
Introduction to

Evolutionary

Systems

Robotics course - MSc program in

Computer Science, 2015

Teacher: Prof. Cecilia Laschi

Francesco Corucci

PhD Student in BioRobotics

M.Eng. Computer Engineering

f.corucci sssup.it

March 30th, 2015

Outline

1. Natural Evolution

2. Artificial Evolution

3. Some applications of Artificial Evolution

4. Neuroevolution: how to evolve neural networks

5. Evolutionary Robotics: how to evolve complete robots

(The PDF version of these slides contains some links to correlated web

resources, videos, optional papers… just in case you want to find out

more!)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Natural Evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Natural evolution

• All biological systems are the result

of an evolutionary process

• Those systems are highly:

• Robust

• Complex

• Adaptive

• Extremely sophisticated

• Robots and artificial systems in

general typically lack of these

characteristics

 Source of inspiration

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Let’s take a look at some of the products of evolution….

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Evolved biomechanics

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Cheetah Peregrine falcon

Manta ray

Evolution and adapation to the ecological niche

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Adaptation to the environment: body coverings (mimicry), body parts, behaviors

Leaf-tailed gecko Walking stick

Chaetodon capistratus

Green leaf Katydid

Non toxic butterfly mimics a toxic one

Evolved Sensors – vestibular system

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Semicircular canals,

detecting angular

accelerations

Otoliths, detecting linear

accelerations and tilting.

In some animals (e.g. insects)

adapted to also detect vibrations

(and thus predators)

Remarkably sophisticated solutions!

http://en.wikipedia.org/wiki/Semicircular_canal
http://en.wikipedia.org/wiki/Otolith
http://en.wikipedia.org/wiki/Otolith

Evolved Complexity at the micro scale

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

ATP Synthase – a protein-based micro rotational motor

https://www.youtube.com/watch?v=PjdPTY1wHdQ

Evolved Complexity at the micro scale

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

The inner life of the Cell - BioVisions, Harvard University – http://multimedia.mcb.harvard.edu

http://multimedia.mcb.harvard.edu/
https://www.youtube.com/watch?v=FzcTgrxMzZk

Another product of Evolution…

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Biological Inspiration

• Some of the features exhibited by biological creatures are desirable

also for artificial ones (e.g. robots)

• Since these features have been produced by natural evolution it

makes sense to try emulate such a process in an artificial way

 we’ll talk about Artificial Evolution

Let’s first take a look at how biological evolution works…

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Biological Evolution

The four pillars of Evolution:

1. Population: Evolution is based on groups of individuals

2. Diversity: Individuals in a population have different characteristics

3. Heredity: Characteristics are transmitted over generations through reproduction

4. Selection: Limited resources in the environment  Not all individuals will

survive nor reproduce .

The better an individual (food gathering, mating)  The more chances to

survive and reproduce  The more offsprings  The more probable that

individual’s traits are propagated. .

Selection depends on many factors

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

“All species derive from a common

ancestor”, Charles Darwin, “On the

Origins of Species”, 1859

Genotype and phenotype

Genotype:

• Genetic material of an organism

• Individual’s traits are encoded there

• It is transmitted during reproduction, and affected by mutations

• Contains the “blueprint” to build the organism

Phenotype:

• Manifestation of the organism (appearance, behavior, etc.)

• Selection operates on the phenotype

• Affected by environment, development, learning, …

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic material

DNA

• Long molecule, twisted in spiral, present in the

nucleus of the cells

• All cells have the same genetic material

• Two complementary strands composed of four

types of chemical units (nucleotides/bases)

“ATCG”  letters of the “genetic alphabet”

• Pairs of complementary nucleotides can bind

together (A-T, C-G)

• The DNA string is interpreted via processes

called transcription and translation, that

ultimately lead to the expression of encoded

traits

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic material

Chromosomes

• The genetic material is organized in several

separated DNA molecules called chromosomes

• In diploid species chromosomes occur in pairs

• Redundancy (2 strands, 2 chromosomes) allows

replication of DNA molecules during cell

• During reproduction (in diploid organisms) child

cells receive one chromosome from each parent

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic material

Genes

• Functionally relevant sub-sequences of several

nucleotides in the DNA chain (e.g. encode

instructions for the production of a protein)

• If nucleotides are letters of the genetic alphabet,

genes are words

• The particular sequence of nucleotides in a gene

determines (through a process of gene

expression) the characteristics of the associated

gene product (usually proteins), affecting cells’

properties and thus specific traits of the

phenotype

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic mutation and recombination

• Error-prone replication mechanisms  Mutations and recombinations  Original

traits arise

• Mutations and recombinations occurring during sexual reproduction (meiosis)

affect the evolution of the species

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

180° rotation of the double stranded sequence

The offspring gets the inverted complementary part

A random, blind process

• Natural evolution relies mostly on random dynamics

• The only non-random criteria involved are the ones

determining survival and reproduction

• It is blind (non goal-directed) and open-ended (does not

end)

