
Chapter 7
Robot control

The problem of robot control can be explained as a computation of the forces
or torques which must be generated by the actuators in order to successfully ac-
complish the robot task. The appropriate working conditions must be ensured both
during the transient period as well as in the stationary state. The robot task can be
presented either as the execution of the motions in a free space, where position con-
trol is performed, or in contact with the environment, where control of the contact
force is required. First, we shall study the position control of a robot mechanism
which is not in contact with its environment. Then, in the further text we shall up-
grade the position control with the force control.

The problem of robot control is not unique. There exist various methods which
differ in their complexity and in the effectiveness of robot actions. The choice of
the control method depends on the robot task. An important difference is, for ex-
ample, between the task where the robot end-effector must accurately follow the
prescribed trajectory (e.g. laser welding) and another task where it is only required
that the robot end-effector reaches the desired final pose, while the details of the
trajectory between the initial and the final point are not important (e.g. palletizing).
The mechanical structure of the robot mechanism also influences the selection of the
appropriate control method. The control of a cartesian robot manipulator in general
differs from the control of an anthropomorphic robot.

Robot control usually takes place in the world coordinate frame, which is defined
by the user and is called also the coordinate frame of the robot task. Instead of world
coordinate frame we often use a shorter expression, namely external coordinates. We
are predominantly interested in the pose of the robot end-effector expressed in the
external coordinates and rarely in the joint positions, which are also called internal
coordinates. Nevertheless, we must be aware that in all cases we directly control
the internal coordinates i.e. joint angles or displacements. The end-effector pose
is only controlled indirectly. It is determined by the kinematic model of the robot
mechanism and the given values of the internal coordinates.

Figure 7.1 shows a general robot control system. The input to the control system
is the desired pose of the robot end-effector, which is obtained by using trajectory
interpolation methods, introduced in the previous chapter. The variable xr represents
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Fig. 7.2 The RPY description of the orientation

the desired, i.e. the reference pose of the robot end-effector. The x vector, describing
the actual pose of the robot end-effector in general comprises six variables. Three
of them define the position of the robot end-point, while the other three determine
the orientation of the robot end-effector. Thus, we write x =

[
x y z ϕ ϑ ψ

]T
. The

position of the robot end-effector is determined by the vector from the origin of the
world coordinate frame to the robot end-point. The orientation of the end-effector
can be presented in various ways. One of the possible descriptions is the so called
RPY notation, arising from aeronautics and shown in Figure 7.2. The orientation is
determined by the angle ϕ around the z axis (Roll), the angle ϑ around the y axis
(Pitch) and the angle ψ around the x axis (Yaw).

By the use of the inverse kinematics algorithm, the internal coordinates qr,
corresponding to the desired end-effector pose, are calculated. The variable qr rep-
resents the joint position, i.e. the angle ϑ for the rotational joint and the distance d
for the translational joint. The desired internal coordinates are compared to the ac-
tual internal coordinates in the robot control system. On the basis of the positional
error q̃, the control system output u is calculated. The output u is converted from a
digital into an analogue signal, amplified and delivered to the robot actuators. The
actuators ensure the forces or torques necessary for the required robot motion. The
robot motion is assessed by the sensors which were described in the chapter devoted
to robot sensors.
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7.1 Control of the robot in internal coordinates

The simplest robot control approach is based on controllers where the control loop is
closed separately for each particular degree of freedom. Such controllers are suitable
for control of independent second order systems with constant inertial and damp-
ing parameters. This approach is less suitable for robotic systems characterized by
nonlinear and time varying behavior.

7.1.1 PD control of position

First, a simple proportional-derivative (PD) controller will be analyzed. The basic
control scheme is shown in Figure 7.3. The control is based on calculation of the
positional error and determination of control parameters, which enable reduction or
suppression of the error. The positional error is reduced for each joint separately,
which means that as many controllers are to be developed as there are degrees of
freedom. The reference positions qr are compared to the actual positions of the robot
joints q

q̃ = qr −q. (7.1)

The positional error q̃ is amplified by the proportional position gain Kp. As a robot
manipulator has several degrees of freedom, the error q̃ is expressed as a vector,
while Kp is a diagonal matrix of the gains of all joint controllers. The calculated
control input provokes robot motion in the direction of reduction of the positional
error. As the actuation of the robot motors is proportional to the error, it can occur
that the robot will overshoot instead of stopping in the desired position. Such over-
shoots are not allowed in robotics, as they may result in collisions with objects in
the robot vicinity. To ensure safe and stable robot actions, a velocity closed loop is
introduced with a negative sign. The velocity closed loop brings damping into the
system. It is represented by the actual joint velocities q̇ multiplied by a diagonal
matrix of velocity gains Kd . The control law can be written in the following form
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u = Kp(qr −q)−Kdq̇, (7.2)

where u represents the control inputs, i.e. the joint forces or torques, which must be
provided by the actuators. From equation (7.2) we can notice that at higher veloc-
ities of robot motions, the velocity control loop reduces the joint actuation and, by
damping the system, ensures robot stability.

