robots) 

• Since these features have been produced by natural evolution it 

makes sense to try emulate such a process in an artificial way 

 we’ll talk about Artificial Evolution 

 

Let’s first take a look at how biological evolution works… 
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Biological Evolution 

The four pillars of Evolution: 

1. Population: Evolution is based on groups of individuals 

2. Diversity: Individuals in a population have different characteristics 

3. Heredity: Characteristics are transmitted over generations through reproduction 

4. Selection: Limited resources in the environment  Not all individuals will 

survive nor reproduce                       . 

The better an individual  (food gathering, mating)  The more chances to 

survive and reproduce  The more offsprings  The more probable that 

individual’s traits are propagated.                . 

Selection depends on many factors 
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“All species derive from a common 

ancestor”, Charles Darwin, “On the 

Origins of Species”, 1859 



Genotype and phenotype 

Genotype: 

• Genetic material of an organism 

• Individual’s traits are encoded there 

• It is transmitted during reproduction, and affected by mutations 

• Contains the “blueprint” to build the organism 

Phenotype: 

• Manifestation of the organism (appearance, behavior, etc.) 

• Selection operates on the phenotype 

• Affected by environment, development, learning, … 
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Genetic material 

DNA 

• Long molecule, twisted in spiral, present in the 

nucleus of the cells 

• All cells have the same genetic material 

• Two complementary strands composed of four 

types of chemical units (nucleotides/bases) 

“ATCG”  letters of the “genetic alphabet” 

• Pairs of complementary nucleotides can bind 

together (A-T, C-G) 

• The DNA string is interpreted via processes 

called transcription and translation, that 

ultimately lead to the expression of encoded 

traits 
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Genetic material 

Chromosomes 

• The genetic material is organized in several 

separated DNA molecules called chromosomes 

• In diploid species chromosomes occur in pairs 

• Redundancy (2 strands, 2 chromosomes) allows 

replication of DNA molecules during cell 

• During reproduction (in diploid organisms) child 

cells receive one chromosome from each parent 
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Genetic material 

Genes 

• Functionally relevant sub-sequences of several 

nucleotides in the DNA chain (e.g. encode 

instructions for the production of a protein) 

• If nucleotides are letters of the genetic alphabet, 

genes are words 

• The particular sequence of nucleotides in a gene 

determines (through a process of gene 

expression) the characteristics of the associated 

gene product (usually proteins), affecting cells’ 

properties and thus specific traits of the 

phenotype 
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Genetic mutation and recombination 

• Error-prone replication mechanisms  Mutations and recombinations  Original 

traits arise 

• Mutations and recombinations occurring during sexual reproduction (meiosis) 

affect the evolution of the species 
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180° rotation of the double stranded sequence 

The offspring gets the inverted complementary part 



A random, blind process 

• Natural evolution relies mostly on random dynamics 

• The only non-random criteria involved are the ones 

determining survival and reproduction 

• It is blind (non goal-directed) and open-ended (does not 

end) 

• It’s hard, though, to imagine how something sophisticated 

such a human can emerge from such a process 

• Frame-of-reference problem (or antropomorphization risk) 

also common to AI 

• Projecting our human understanding onto observed 

phenomena that may in fact be far more simple than 

they look 
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A random, blind process 

Some insights: 

• Evolution proceeds by gradual adaptation steps 

• Powerful allies: the self-organization properties of the 

physical world 

• E.g. (Eggenberger Hotz, 2003): showed in simulation how 

complex shapes (e.g. a lens, intermediate product of an 

eye) can easily emerge during evolution exploiting self-

organizing phenomena of cells (e.g. cell adhesion) 
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Artificial Evolution 
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1001101010001 



Artificial evolution 

• Includes a wide set of algorithms inspired (to different extents) from 

the natural evolution 

• Can be used with different goals in different settings, e.g.: 

• To solve complex optimization problems (e.g. in engineering) 

• To automatically design robots, both in terms of control and 

morphology (evolutionary robotics) 

• To study properties of biological systems (artificial life, 

computational biology) 

• To evolve cognitive behaviors (artificial intelligence) 

• … 
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Some important differences 
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Natural evolution Artificial evolution 

Is open-ended Usually* has an end 

Does not have an ultimate goal Usually* has a specific goal 

Selection is based on very indirect evaluation 

criterions, i.e. survival and reproduction.  

 

Traits can be selected that are not useful from 

an engineering perspective (e.g. attract 

individuals of the opposite sex but make a 

easier prey, …) 

Selection is usually* based on a very precise, 

task-based function (the fitness function), 

quantifying performances 

Does not proceed towards an optimum, 

selection occurs in the here-and-now: no 

comparative memory. E.g. a prey is successful 

with respect to the current generation of 

predators.  