• It’s hard, though, to imagine how something sophisticated

such a human can emerge from such a process

• Frame-of-reference problem (or antropomorphization risk)

also common to AI

• Projecting our human understanding onto observed

phenomena that may in fact be far more simple than

they look

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

A random, blind process

Some insights:

• Evolution proceeds by gradual adaptation steps

• Powerful allies: the self-organization properties of the

physical world

• E.g. (Eggenberger Hotz, 2003): showed in simulation how

complex shapes (e.g. a lens, intermediate product of an

eye) can easily emerge during evolution exploiting self-

organizing phenomena of cells (e.g. cell adhesion)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Artificial Evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

1001101010001

Artificial evolution

• Includes a wide set of algorithms inspired (to different extents) from

the natural evolution

• Can be used with different goals in different settings, e.g.:

• To solve complex optimization problems (e.g. in engineering)

• To automatically design robots, both in terms of control and

morphology (evolutionary robotics)

• To study properties of biological systems (artificial life,

computational biology)

• To evolve cognitive behaviors (artificial intelligence)

• …

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Some important differences

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Natural evolution Artificial evolution

Is open-ended Usually* has an end

Does not have an ultimate goal Usually* has a specific goal

Selection is based on very indirect evaluation

criterions, i.e. survival and reproduction.

Traits can be selected that are not useful from

an engineering perspective (e.g. attract

individuals of the opposite sex but make a

easier prey, …)

Selection is usually* based on a very precise,

task-based function (the fitness function),

quantifying performances

Does not proceed towards an optimum,

selection occurs in the here-and-now: no

comparative memory. E.g. a prey is successful

with respect to the current generation of

predators.

Usually* we want it to proceed towards an

optimum (during artificial evolution, current

solutions are usually better than previous ones)

* This is true mostly when artificial evolution is used in engineering contexts. There are approaches to

artificial evolution that are open-ended, not goal directed, and that mimic survival and reproduction

Artificial evolution

Ingredients:

1. A genetic representation (a way to encode candidate

solutions)

2. An initial population (e.g. random set of candidate solutions)

3. A fitness function (quantifies how good each solution is,

assigning a scalar score to them)

4. A selection method (usually selecting with higher probability

individuals with high fitness)

5. Crossover & mutation genetic operators (come into play

when offspring-solutions are generated from selected parents)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Artificial evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Iterative procedure, termination

criteria:

• Fitness reached a given threshold

• Fitness not improving for several

generations

• Maximum time, number of

generations, ….

Initialization
generates an initial population

Evaluation
computes the fitness

of each individual

Selection
picks a number of

individuals for

reproduction

Reproduction
generates offsprings

from parents,

applying genetic

operators

Generation

Replacement
Replace somehow

the old population

with the new one

Genetic representation - Encoding

A first distinction:

• Direct encodings: each parameter appears directly and explicitly into the genome,

i.e. the genotype directly maps to the phenotype.

• Indirect/generative encodings: the genotype indirectly encodes the phenotype, e.g.

it encodes parameters governing a development process implementing the

genotype-to-phenotype mapping

Example: Image you want to evolve a robot morphology for walking given a fixed

activation

• You could decide that the body has a fixed structure, and use artificial evolution to

find the lengths of the joints that better allow the robot to walk  Direct encoding

• You could, instead, decide that the body structure is encoded by a developmental

process (e.g. based formal grammars such as L-system) and use artificial evolution

to find the expression that results in the best body structure  Indirect encoding

(“artificial embryogeny”)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

1001101010001

Genetic representation - Encoding

Another example: Image you want to evolve a neural network for controlling a robot

• Fix a priori the structure of the network, encode the weights into the genome, let

artificial evolution find networks that perform well for a given task

 Direct encoding

• Encode into the genome the parameters governing a distribution, from which

neural weights will be sampled, or even parameters governing a process of neural

growth  Indirect encoding

Considerations:

• Direct encoding is probably the most adopted, especially in engineering contexts

• Indirect encodings are more compact, and greatly improve scalability, reducing the

number of parameters i.e. the dimension of the search space

• Also, generative encodings allow complexification over time

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

1001101010001

Genetic representation - Encoding

• In a problem-solving setting, domain knowledge is crucial in defining

the encoding, which parameters are relevant, how to constrain

them, etc.

• In the parallel with natural evolution, usually great simplifications are

done:

• Single stranded sequence of characters

• Fixed length

• Haploid structure, just one chromosome

• Often direct genotype to phenotype mapping

• …

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

1001101010001

Discrete representations

• A sequence of L discrete values drawn from an alphabet with

cardinality k

• E.g. a binary string (L=8, k=2)  Population = set of binary strings

• Could represent different things in different settings

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

to integer i using

binary code

to real value r in range [min, max]:

r = min + (i/255)(max-min)

to configuration string of

FPGA electronic circuits

to job schedule:

• job=gene position

• time=gene value

Sequence representation

• A particular case of discrete representation for problems in which the

solution is a sequence

• E.g. if you have to solve a TSP instance, planning a long trip

minimizing transformation costs

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Real-valued representation

• The genotype is a vector of real number, associated to relevant

parameters

• Useful e.g. in parameter optimization for an engineering problem

• Example: evolve the shape of a wing to improve its efficiency.