The control method shown in Figure 7.3 provides high damping of the system
in the fastest part of the trajectory, which is usually not necessary. Such behavior
of the controller can be avoided by upgrading the PD controller with the reference
velocity signal. This signal is obtained as the numerical derivative of the desired
position. The velocity error is used as control input

˙̃q = q̇r − q̇. (7.3)

The control algorithm demonstrated in Figure 7.4 can be written as

u = Kp(qr −q)+ Kd(q̇r − q̇). (7.4)

As the difference between the reference velocity q̇r and q̇ is used instead of the total
velocity q̇, the damping effect is reduced. For a positive difference the control loop
can even accelerate the robot motion.

The synthesis of the PD position controller consists of determining the matrices
Kp and Kd . For fast response, the Kp gains must be high. By proper choice of the
Kd gains, critical damping of the robot systems is obtained. The critical damping
ensures fast response without overshoot. Such controllers must be built for each joint
separately. The behavior of each controller is entirely independent of the controllers
belonging to the other joints of the robot mechanism.

7.1.2 PD control of position with gravity compensation

In the chapter on robot dynamics we found that the robot mechanism is under the
influence of inertial, Coriolis, centripetal and gravitational forces (4.46). In general
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also friction forces, occurring in robot joints, must be included in the robot dynamic
model. In a somewhat simplified model, only viscous friction, being proportional to
the joint velocity, will be taken into account (Fv is a diagonal matrix of the joint fric-
tion coefficients). The enumerated forces must be overcome by the robot actuators
which is evident from the following equation, similar to equation (4.46)

B(q)q̈ + C(q, q̇)q̇+ Fvq̇+ g(q) = τ. (7.5)

When developing the PD controller, we did not pay attention to the specific forces
influencing the robot mechanism. The robot controller calculated the required actu-
ation forces solely on the basis of the difference between the desired and the actual
joint positions. Such a controller cannot predict the force necessary to produce the
desired robot motion. As the force is calculated from the positional error, this means
that in general the error is never equal to zero. When knowing the dynamic robot
model, we can predict the forces which are necessary for the performance of a par-
ticular robot motion. These forces are then generated by the robot motors regardless
of the positional error signal.

In quasi-static conditions, when the robot is moving slowly, we can assume zero
accelerations q̈ ≈ 0 and velocities q̇ ≈ 0. The robot dynamic model is simplified as
follows

τ ≈ g(q). (7.6)

According to equation (7.6), the robot motors must above all compensate the gravity
effect. The model of gravitational effects ĝ(q) (the circumflex denotes the robot
model), which is a good approximation of the actual gravitational forces g(q), can
be implemented in the control algorithm as shown in Figure 7.5. The PD controller,
shown in Figure 7.3, was upgraded with an additional control loop, which calculates
the gravitational forces from the actual robot position and directly adds them to
the controller output. The control algorithm shown in Figure 7.5 can be written as
follows

u = Kp(qr −q)−Kdq̇+ ĝ(q). (7.7)
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By introducing gravity compensation, the burden of reducing the errors caused
by gravity, is taken away from the PD controller. In this way the errors in trajectory
tracking are significantly reduced.

7.1.3 Control of the robot based on inverse dynamics

When studying the PD controller with gravity compensation, we investigated the
robot dynamic model in order to improve the efficiency of the control method. With
the control method based on inverse dynamics, this concept will be further upgraded.
From the equations describing the dynamic behavior of a two-segment robot ma-
nipulator (4.46), we can clearly observe that the robot model is nonlinear. A linear
controller, such as the PD controller, is therefore not the best choice.