Usually* we want it to proceed towards an 

optimum (during artificial evolution, current 

solutions are usually better than previous ones) 

* This is true mostly when artificial evolution is used in engineering contexts. There are approaches to 

artificial evolution that are open-ended, not goal directed, and that mimic survival and reproduction 



Artificial evolution 

Ingredients:  

1.  A genetic representation (a way to encode candidate 

solutions) 

2.  An initial population (e.g. random set of candidate solutions) 

3.  A fitness function (quantifies how good each solution is, 

assigning a scalar score to them) 

4.  A selection method (usually selecting with higher probability 

individuals with high fitness) 

5.  Crossover & mutation genetic operators (come into play 

when offspring-solutions are generated from selected parents) 
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Artificial evolution 
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Iterative procedure, termination 

criteria: 

• Fitness reached a given threshold 

• Fitness not improving for several 

generations 

• Maximum time, number of 

generations, …. 

Initialization 
generates an initial population 

Evaluation 
computes the fitness 

of each individual 

Selection 
picks a number of 

individuals for 

reproduction 

Reproduction 
generates offsprings 

from parents, 

applying genetic 

operators 

Generation 

Replacement 
Replace somehow 

the old population 

with the new one 



Genetic representation - Encoding 

A first distinction: 

• Direct encodings: each parameter appears directly and explicitly into the genome, 

i.e. the genotype directly maps to the phenotype. 

• Indirect/generative encodings: the genotype indirectly encodes the phenotype, e.g. 

it encodes parameters governing a development process implementing the 

genotype-to-phenotype mapping 

 

Example: Image you want to evolve a robot morphology for walking given a fixed 

activation 

• You could decide that the body has a fixed structure, and use artificial evolution to 

find the lengths of the joints that better allow the robot to walk  Direct encoding 

• You could, instead, decide that the body structure is encoded by a developmental 

process (e.g. based formal grammars such as L-system) and use artificial evolution 

to find the expression that results in the best body structure  Indirect encoding  

(“artificial embryogeny”) 
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Genetic representation - Encoding 

Another example: Image you want to evolve a neural network for controlling a robot 

• Fix a priori the structure of the network, encode the weights into the genome, let 

artificial evolution find networks that perform well for a given task  

 Direct encoding 

• Encode into the genome the parameters governing a distribution, from which 

neural weights will be sampled, or even parameters governing a process of neural 

growth  Indirect encoding  

 

Considerations: 

• Direct encoding is probably the most adopted, especially in engineering contexts 

• Indirect encodings are more compact, and greatly improve scalability, reducing the 

number of parameters i.e. the dimension of the search space 

• Also, generative encodings allow complexification over time 
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Genetic representation - Encoding 

• In a problem-solving setting, domain knowledge is crucial in defining 

the encoding, which parameters are relevant, how to constrain 

them, etc. 

• In the parallel with natural evolution, usually great simplifications are 

done: 

• Single stranded sequence of characters 

• Fixed length 

• Haploid structure, just one chromosome 

• Often direct genotype to phenotype mapping 

• … 
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Discrete representations 

• A sequence of L discrete values drawn from an alphabet with 

cardinality k 

• E.g. a binary string (L=8, k=2)   Population = set of binary strings 

• Could represent different things in different settings 
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to integer i using 

binary code 

to real value r in range [min, max]: 

r = min + (i/255)(max-min) 

to configuration string of 

FPGA electronic circuits 

to job schedule: 

• job=gene position 

• time=gene value 



Sequence representation 

• A particular case of discrete representation for problems in which the 

solution is a sequence 

• E.g. if you have to solve a TSP instance, planning a long trip 

minimizing transformation costs 
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Real-valued representation 

• The genotype is a vector of real number, associated to relevant 

parameters 

• Useful e.g. in parameter optimization for an engineering problem 

 

• Example: evolve the shape of a wing to improve its efficiency.  

The genotype could encode relevant dimensions 
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Tree-based representation 

• The genotype describes a tree with branching points and terminals 

• Suitable to encode hierarchical structures 

• Used e.g. to encode and evolve computer programs (e.g. genetic 

programming), that can be represented as a tree of operators (from a 

functions set) and operands (from a terminals set) 

 

 

 

 

• An application of genetic programming: symbolic regression 

• An intriguing example: “The Robot Scientist” - 

http://en.wikipedia.org/wiki/Eureqa  
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Expression 

Nested list 

root 

terminals 

http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa


Initial population – how big? 

Some guidelines: 

• The higher the dimension of the search space (i.e. the more parameters in the 

genome), the bigger should be the population 

 Risk? local optima  (premature convergence) 

• When initializing, you should avoid generating homogeneous populations (in terms of 

fitness scores) to improve evolvability (ability of the algorithm to make progresses) 

• The higher this risk, the larger should be the population (E.g. evolve locomoting 

robots) 

• In the end, especially in practical applications, it’s often a trade-off constrained by 

time, related to the computational cost of evaluating the fitness 

• Each generation takes 𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ⋅ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 , and typically hundreds of 

generations are allowed (time = Ng𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ⋅ 𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ⋅ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒)… Usually 

you know 𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠, and you know how patient you are…  

• Typically, in the order of thousands individuals 
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Initial population – how to initialize? 