The genotype could encode relevant dimensions

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Tree-based representation

• The genotype describes a tree with branching points and terminals

• Suitable to encode hierarchical structures

• Used e.g. to encode and evolve computer programs (e.g. genetic

programming), that can be represented as a tree of operators (from a

functions set) and operands (from a terminals set)

• An application of genetic programming: symbolic regression

• An intriguing example: “The Robot Scientist” -

http://en.wikipedia.org/wiki/Eureqa

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Expression

Nested list

root

terminals

http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa
http://en.wikipedia.org/wiki/Eureqa

Initial population – how big?

Some guidelines:

• The higher the dimension of the search space (i.e. the more parameters in the

genome), the bigger should be the population

 Risk? local optima (premature convergence)

• When initializing, you should avoid generating homogeneous populations (in terms of

fitness scores) to improve evolvability (ability of the algorithm to make progresses)

• The higher this risk, the larger should be the population (E.g. evolve locomoting

robots)

• In the end, especially in practical applications, it’s often a trade-off constrained by

time, related to the computational cost of evaluating the fitness

• Each generation takes 𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ⋅ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 , and typically hundreds of

generations are allowed (time = Ng𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ⋅ 𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ⋅ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒)… Usually

you know 𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠, and you know how patient you are…

• Typically, in the order of thousands individuals

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Initial population – how to initialize?

1. Have a starting point? (e.g. fairly good solution achieved with another optimizer, or

manually devised)

 Initialize population with «variations» of the starting point

2. If you don’t: random (most common)

• You may use option 2) also in case 1)  seeding the algorithm can result in less

diversity, and may bias the algorithm towards sub optima

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Random initialization:

• Binary representation  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 random strings

of bits of 𝐺𝑒𝑛𝑜𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ

• Real-valued representation  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 random

samples from a given interval

• Tree-based representation  recursive process from the

root, expanding each node into randomly sampled

branches (until a maximum depth)

+

2 *

Fitness function

• It is a function 𝐹 associating a scalar (fitness value/score) to each

phenotype (𝑓)

• Evaluating the fitness function is usually the most time-consuming

part of an evolutionary algorithm

• e.g. entails running a physically realistic simulation, let a robot act

for some time, etc.

• The fitness (usually) quantifies individuals’ performance (in terms of

what you do want to optimize)  domain specific objective

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Fitness function

• The fitness function can embed one or more components (multiple

objectives)

• E.g. evolution of a swimming robot in a 2D world, maximum problem:

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 = 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 = 0.8 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥
2 + 0.2 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑦

2

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 =
0.8 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑥

2 + 0.2 ⋅ 𝑠𝑝𝑎𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝑦
2

𝑒𝑛𝑒𝑟𝑔𝑦𝑆𝑝𝑒𝑛𝑡

…

• Which component(s) to choose? How to combine/weight them?

• Again, no precise rules: domain knowledge, trial-and-error, …

 Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Fitness function - Observation

• Note: In general the fitness allows you to specify every kind of

high-level performance metric

• Also subjective ones, that you are not able to «code»/express

(but that are coded in your head!)  Interactive evolution

• «User appreciation for an evolved picture/song»

 may produce an artistic agent!

• «Number of times the robot said/did something funny»

 may produce a comedian robot!

• «Number of times the robot appeared to behave intelligently»

• Interesting from an AI perspective: evolutionary approaches are

more general with respect to others that require a strict

formulation of the problem

• These algorithms are free to find their way to meet such «blurry»

requirements

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Subjective fitness and Interactive Evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Karl Sim’s “Genetic Images” (1993) is a media installation in which visitors can

interactively "evolve" abstract still images.

• A supercomputer generates and displays 16 images on an arc of screens.

• Visitors stand on sensors in front of the most aesthetically pleasing images to

select which ones will survive and reproduce to make the next generation

 Fitness: user appreciation, how long they stared at an image

http://www.karlsims.com/
http://www.karlsims.com/

Subjective fitness and Interactive Evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Subjective fitness and Interactive Evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://picbreeder.org/
http://endlessforms.com/

Selection and selection pressure

• Rationale: allocate a larger number of offsprings to the best performing

individuals of the population

• Selection pressure: % of individuals that will create offspring for the next

generation

• High selection pressure: small % of individuals will be selected for reproduction

 rapid fitness improvement, but rapid loss of diversity, risk of premature

convergence to a local optimum

 A balance is needed between selection pressure and factors that instead

generate diversity (e.g. mutations, we’ll see)

• You should let less fit individuals reproduce too to maintain diversity

• They may embed traits that will become successfull later on in evolution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Proportional selection (roulette wheel)

• The probability 𝑝 𝑖 that an individual 𝑖 makes an offspring is proportional to its

fitness relative to the overall population fitness (𝑁 is the population size):