1. Have a starting point? (e.g. fairly good solution achieved with another optimizer, or 

manually devised) 

 Initialize population with «variations» of the starting point 

2. If you don’t: random (most common) 

• You may use option 2) also in case 1)  seeding the algorithm can result in less 

diversity, and may bias the algorithm towards sub optima 
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Random initialization: 

• Binary representation  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 random strings 

of bits of 𝐺𝑒𝑛𝑜𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ  

• Real-valued representation  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 random 

samples from a given interval 

• Tree-based representation  recursive process from the 

root, expanding each node into randomly sampled 

branches (until a maximum depth) 

+ 

2 * 



Fitness function 

• It is a function 𝐹 associating a scalar (fitness value/score) to each 

phenotype (𝑓) 

• Evaluating the fitness function is usually the most time-consuming 

part of an evolutionary algorithm 

• e.g. entails running a physically realistic simulation, let a robot act 

for some time, etc. 

• The fitness (usually) quantifies individuals’ performance (in terms of 

what you do want to optimize)  domain specific objective 
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Fitness function 

• The fitness function can embed one or more components (multiple 

objectives) 

• E.g. evolution of a swimming robot in a 2D world, maximum problem: 
 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 = 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 = 0.8 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥
2  + 0.2 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑦

2
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 =
0.8 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥

2  + 0.2 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑦
2

𝑒𝑛𝑒𝑟𝑔𝑦𝑆𝑝𝑒𝑛𝑡
 

… 

• Which component(s) to choose? How to combine/weight them? 

• Again, no precise rules: domain knowledge, trial-and-error, … 
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Fitness function - Observation 

• Note: In general the fitness allows you to specify every kind of 

high-level performance metric 

• Also subjective ones, that you are not able to «code»/express 

(but that are coded in your head!)  Interactive evolution 

• «User appreciation for an evolved picture/song» 

 may produce an artistic agent! 

• «Number of times the robot said/did something funny» 

 may produce a comedian robot! 

• «Number of times the robot appeared to behave intelligently» 

• Interesting from an AI perspective: evolutionary approaches are 

more general with respect to others that require a strict 

formulation of the problem 

• These algorithms are free to find their way to meet such «blurry» 

requirements 
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Subjective fitness and Interactive Evolution 
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• Karl Sim’s “Genetic Images” (1993) is a media installation in which visitors can 

interactively "evolve" abstract still images.  

 

• A supercomputer generates and displays 16 images on an arc of screens.  

 

• Visitors stand on sensors in front of the most aesthetically pleasing images to 

select which ones will survive and reproduce to make the next generation 

 Fitness: user appreciation, how long they stared at an image 

http://www.karlsims.com/
http://www.karlsims.com/


Subjective fitness and Interactive Evolution 
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Subjective fitness and Interactive Evolution 
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http://picbreeder.org/
http://endlessforms.com/


Selection and selection pressure 

• Rationale: allocate a larger number of offsprings to the best performing 

individuals of the population 

• Selection pressure: % of individuals that will create offspring for the next 

generation 

• High selection pressure: small % of individuals will be selected for reproduction 

 rapid fitness improvement, but rapid loss of diversity, risk of premature 

convergence to a local optimum 
 

 A balance is needed between selection pressure and factors that instead 

generate diversity (e.g. mutations, we’ll see) 

 

• You should let less fit individuals reproduce too to maintain diversity 

• They may embed traits that will become successfull later on in evolution 
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Proportional selection (roulette wheel) 

• The probability 𝑝 𝑖  that an individual 𝑖 makes an offspring is proportional to its 

fitness relative to the overall population fitness (𝑁 is the population size):  

 

𝑝 𝑖 =
𝑓 𝑖

 𝑓(𝑘)𝑁
𝑘=1

 

 

• Like a roulette wheel where each slot corresponds to one individual of the 

population, and has a width that is proportional to 𝑝 𝑖  

• To build the next generation, you spin the wheel 𝑁 times. Individuals can be 

selected several times (they are replicated, not moved) 

• Works bad when: A) all individuals have almost the same score (uniform 

selection probability  almost random search  “genetic drift”) B) some 

individuals have remarkably bigger scores (diversity loss, premature 

convergence) 

 

• A solution: fitness scaling 
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Rank-based selection 

• Sort individuals on their fitness value, from best to worst 

• The place of an individual 𝑖 in this sorted list is called rank 𝒓(𝒊) 

• Instead of the fitness value (proportionate selection) use the rank to 

determine the selection probability of individuals. The roulette wheel 

approach is used. 