𝑝 𝑖 =
𝑓 𝑖

 𝑓(𝑘)𝑁
𝑘=1

• Like a roulette wheel where each slot corresponds to one individual of the

population, and has a width that is proportional to 𝑝 𝑖

• To build the next generation, you spin the wheel 𝑁 times. Individuals can be

selected several times (they are replicated, not moved)

• Works bad when: A) all individuals have almost the same score (uniform

selection probability  almost random search  “genetic drift”) B) some

individuals have remarkably bigger scores (diversity loss, premature

convergence)

• A solution: fitness scaling

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

 A B

Rank-based selection

• Sort individuals on their fitness value, from best to worst

• The place of an individual 𝑖 in this sorted list is called rank 𝒓(𝒊)

• Instead of the fitness value (proportionate selection) use the rank to

determine the selection probability of individuals. The roulette wheel

approach is used.

• A possible linear ranking (there are many):

𝑝 𝑖 = 1 −
𝑟 𝑖

𝑁

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

 Solves the problems mentioned for propotionate selection, given that the

absolute value of the fitness does not determine directly the selection

probability

Truncated rank-based selection

• Select only the top 𝑛 individuals based on their fitness

• Each of them will produce the same number of offsprings (𝑁/𝑛)

• E.g. 𝑁 = 100, select top 𝑛 = 20,
𝑁

𝑛
= 5 copies of each of the selected

individuals will be used to form the next generation

• If 𝑛 is not too small (would entail diversity loss  premature

convergence), this method allows less fit individuals to produce the

same number of offsprings as the fittest  maintains diversity

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Tournament selection

• For each new offspring to be generated:

• Randomly select a small subset of 𝑘 individuals (contestants) of

the current population

• 𝑘 is the tournament size parameter, the larger, the higher the

selection pressure)

• The individual that has the best fitness among the contestants

wins and generates the new offspring

• Contestants can participate to multiple tournaments

 Good trade off between selection pressure and genetic diversity

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic operators

• Capture the biological effect of mutations and recombinations on the

genotype observed in the natural evolution

• Must match the genetic representation

• Introduce diversity in the population by altering individuals and

combining them

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic operators – Crossover/recombination

• Emulates the recombination of genetic material from two parents

during meiosis

• After selection, pairs of individuals are randomly formed

• And their genotypes are combined with a given probability 𝑝𝑐

• Crossover should allow to merge successful sub-solutions from the

parents into an offspring that will hopefully perform even better

 There are plenty of genetic operators, and you can devise your own

for your custom encoding and application. We will review some of the

most commonly adopted

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic operators – Crossover/recombination

Discrete/real valued encodings:

a) one-point: randomly select a

crossover point and swap

chromosomes around that point

b) multi-point: as before, but

selecting 𝑛 crossover points

(here 𝑛 = 2)

c) arithmetic: creates a single

offspring by combining the two

genomes at 𝑛 random positions

(e.g. AND/OR for binary coded,

average, or convex combination

for real-coded, etc)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

a)

b)

c)

d)

Parents Children

e)

Genetic operators – Crossover/recombination

Crossover for sequence

encoding (all symbols must

occur once and only once):

d) Randomly copy a part of the

sequence from one parent,

then fill-in with remaining

elements in the order in which

they appear in the other parent

(with wraparound, where

necessary)

Crossover for tree encoding:

e) Randomly select a node of

each parent, and exchange

the two corresponding

subtrees

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

a)

b)

c)

d)

Parents Children

e)

Genetic operators – Crossover/recombination

• Crossover is not a trivial operation, as it entails to isolate chunks of

two different genomes and recombine them

• In some cases the effect on the fitness may be different from the

expected one (i.e. the fitness of the offspring(s) is worse than the

ones of the parents)

 If this happens frequently, crossover may be implemented/tuned

in such a way that it acts as a large random mutation

 Checking the best/average fitness of offsprings obtained through

crossover at each generation can help in detecting this situation

 Solutions: revise the parameters of crossover, change crossover

method

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic operators – Mutation

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Operates at the level of the individual

• Applies small random modifications of the genotype

• Allows evolution to explore variations with respect

to the current solutions

• Mutations are useful to:

• Produce diversity

• Escape from local optima

• Further progress when homogeneous populations are produced,

where recombinations do not help to further improve

• However, too mutations may destroy previously discovered solutions

and make the search too randomic  Proper tuning of mutations,

fitness monitoring as already mentioned for the crossover

Genetic operators – Mutation

Mutation = change the content of

each gene with probability 𝑝𝑚

e.g. 𝑝𝑚 = 0.01 (1%, much higher than

in biology), but the actual value really

depends on the effect of a genotype

change on the phenotype and on the

characteristics of the problem

a) Binary encoding: toggle bit

values

b) Real-valued encoding: add

random noise (e.g. from a Gauss

distribution 𝑁 0, 𝜎  most

mutations are small, few are big.