• A possible linear ranking (there are many): 

 

𝑝 𝑖 = 1 −
𝑟 𝑖

𝑁
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 Solves the problems mentioned for propotionate selection, given that the 

absolute value of the fitness does not determine directly the selection 

probability 



Truncated rank-based selection 

• Select only the top 𝑛 individuals based on their fitness 

• Each of them will produce the same number of offsprings (𝑁/𝑛) 

• E.g. 𝑁 = 100, select top 𝑛 = 20, 
𝑁

𝑛
= 5 copies of each of the selected 

individuals will be used to form the next generation 

• If 𝑛  is not too small (would entail diversity loss  premature 

convergence), this method allows less fit individuals to produce the 

same number of offsprings as the fittest  maintains diversity 

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015 



Tournament selection 

• For each new offspring to be generated: 

• Randomly select a small subset of 𝑘 individuals (contestants) of 

the current population 

• 𝑘 is the tournament size parameter, the larger, the higher the 

selection pressure) 

• The individual that has the best fitness among the contestants 

wins and generates the new offspring 

• Contestants can participate to multiple tournaments 

 Good trade off between selection pressure and genetic diversity 
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Genetic operators 

• Capture the biological effect of mutations and recombinations on the 

genotype observed in the natural evolution 

• Must match the genetic representation 

• Introduce diversity in the population by altering individuals and 

combining them 
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Genetic operators – Crossover/recombination 

• Emulates the recombination of genetic material from two parents 

during meiosis 

• After selection, pairs of individuals are randomly formed 

• And their genotypes are combined with a given probability 𝑝𝑐 

• Crossover should allow to merge successful sub-solutions from the 

parents into an offspring that will hopefully perform even better 

 

 There are plenty of genetic operators, and you can devise your own 

for your custom encoding and application. We will review some of the 

most commonly adopted 
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Genetic operators – Crossover/recombination 

Discrete/real valued encodings: 

a) one-point: randomly select a 

crossover point and swap 

chromosomes around that point 

b) multi-point: as before, but 

selecting 𝑛  crossover points 

(here 𝑛 = 2)  

c) arithmetic: creates a single 

offspring by combining the two 

genomes at 𝑛 random positions 

(e.g. AND/OR for binary coded, 

average, or convex combination 

for real-coded, etc) 
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a) 

b) 

c) 

d) 

Parents                                    Children 

e) 



Genetic operators – Crossover/recombination 

Crossover for sequence 

encoding (all symbols must 

occur once and only once): 

d) Randomly copy a part of the 

sequence from one parent, 

then fill-in with remaining 

elements in the order in which 

they appear in the other parent 

(with wraparound, where 

necessary) 
 

Crossover for tree encoding: 

e) Randomly select a node of 

each parent, and exchange 

the two corresponding 

subtrees 

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015 

a) 

b) 

c) 

d) 

Parents                                    Children 

e) 



Genetic operators – Crossover/recombination 

• Crossover is not a trivial operation, as it entails to isolate chunks of 

two different genomes and recombine them 

• In some cases the effect on the fitness may be different from the 

expected one (i.e. the fitness of the offspring(s) is worse than the 

ones of the parents) 

 If this happens frequently, crossover may be implemented/tuned 

in such a way that it acts as a large random mutation 

 

 Checking the best/average fitness of offsprings obtained through 

crossover at each generation can help in detecting this situation 

 Solutions: revise the parameters of crossover, change crossover 

method 
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Genetic operators – Mutation 
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• Operates at the level of the individual 

• Applies small random modifications of the genotype 

• Allows evolution to explore variations with respect 

to the current solutions 

• Mutations are useful to: 

• Produce diversity 

• Escape from local optima 

• Further progress when homogeneous populations are produced, 

where recombinations do not help to further improve 

• However, too mutations may destroy previously discovered solutions 

and make the search too randomic  Proper tuning of mutations, 

fitness monitoring as already mentioned for the crossover 



Genetic operators – Mutation 

Mutation = change the content of 

each gene with probability 𝑝𝑚 

e.g. 𝑝𝑚 = 0.01 (1%, much higher than 

in biology), but the actual value really 

depends on the effect of a genotype 

change on the phenotype and on the 

characteristics of the problem 

a) Binary encoding: toggle bit 

values 

b) Real-valued encoding: add 

random noise (e.g. from a Gauss 

distribution 𝑁 0, 𝜎   most 

mutations are small, few are big. 

Note that 𝜎  is an additional 

parameter) 
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a) Binary genotypes 

c) Sequence genotypes 

b) Real-valued 

genotypes 

d) For trees 



Genetic operators – Mutation 

c) Sequence encoding: swap the 

contents of two randomly chosen 

genes 

 

d) Tree-based encoding: change 

the value of a node with another 

from the same set (functions 

set/terminals set) with the same 

number of leaves  tree-structure 

unchanged 
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a) Binary genotypes 

c) Sequence genotypes 

b) Real-valued 

genotypes 

d) For trees 



Replacement strategies 

What to do once the new population is produced? 

• Generational replacement: the new population completely replaces 

the old one (most adopted) 

 Good individuals can sometimes get lost 

 

• Elitism: the best 𝑛  individuals of the current population are 

propagated, unchanged, to the new one. 
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Example 
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Loop (epochs) 

(several copies) 



The fitness landscape 

• (unknown) multidimensional surface associating 

a fitness value to each possible genome (e.g. 