Note that 𝜎 is an additional

parameter)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

a) Binary genotypes

c) Sequence genotypes

b) Real-valued

genotypes

d) For trees

Genetic operators – Mutation

c) Sequence encoding: swap the

contents of two randomly chosen

genes

d) Tree-based encoding: change

the value of a node with another

from the same set (functions

set/terminals set) with the same

number of leaves  tree-structure

unchanged

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

a) Binary genotypes

c) Sequence genotypes

b) Real-valued

genotypes

d) For trees

Replacement strategies

What to do once the new population is produced?

• Generational replacement: the new population completely replaces

the old one (most adopted)

 Good individuals can sometimes get lost

• Elitism: the best 𝑛 individuals of the current population are

propagated, unchanged, to the new one.

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Example

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Loop (epochs)

(several copies)

The fitness landscape

• (unknown) multidimensional surface associating

a fitness value to each possible genome (e.g.

ℜ𝐺𝑒𝑛𝑜𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ+1)

• Sampled during evolution (“navigation” is

guided by the genetic operators: not a

straightforward path through the landscape)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Rough sampling analysis can help to better understand the problem

• E.g. estimating ruggedness of real landscape:

• Sample random genotypes: if fitness ≈ uniform, use large populations

• Explore surroundings of an individual by applying genetic operators in

sequence for fixed number of steps: the larger the fitness variation

observed the easier should be evolution

The fitness graph

• How to show the performance of an

evolutionary algorithm across

generations: fitness graph

• Usually average and best fitness at each

generations are plotted, along with

standard deviation across multiple runs

• Given the random components in these

algorithms, several executions are

usually necessary, with different

initializations (especially for quantitative

comparisons)

• Plateau: have we reached the global

optimum or are we stuck in a local one

(premature convergence)?

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Population diversity

• Further insights can be gained by

analysing the diversity of the population

• A possible measures of diversity (for

direct encoding, fixed length):

• “All-possible-pairs” diversity:

𝐷𝑎 𝑃 = 𝑑(𝑔𝑖 , 𝑔𝑗)

𝑖,𝑗∈𝑃

 Sum of Euclidean or Hamming*

distances (𝑑(.,.)) among all genomes

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

* Number of differing elements in corresponding positions. For binary strings:

𝑑ℎ 𝑎, 𝑏 = 𝑎⊕𝑏. E.g. 𝑑ℎ 000, 101 = 2

Stagnation, diversity, neutral paths

• Stagnation = evolutionary algorithm does not improve fitness for a long

time

In case of stagnation:

• Low diversity  crossover won’t help much  we can hope only in

mutations  may take long to further improve

• It may also happen (e.g. in case of redundant encodings) that evolution

took a neutral path, a phase in which despite genetic alterations of the

population, the overall fitness does not change

• These neutral paths can sometimes result in rapid progresses after a long

stasis (waiting a bit may be rewarding)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Types of evolutionary algorithms

• Genetic Algorithms (GA) - Holland, 1975

Binary genotypes, crossover and mutation

• Genetic Programming (GP) - Koza, 1992

Tree-based genotypes, crossover and mutations

• Evolutionary Programming (EP) - Fogel etal., 1966

Real-valued genotypes, mutations, tournaments, gradual pop. replacement

• Evolutionary Strategies (ES) - Rechenberg, 1973

As EP + mutation range encoded in genotype of individual

• Island Models – Whitley et al., 1998

Parallel evolving populations with rare migration of individuals

• Steady-State Evolution – Whitley et al., 1988

Gradual replacement: Best individuals replace worst individuals

• …

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Some practical pros and cons

Pros:

• Evolutionary algorithms can work where other optimization techniques

cannot (e.g. discontinuous, noisy fitness functions)  robust

• Can be easily extended to deal with multi-objective, constrained problems

• Inherently parallel structure  can be distributed / parallelized

• It is easy to incorporate knowledge into them, e.g. refine previous solutions

Cons:

• No guarantees regarding the success and/or the time to get a solution

• Weak theoretical basis

• Parameters tuning is needed

• Often computationally expensive

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Some applications

From «How The Body Shapes The Way We Think – A new view of Intelligence» (R. Pfeifer & J. Bongard)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

NASA’s Antenna

Human-competitive design of an

antenna for nanosatellites, NASA

[Lohn, Hornby, Linden, 2004]

• Designing an efficient antenna meeting

several quality requirements (gain,

sizes, operational frequencies, …) is

very challenging for humans

• NASA automated its design by using

evolutionary techniques

• Wiki page

• Paper

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://en.wikipedia.org/wiki/Evolved_antenna
http://en.wikipedia.org/wiki/Evolved_antenna
http://en.wikipedia.org/wiki/Evolved_antenna
http://ti.arc.nasa.gov/m/pub-archive/1244h/1244 (Hornby).pdf

NASA’s Antenna

• Tree-based encoding, instructions to “grow” an

antenna

• Function set:

• f=forward(length)

• rx/y/z(angle)

• Terminals: length, angles

• Technical specs tested in simulation

• Best designs were built and worked well also in the

real world

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

rx f

f

f f

rz rx

f

2.5cm

5.0cm

Feed

Wire

NASA’s Antenna

“Weird” designs, considerably smaller and exhibiting far superior

performances with respect to human devised ones

 Launched on board of the ST-5 satellite in 2006

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Evolved Human

~
1
2
 c

m

~
 5

 c
m

http://en.wikipedia.org/wiki/Evolved_antenna

Evolvable hardware

Adrian Thompson, Sussex University,

1996

• Experiments on evolvable hardware

(evolutionary algorithms finding circuits

configurations for FPGA)

• Goal: evolve a circuit to distinguish

between a low tone from a high tone

• No simulation, evolution in the real world

• An effective circuit was evolved, that

worked properly but…

• …once re-created on a custom circuit

considering only the FPGA component

effectively connected in the design… .