ℜ𝐺𝑒𝑛𝑜𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ+1) 

• Sampled during evolution (“navigation” is 

guided by the genetic operators: not a 

straightforward path through the landscape) 
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• Rough sampling analysis can help to better understand the problem 

• E.g. estimating ruggedness of real landscape: 

• Sample random genotypes: if fitness ≈ uniform, use large populations 

• Explore surroundings of an individual by applying genetic operators in 

sequence for fixed number of steps: the larger the fitness variation 

observed the easier should be evolution 

 



The fitness graph 

• How to show the performance of an 

evolutionary algorithm across 

generations: fitness graph 

• Usually average and best fitness at each 

generations are plotted, along with 

standard deviation across multiple runs 

• Given the random components in these 

algorithms, several executions are 

usually necessary, with different 

initializations (especially for quantitative 

comparisons) 

• Plateau: have we reached the global 

optimum or are we stuck in a local one 

(premature convergence)? 
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Population diversity 

• Further insights can be gained by 

analysing the diversity of the population 

• A possible measures of diversity (for 

direct encoding, fixed length): 

• “All-possible-pairs” diversity: 

𝐷𝑎 𝑃 =  𝑑(𝑔𝑖 , 𝑔𝑗)

𝑖,𝑗∈𝑃

  

 Sum of Euclidean or Hamming* 

distances (𝑑(.,.)) among all genomes 
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* Number of differing elements in corresponding positions. For binary strings: 

𝑑ℎ 𝑎, 𝑏 =  𝑎⊕𝑏. E.g. 𝑑ℎ 000, 101 = 2 



Stagnation, diversity, neutral paths 

• Stagnation = evolutionary algorithm does not improve fitness for a long 

time 

 

In case of stagnation: 

• Low diversity  crossover won’t help much  we can hope only in 

mutations  may take long to further improve 

• It may also happen (e.g. in case of redundant encodings) that evolution 

took a neutral path, a phase in which despite genetic alterations of the 

population, the overall fitness does not change 

• These neutral paths can sometimes result in rapid progresses after a long 

stasis (waiting a bit may be rewarding) 
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Types of evolutionary algorithms 

• Genetic Algorithms (GA) - Holland, 1975 

Binary genotypes, crossover and mutation 

• Genetic Programming (GP) - Koza, 1992 

Tree-based genotypes, crossover and mutations 

• Evolutionary Programming (EP) - Fogel etal., 1966 

Real-valued genotypes, mutations, tournaments, gradual pop. replacement 

• Evolutionary Strategies (ES) - Rechenberg, 1973 

As EP + mutation range encoded in genotype of individual 

• Island Models – Whitley et al., 1998 

Parallel evolving populations with rare migration of individuals  

• Steady-State Evolution – Whitley et al., 1988 

Gradual replacement: Best individuals replace worst individuals 

• … 
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Some practical pros and cons 

Pros: 

• Evolutionary algorithms can work where other optimization techniques 

cannot (e.g. discontinuous, noisy fitness functions)  robust 

• Can be easily extended to deal with multi-objective, constrained problems 

• Inherently parallel structure  can be distributed / parallelized 

• It is easy to incorporate knowledge into them, e.g. refine previous solutions 

Cons: 

• No guarantees regarding the success and/or the time to get a solution 

• Weak theoretical basis 

• Parameters tuning is needed 

• Often computationally expensive 
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Some applications 

 

 

 

 

 
From «How The Body Shapes The Way We Think – A new view of Intelligence» (R. Pfeifer & J. Bongard) 
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NASA’s Antenna 

Human-competitive design of an 

antenna for nanosatellites, NASA 

[Lohn, Hornby, Linden, 2004] 

• Designing an efficient antenna meeting 

several quality requirements (gain, 

sizes, operational frequencies, …) is 

very challenging for humans 

• NASA automated its design by using 

evolutionary techniques 

 

• Wiki page 

• Paper 
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http://en.wikipedia.org/wiki/Evolved_antenna
http://en.wikipedia.org/wiki/Evolved_antenna
http://en.wikipedia.org/wiki/Evolved_antenna
http://ti.arc.nasa.gov/m/pub-archive/1244h/1244 (Hornby).pdf


NASA’s Antenna 

• Tree-based encoding, instructions to “grow” an 

antenna 

• Function set: 

• f=forward(length) 

• rx/y/z(angle) 

• Terminals: length, angles 

• Technical specs tested in simulation 

• Best designs were built and worked well also in the 

real world 
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NASA’s Antenna 

“Weird” designs, considerably smaller and exhibiting far superior 

performances with respect to human devised ones 

 Launched on board of the ST-5 satellite in 2006 
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http://en.wikipedia.org/wiki/Evolved_antenna


Evolvable hardware 

Adrian Thompson, Sussex University, 

1996 

• Experiments on evolvable  hardware 

(evolutionary algorithms finding circuits 

configurations for FPGA) 

• Goal: evolve a circuit to distinguish 

between a low tone from a high tone 

• No simulation, evolution in the real world 

• An effective circuit was evolved, that 

worked properly but… 

• …once re-created on a custom circuit 

considering only the FPGA component 

effectively connected in the design…     . 