 Did not work anymore!

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Evolvable hardware

• It was found out that the original evolved circuit was exploiting weak

electromagnetic interactions with the disconnected FPGA

components

• The solution devised by evolution broke human-imposed modular

design, exploiting to its benefit phenomena of the ecological niche

that are usually regarded as undesired

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Evolvable hardware

Another experiment in Sussex, by Jon Bird and Paul Layzell

• Goal: evolve a circuit producing an oscillatory signal without having

an internal clock

• Evolved solution: instead of an oscillator, something like a radio

receiver was evolved from scratch

 The oscillating signal produced by the circuit was indeed coming from

electromagnetic interferences caused by a computer nearby: the evolved

circuit was “stealing” the clock of that computer!

• Another example of how artificial evolution finds clever way to exploit

the ecological niche

 Even a new sensor modality was evolved from scratch!

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Neuroevolution
A biologically inspired path to Artificial Intelligence

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Neuroevolution

• Use of evolutionary algorithms to construct Neural

Networks

 Evolution of cognitive architectures

• Proved to be effective to:

• Evolve cognitively multimodal cognitive behaviors

• Evolve large scale brain-like structures

• Evolve effective control policies (e.g. locomotion,

guidance, stabilization, …)

• Evolve human-like game playing in a variety of

videogames

 Interesting from several perspectives: AI, control,

evolutionary robotics, ALIFE, …

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://nn.cs.utexas.edu/downloads/papers/gomez.gecco03.pdf
http://yosinski.com/media/papers/Yosinski2011EvolvedGaits.pdf

Conventional NeuroEvolution (CNE)

1. Fix the structure of the NN

(usually fully connected)

2. Concatenate synaptic weights

and biases into a genome

(random init)

3. Use an evolutionary algorithm

to evolve the network with

respect to a given task

4. Fitness: evaluation of

network’s performance

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

 This can be seen as a way to train neural networks in an

unsupervised setting

Conventional NeuroEvolution (CNE)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Pros:

• Easy to implement

• Effective in many scenarios

Cons:

• Requires to arbitrarily choose

network’s size and topology

• In general not very scalable

(number of parameters easily

reaches thousands)

• Can easily converge to local

optima

Extensions

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Evolve both the topology and the weights  Better

performances

• Evolve the type of activation functions on the nodes

• Evolve plastic networks (or evolution of learning) [1, 2, 3]

• Evolution provides an initial network that then adapts online

during the lifetime of the agent through environmental

feedback

• E.g. local Hebbian learning rules (“fire together, wire

together”). New learning rules can also be evolved!

• It was postulated for natural evolution (Baldwin effect) and

showed in artificial evolution that learning can indeed affect

positively evolution

http://e-collection.library.ethz.ch/eserv/eth:8403/eth-8403-01.pdf
http://infoscience.epfl.ch/record/63925/files/ar.pdf
http://www.isir.upmc.fr/files/2014COS3178.pdf

NEAT - NeuroEvolution of Augmenting

Topologies [Stanley et al. 2002]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Features complexification (biologically plausible, useful to

improve performances)

• Of networks

• Starts with simple networks  Mutations add new nodes and

new links when necessary to progress

• Of behaviors

• New networks elaborates on earlier behaviors

 Helps in reducing the search space

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

NEAT - NeuroEvolution of Augmenting

Topologies [Stanley et al. 2002]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Additional complexity is retained only if provides a competitive

advantage

• Genes are marked with a global innovation number

(chronological order of appearance)

• This allows to measure the “age” of each individual and to

identify homogeneous sub-populations

• To protect recent topological innovations (that may be promising

later on but still have low fitness at a certain point in time),

competition with older solutions (already mature) is avoided

• Diversity maintenance: competition among very different

genomes is avoided

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

HyperNEAT – Hypercube based NEAT [Stanley

2009]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Goal: To improve scalability and to promote regular structures in

the NNs evolved by NEAT

• NEAT is coupled with a powerful indirect encoding method called

Compositional Pattern Producing Networks (CPPNs)

 HyperNEAT actually evolves CPPNs then used to define NNs

• CPPN: designed to represent spatial patterns with regularities such

as symmetry, repetition, and repetition with variation

• Thanks to this encoding:

• HyperNEAT is able to produce very large networks in an efficient

way (millions of connections)

• Evolved networks present regularities also observed in

biological brains

http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf
http://eplex.cs.ucf.edu/papers/stanley_gpem07.pdf

HyperNEAT – Hypercube based NEAT [Stanley

2009]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

But what are CPPN?