 Did not work anymore! 

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015 



Evolvable hardware 

• It was found out that the original evolved circuit was exploiting weak 

electromagnetic interactions with the disconnected FPGA 

components 

 

• The solution devised by evolution broke human-imposed modular 

design, exploiting to its benefit phenomena of the ecological niche 

that are usually regarded as undesired 
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Evolvable hardware 

Another experiment in Sussex, by Jon Bird and Paul Layzell 

• Goal: evolve a circuit producing an oscillatory signal without having 

an internal clock 

• Evolved solution: instead of an oscillator, something like a radio 

receiver was evolved from scratch 

 The oscillating signal produced by the circuit was indeed coming from 

electromagnetic interferences caused by a computer nearby: the evolved 

circuit was “stealing” the clock of that computer! 

• Another example of how artificial evolution finds clever way to exploit 

the ecological niche 

 Even a new sensor modality was evolved from scratch! 
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Neuroevolution 
A biologically inspired path to Artificial Intelligence 
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Neuroevolution 

• Use of evolutionary algorithms to construct Neural 

Networks 

 Evolution of cognitive architectures 

 

• Proved to be effective to: 

• Evolve cognitively multimodal cognitive behaviors 

• Evolve large scale brain-like structures 

• Evolve effective control policies (e.g. locomotion, 

guidance, stabilization, …) 

• Evolve human-like game playing in a variety of 

videogames 

 Interesting from several perspectives: AI, control, 

evolutionary robotics, ALIFE, … 
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http://nn.cs.utexas.edu/downloads/papers/gomez.gecco03.pdf
http://yosinski.com/media/papers/Yosinski2011EvolvedGaits.pdf


Conventional NeuroEvolution (CNE) 

1. Fix the structure of the NN 

(usually fully connected) 

2. Concatenate synaptic weights 

and biases into a genome 

(random init) 

3. Use an evolutionary algorithm 

to evolve the network with 

respect to a given task 

4. Fitness: evaluation of 

network’s performance 
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 This can be seen as a way to train neural networks in an 

unsupervised setting 



Conventional NeuroEvolution (CNE) 
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Pros: 

• Easy to implement 

• Effective in many scenarios 

Cons: 

• Requires to arbitrarily choose 

network’s size and topology 

• In general not very scalable 

(number of parameters easily 

reaches thousands) 

• Can easily converge to local 

optima 



Extensions 
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• Evolve both the topology and the weights  Better 

performances 

• Evolve the type of activation functions on the nodes 

• Evolve plastic networks (or evolution of learning) [1, 2, 3] 

• Evolution provides an initial network that then adapts online 

during the lifetime of the agent through environmental 

feedback 

• E.g. local Hebbian learning rules (“fire together, wire 

together”). New learning rules can also be evolved! 

• It was postulated for natural evolution (Baldwin effect) and 

showed in artificial evolution that learning can indeed affect 

positively evolution 

http://e-collection.library.ethz.ch/eserv/eth:8403/eth-8403-01.pdf
http://infoscience.epfl.ch/record/63925/files/ar.pdf
http://www.isir.upmc.fr/files/2014COS3178.pdf


NEAT - NeuroEvolution of Augmenting 

Topologies [Stanley et al. 2002] 
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• Features complexification (biologically plausible, useful to 

improve performances) 

• Of networks 

• Starts with simple networks  Mutations add new nodes and 

new links when necessary to progress 

• Of behaviors 

• New networks elaborates on earlier behaviors 

 

 Helps in reducing the search space 

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf


NEAT - NeuroEvolution of Augmenting 

Topologies [Stanley et al. 2002] 
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• Additional complexity is retained only if provides a competitive 

advantage 

• Genes are marked with a global innovation number 

(chronological order of appearance) 

• This allows to measure the “age” of each individual and to 

identify homogeneous sub-populations 

• To protect recent topological innovations (that may be promising 

later on but still have low fitness at a certain point in time), 

competition with older solutions (already mature) is avoided 

• Diversity maintenance: competition among very different 

genomes is avoided 

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf


HyperNEAT – Hypercube based NEAT [Stanley 

2009] 
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• Goal: To improve scalability and to promote regular structures in 

the NNs evolved by NEAT 

• NEAT is coupled with a powerful indirect encoding method called 

Compositional Pattern Producing Networks (CPPNs) 

 HyperNEAT actually evolves CPPNs then used to define NNs 

• CPPN: designed to represent spatial patterns with regularities such 

as symmetry, repetition, and repetition with variation 

• Thanks to this encoding: 

• HyperNEAT is able to produce very large networks in an efficient 

way (millions of connections) 

• Evolved networks present regularities also observed in 

biological brains 

 

http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf


HyperNEAT – Hypercube based NEAT [Stanley 

2009] 
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But what are CPPN? 