• Structurally similar to NNs, but mimic a different phenomena: an

abstraction of development

• They produce spatial patterns by composing basic functions (e.g. sin,

cos, gaussians, etc.)

• This composition can produce complex patterns with several regularities

http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf

HyperNEAT – Hypercube based NEAT [Stanley

2009]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• Remember PicBreeder and EndlessForms?

• Those systems actually evolve CPPNs in an interactive way

• To produce an image or an object, the system asks the CPPN the color

of each (x,y) pixel, or the presence of each (x,y,z) voxel

 You can observe with your eyes the complex spatial patterns those

networks are able to encode

http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf
http://axon.cs.byu.edu/~dan/778/papers/NeuroEvolution/stanley3**.pdf

HyperNEAT – Hypercube based NEAT [Stanley

2009]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• In HyperNEAT CPPNs are evolved

that represent connectivity patterns of

hidden nodes of a NN

• CPPNs take as input the coordinates

of two points describing each

connection

• As a consequence of using CPPN, in

HyperNEAT the connectivity of the

NN is a function of input’s geometry

 HyperNEAT represents and exploits

the geometry (substrate) of the inputs to

enhance learning

http://www.isir.upmc.fr/files/2014ACTI3120.pdf

HyperNEAT – Hypercube based NEAT [Stanley

2009]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• The topological arrangement of input nodes

is fixed in HyperNEAT (has to be chosen by

the user), and it is called substrate

• Top figure: square substrate

• Bottom figure: cube substrate

• Input and output nodes are selected from

the substrate

• Different substrates are better suited for

different problems

• Other extensions of HyperNEAT also evolve

the structure of the substrate: evolvable-

substrate HyperNEAT (ES-HyperNEAT)

http://www.isir.upmc.fr/files/2014ACTI3120.pdf

Neuroevolution

• Neuroevolution techniques are powerful

• Promising for artificial intelligence, evolution of general cognitive

behaviors (general, cognitively scalable, does not require much

human intervention)

• Sound, bottom-up, biologically inspired approach to AI

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Neuroevolution

• Also, more and more a tool for fields such as artificial life,

computational biology, etc.

• With targeted experiments, is helping in answering questions such as:

• How specific behaviors evolve? Under which conditions?

Foraging, pursuit and evasion, hunting and herding, collaboration,

communication  e.g. competitive coevolution

• How modularity evolved in biological body/brains?

• How development and evolution interact?

• By analyzing evolved neural circuits, insights can be gained regarding

biological networks functions

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Evolutionary Robotics

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Evolutionary robotics

Evolutionary algorithms are used to evolve:

• Brains (typically neural networks)

• Body (some parameters, or the whole structure)

• Both at the same time (brain-body co-evolution)

As for evolving bodies:

• Powerful methods to encode the body of a robot in a generative way

exist (artificial embryogeny) – [a review paper]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.alife03.pdf

Brain-body coevolution – [K Sims, 1994] [1][2]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://karlsims.com/papers/siggraph94.pdf
http://karlsims.com/papers/alife94.pdf
https://www.youtube.com/watch?v=JBgG_VSP7f8

Evolving Soft Robots – [N Cheney et al., 2013]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

- Virtual

creatures

evolved at a

finer

resolution (in

terms of

morphology

and

actuation)

- Use of

several soft-

materials and

actuators

enriches

evolved

behaviors

http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
https://www.youtube.com/watch?v=EXuR_soDnFo

Evolving Soft Robots – [N Cheney et al., 2013]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

A Compositional Pattern-Producing

Network is evolved through NEAT

(a neuroevolution algorithm often

used to evolve neural networks),

and sampled to define the

morphology

Input: x,y,z position of the voxel,

distance d from the center

Output: voxel present, material type

Generative encoding produced more

functional an far more regular

morphologies if compared with direct

encoding

http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf
http://jeffclune.com/publications/2013_Softbots_GECCO.pdf

The reality gap / transfer problem

• Can we evolve robots in the real world?

• If we are interested in just the control, yes, although it is

impractical (thousand of evaluations!)