• Structurally similar to NNs, but mimic a different phenomena: an 

abstraction of development 

• They produce spatial patterns by composing basic functions (e.g. sin, 

cos, gaussians, etc.) 

• This composition can produce complex patterns with several regularities 

http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf


HyperNEAT – Hypercube based NEAT [Stanley 

2009] 
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• Remember PicBreeder and EndlessForms? 

• Those systems actually evolve CPPNs in an interactive way 

• To produce an image or an object, the system asks the CPPN the color 

of each (x,y) pixel, or the presence of each (x,y,z) voxel 

 You can observe with your eyes the complex spatial patterns those 

networks are able to encode 

http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf


HyperNEAT – Hypercube based NEAT [Stanley 

2009] 
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• In HyperNEAT CPPNs are evolved 

that represent connectivity patterns of 

hidden nodes of a NN 

• CPPNs take as input the coordinates 

of two points describing each 

connection 

• As a consequence of using CPPN, in 

HyperNEAT the connectivity of the 

NN is a function of input’s geometry 

 HyperNEAT represents and exploits 

the geometry (substrate) of the inputs to 

enhance learning 

 

http://www.isir.upmc.fr/files/2014ACTI3120.pdf


HyperNEAT – Hypercube based NEAT [Stanley 

2009] 
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• The topological arrangement of input nodes 

is fixed in HyperNEAT (has to be chosen by 

the user), and it is called substrate 

• Top figure: square substrate 

• Bottom figure: cube substrate 

• Input and output nodes are selected from 

the substrate 

• Different substrates are better suited for 

different problems 

• Other extensions of HyperNEAT also evolve 

the structure of the substrate: evolvable-

substrate HyperNEAT (ES-HyperNEAT) 

http://www.isir.upmc.fr/files/2014ACTI3120.pdf


Neuroevolution 

• Neuroevolution techniques are powerful  

• Promising for artificial intelligence, evolution of general cognitive 

behaviors (general, cognitively scalable, does not require much 

human intervention) 

• Sound, bottom-up, biologically inspired approach to AI 
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Neuroevolution 

• Also, more and more a tool for fields such as artificial life, 

computational biology, etc. 

 

• With targeted experiments, is helping in answering questions such as: 

• How specific behaviors evolve? Under which conditions? 

Foraging, pursuit and evasion, hunting and herding, collaboration, 

communication  e.g. competitive coevolution 

• How modularity evolved in biological body/brains? 

• How development and evolution interact? 

• By analyzing evolved neural circuits, insights can be gained regarding 

biological networks functions 
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Evolutionary Robotics 
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Evolutionary robotics 

Evolutionary algorithms are used to evolve: 

• Brains (typically neural networks) 

• Body (some parameters, or the whole structure) 

• Both at the same time (brain-body co-evolution) 

 

As for evolving bodies: 

• Powerful methods to encode the body of a robot in a generative way 

exist (artificial embryogeny) – [a review paper] 
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http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf


Brain-body coevolution – [K Sims, 1994] [1][2] 
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http://karlsims.com/papers/siggraph94.pdf
http://karlsims.com/papers/alife94.pdf
https://www.youtube.com/watch?v=JBgG_VSP7f8


Evolving Soft Robots – [N Cheney et al., 2013] 
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- Virtual 

creatures 

evolved at a 

finer 

resolution (in 

terms of 

morphology 

and 

actuation) 

 

- Use of 

several soft-

materials and 

actuators 

enriches 

evolved 

behaviors 

http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
https://www.youtube.com/watch?v=EXuR_soDnFo


Evolving Soft Robots – [N Cheney et al., 2013] 
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A Compositional Pattern-Producing 

Network is evolved through NEAT 

(a neuroevolution algorithm often 

used to evolve neural networks), 

and sampled to define the 

morphology 

 

Input: x,y,z position of the voxel, 

distance d from the center 

 

Output: voxel present, material type 

Generative encoding produced more 

functional an far more regular 

morphologies if compared with direct 

encoding 

http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf


The reality gap / transfer problem 

• Can we evolve robots in the real world? 

• If we are interested in just the control, yes, although it is 

impractical (thousand of evaluations!) 

• If we are interested also in evolving morphologies, simulation is 

necessary (at least with the current technology) 

 It has been observed that transferring solutions evolved in 

simulation to the real world is very hard and often fails 

• The smallest discrepancy between the simulated environment 

and the real world may result in an unsuccessful transfer 

• …And no model is as rich as the physical reality. “There is no 

better model of the world than the world itself”, R. Brooks 

 Serious problem for evolutionary robotics 
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An example of reality gap – [Koos et al, 2010] 
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http://pages.isir.upmc.fr/~mouret/website/evolution.xhtml


Crossing the gap – [Lipson & Pollack 2000] 
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Direct encoding: 

Robot:= <vertices> 

<bars> 

<neurons> 

<actuators> 
 

Vertex:=<x,y,z> 
 

Bar:= <vertex 1 index,   

vertex 2 index, 

relaxed length, 

stiffness> 
 

Neuron:=<threshold, 

              weights> 
 

Actuator := <bar index, 

neuron index, 

bar range> 

 

Noise added to the 

simulation 

http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
https://www.youtube.com/watch?v=qSI0HSkzG1E


Evolving and fabricating soft robots – [Hiller et al., 2012] 
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http://creativemachines.cornell.edu/sites/default/files/Soft Robots Hiller_Lipson.pdf
http://creativemachines.cornell.edu/sites/default/files/Soft Robots Hiller_Lipson.pdf
http://creativemachines.cornell.edu/sites/default/files/Soft Robots Hiller_Lipson.pdf
https://www.youtube.com/watch?v=jxaAIneKewg


Crossing the gap – [Bongard and Lipson., 2006] 
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http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
https://www.youtube.com/watch?v=hh20JMEI-FI


Concluding remarks – On Evolution and AI 

• Intelligence and life as we know are products of evolution 

• If we are interested in better understanding them, and replicating 

some of their features in artificial form, an evolutionary approach 

may be the most appropriated 

• By translating bio-inspired process into artificial substrates, 

surprising phenomena can arise, given the diverse embodiement of 

the evolving creatures and of the environment 

 “Intelligence, and life as-it-could-be”, i.e. alternative forms of 

intelligence/life 

 Could also help in understanding what is intelligence in general, 

detached from the biological embodiements we are surrounded with 
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Concluding remarks – On Evolution and AI 

• The complexity barrier: some problems are too hard for humans to 

conceive 

• Lot of examples in science and engineering, where we always try to 

break down the complexity of phenomena in order to be able to 

manage them (recall the example about evolvable hw and 

modularity) 

 Evolutionary approaches can be used to solve very difficult 

problem with super-human skills (NASA antenna) 

 Human-competitive design in several fields 
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Concluding remarks – On Evolution and AI 

Regarding the complexity barrier… 

• Some think that the problem of understanding and replicating 

general machine intelligence may be too hard for us to conceive, and 

this may be the reason why are struggling on this 

• We are biased by how we think, how we are made, what we have 

experienced 

• This may limit our understanding of the phenomena 

 Evolution, even the artificial one, is not biased, and often 

demonstrates to “think outside the box” 

 Moreover, it already produced several life-like phenomena 

 May provide the solution 
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Concluding remarks – On Evolution and AI 
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• One genuine form of intelligence (both biological and artificial) 

consists in the ability of an agent to come up with truly creative and 

surprising solutions 

 Artificial evolution often demonstrates such a creativity 



What are we doing 

Searching new ways to exploit artificial 

evolution to produce life-like bio-inspired 

intelligent robots. Examples: 

• Evolving a manta-like wing for optimal 

swimming in different fluids 
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C:/Users/Francesco/Dropbox/PhD/presentazioni e posters/29_07-01_08_2014 Living Machines 2014/FINAL_slidesMantaLivingMachines2014.pptx
http://sssa.bioroboticsinstitute.it/papers/FinEvolution


What are we doing 

Applying genetic algorithms to 

estimate model parameters of a 

bio-inspired underwater drone 
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What are we doing 

• Applying an evolutionary process maximizing not performances, 

but a notion of behavioral an morphological novelty, to find out 

new designs and novel locomotion modalities for an existing 

robot  human-machine collaborative evolutionary design 

• Studying how morphing robots can exploit slight online 

morphological changes to achieve diverse self-stabilized 

behaviors 
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What are we doing 
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What are we doing 
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We will be at GECCO 2015 
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Genetic and Evolutionary Computation Conference 

http://www.sigevo.org/gecco-2015/


Suggested readings, main references 

1. “Bio-Inspired Artificial Intelligence”, 

Theories, Methods and Technology, Dario 

Floreano and Claudio Mattiussi  

 Chapter 1 + part on neuroevolution 

(starting at p. 238) – but the whole book is 

very nice 

2. “How the body shapes the way we think”, 

Rolf Pfeifer and Josh Bongard – a new, 

intriguing view of intelligence 

 Chapter 6 on Artificial Evolution – the 

whole book is a must for everyone in the 

field of AI and robotics 
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Additional readings 

3. Neuroevolution 

 

http://www.scholarpedia.org/article/Neuroevolution 

 

http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattius

si2008.pdf   

4. Evolutionary robotics 

 

http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.p

df  

5. Plenty of research papers we can provide you, if you are interested 

(some are linked throughout the presentation) 
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http://www.scholarpedia.org/article/Neuroevolution
http://www.scholarpedia.org/article/Neuroevolution
http://www.scholarpedia.org/article/Neuroevolution
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.pdf
http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.pdf
http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.pdf


For doubts, additional material, project ideas, … 

Feel free to contact me! 

f.corucci      sssup.it 