• If we are interested also in evolving morphologies, simulation is

necessary (at least with the current technology)

 It has been observed that transferring solutions evolved in

simulation to the real world is very hard and often fails

• The smallest discrepancy between the simulated environment

and the real world may result in an unsuccessful transfer

• …And no model is as rich as the physical reality. “There is no

better model of the world than the world itself”, R. Brooks

 Serious problem for evolutionary robotics

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

An example of reality gap – [Koos et al, 2010]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://pages.isir.upmc.fr/~mouret/website/evolution.xhtml

Crossing the gap – [Lipson & Pollack 2000]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Direct encoding:

Robot:= <vertices>

<bars>

<neurons>

<actuators>

Vertex:=<x,y,z>

Bar:= <vertex 1 index,

vertex 2 index,

relaxed length,

stiffness>

Neuron:=<threshold,

 weights>

Actuator := <bar index,

neuron index,

bar range>

Noise added to the

simulation

http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
http://www.nature.com/nature/journal/v406/n6799/full/406974a0.html
https://www.youtube.com/watch?v=qSI0HSkzG1E

Evolving and fabricating soft robots – [Hiller et al., 2012]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://creativemachines.cornell.edu/sites/default/files/Soft Robots Hiller_Lipson.pdf
http://creativemachines.cornell.edu/sites/default/files/Soft Robots Hiller_Lipson.pdf
http://creativemachines.cornell.edu/sites/default/files/Soft Robots Hiller_Lipson.pdf
https://www.youtube.com/watch?v=jxaAIneKewg

Crossing the gap – [Bongard and Lipson., 2006]

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
http://creativemachines.cornell.edu/papers/Science06_Bongard.pdf
https://www.youtube.com/watch?v=hh20JMEI-FI

Concluding remarks – On Evolution and AI

• Intelligence and life as we know are products of evolution

• If we are interested in better understanding them, and replicating

some of their features in artificial form, an evolutionary approach

may be the most appropriated

• By translating bio-inspired process into artificial substrates,

surprising phenomena can arise, given the diverse embodiement of

the evolving creatures and of the environment

 “Intelligence, and life as-it-could-be”, i.e. alternative forms of

intelligence/life

 Could also help in understanding what is intelligence in general,

detached from the biological embodiements we are surrounded with

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Concluding remarks – On Evolution and AI

• The complexity barrier: some problems are too hard for humans to

conceive

• Lot of examples in science and engineering, where we always try to

break down the complexity of phenomena in order to be able to

manage them (recall the example about evolvable hw and

modularity)

 Evolutionary approaches can be used to solve very difficult

problem with super-human skills (NASA antenna)

 Human-competitive design in several fields

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Concluding remarks – On Evolution and AI

Regarding the complexity barrier…

• Some think that the problem of understanding and replicating

general machine intelligence may be too hard for us to conceive, and

this may be the reason why are struggling on this

• We are biased by how we think, how we are made, what we have

experienced

• This may limit our understanding of the phenomena

 Evolution, even the artificial one, is not biased, and often

demonstrates to “think outside the box”

 Moreover, it already produced several life-like phenomena

 May provide the solution

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Concluding remarks – On Evolution and AI

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

• One genuine form of intelligence (both biological and artificial)

consists in the ability of an agent to come up with truly creative and

surprising solutions

 Artificial evolution often demonstrates such a creativity

What are we doing

Searching new ways to exploit artificial

evolution to produce life-like bio-inspired

intelligent robots. Examples:

• Evolving a manta-like wing for optimal

swimming in different fluids

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

C:/Users/Francesco/Dropbox/PhD/presentazioni e posters/29_07-01_08_2014 Living Machines 2014/FINAL_slidesMantaLivingMachines2014.pptx
http://sssa.bioroboticsinstitute.it/papers/FinEvolution

What are we doing

Applying genetic algorithms to

estimate model parameters of a

bio-inspired underwater drone

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

What are we doing

• Applying an evolutionary process maximizing not performances,

but a notion of behavioral an morphological novelty, to find out

new designs and novel locomotion modalities for an existing

robot  human-machine collaborative evolutionary design

• Studying how morphing robots can exploit slight online

morphological changes to achieve diverse self-stabilized

behaviors

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

What are we doing

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

What are we doing

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

We will be at GECCO 2015

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Genetic and Evolutionary Computation Conference

http://www.sigevo.org/gecco-2015/

Suggested readings, main references

1. “Bio-Inspired Artificial Intelligence”,

Theories, Methods and Technology, Dario

Floreano and Claudio Mattiussi

 Chapter 1 + part on neuroevolution

(starting at p. 238) – but the whole book is

very nice

2. “How the body shapes the way we think”,

Rolf Pfeifer and Josh Bongard – a new,

intriguing view of intelligence

 Chapter 6 on Artificial Evolution – the

whole book is a must for everyone in the

field of AI and robotics

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

Additional readings

3. Neuroevolution

http://www.scholarpedia.org/article/Neuroevolution

http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattius

si2008.pdf

4. Evolutionary robotics

http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.p

df

5. Plenty of research papers we can provide you, if you are interested

(some are linked throughout the presentation)

Robotics - Introduction to Evolutionary Systems, MSc in Computer Science, 2015

http://www.scholarpedia.org/article/Neuroevolution
http://www.scholarpedia.org/article/Neuroevolution
http://www.scholarpedia.org/article/Neuroevolution
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://infoscience.epfl.ch/record/112676/files/FloreanoDuerrMattiussi2008.pdf
http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.pdf
http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.pdf
http://www.cs.uvm.edu/~jbongard/papers/2013_CACM_Bongard.pdf

For doubts, additional material, project ideas, …

Feel free to contact me!

f.corucci sssup.it