We shall derive the new control scheme from the robot dynamic model described
by equation (7.5). Let us assume that the torques τ , generated by the motors, are
equal to the control outputs u. Equation (7.5) can be rewritten

B(q)q̈+ C(q, q̇)q̇+ Fvq̇+ g(q) = u. (7.8)

In the next step we will determine the direct robot dynamic model, which describes
robot motions under the influence of the given joint torques. First we express the
acceleration q̈ from equation (7.8)

q̈ = B−1(q)(u− (C(q, q̇)q̇+ Fvq̇+ g(q))) . (7.9)

By integrating the acceleration, while taking into account the initial velocity value,
the velocity of robot motion is obtained. By integrating the velocity, while taking
into account the initial position, we calculate the actual positions in the robot joints.
The direct dynamic model of a robot mechanism is shown in Figure 7.6.

In order to simplify the dynamic equations, we shall define a new variable n(q, q̇)
comprising all dynamic components except the inertial component

n(q, q̇) = C(q, q̇)q̇+ Fvq̇+ g(q). (7.10)

The robot dynamic model can be described with the following shorter equation

B(q)q̈+ n(q, q̇) = τ. (7.11)

In the same way also equation (7.9) can be written in a shorter form

q̈ = B−1(q)(u−n(q, q̇)) . (7.12)

Let us assume that the robot dynamic model is known. The inertial matrix B̂(q) is
an approximation of the real values B(q), while n̂(q, q̇) represents an approximation
of n(q, q̇) as follows
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Fig. 7.7 Linearization of the control system by implementing the inverse dynamic model

n̂(q, q̇) = Ĉ(q, q̇)q̇+ F̂vq̇+ ĝ(q). (7.13)

The controller output u is determined by the following equation

u = B̂(q)y + n̂(q, q̇), (7.14)

where the approximate inverse dynamic model of the robot was used. The system,
combining equations (7.12) and (7.14), is shown in Figure 7.7.

Let us assume the equivalence B̂(q) = B(q) and n̂(q, q̇) = n(q, q̇). In Figure
7.7 we observe that the signals n̂(q, q̇) and n(q, q̇) subtract, as one is presented
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with a positive and the other with a negative sign. In a similar way, the product
of matrices B̂(q) and B−1(q) results in a unit matrix, which can be omitted. The
simplified system is shown in Figure 7.8. By implementing the inverse dynamics
(7.14), the control system is linearized, as there are only two integrators between
the input y and the output q. The system is not only linear, but is also decoupled, as
e.g. the first element of the vector y only influences the first element of the position
vector q. From Figure 7.8 it is also not difficult to realize that the variable y has the
characteristics of acceleration, thus

y = q̈. (7.15)

In an ideal case, it would suffice to determine the desired joint accelerations as
the second derivatives of the desired joint positions and the control system will track
the prescribed joint trajectories. As we never have a fully accurate dynamic model
of the robot, always a difference will occur between the desired and the actual joint
positions and will increase with time. The positional error is defined by

q̃ = qr −q, (7.16)

where qr represents the desired robot position. In a similar way also the velocity
error can be defined as the difference between the desired and the actual velocity

˙̃q = q̇r − q̇. (7.17)

The vector y, having the acceleration characteristics, can be now written as

y = q̈r + Kp(qr −q)+ Kd(q̇r − q̇). (7.18)

It consists of the reference acceleration q̈r and two contributing signals which de-
pend on the errors of position and velocity. These two signals suppress the error
arising because of the imperfectly modeled dynamics. The complete control scheme
is shown in Figure 7.9.

By considering equation (7.18) and the equality y = q̈, the differential equation
describing the robot dynamics can be written as

¨̃q+ Kd ˙̃q+ Kpq̃ = 0, (7.19)
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Fig. 7.9 Control of the robot based on inverse dynamics

where the acceleration error ¨̃q = q̈r − q̈ was introduced. The differential equation
(7.19) describes the time dependence of the control error as it approaches zero. The
dynamics of the response is determined by the gains Kp and Kd .

7.2 Control of the robot in external coordinates

All the control schemes studied up to now were based on control of the internal
coordinates, i.e. joint positions. The desired positions, velocities and accelerations
were determined by the robot joint variables. Usually we are more interested in the
motion of the robot end-effector than in the displacements of particular robot joints.
At the tip of the robot, different tools are attached to accomplish various robot tasks.
In the further text we shall focus on the robot control in the external coordinates.

7.2.1 Control based on the transposed Jacobian matrix

The control method is based on the already known equation (4.17) connecting the
forces acting at the robot end-effector with the joint torques. The relation is defined
by the use of the transposed Jacobian matrix
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τ = JT (q)f, (7.20)

where the vector τ represents the joint torques and f is the force at the robot end-
point.

It is our aim to control the pose of the robot end-effector, where its desired pose is
defined by the vector xr and the actual pose is given by the vector x. The vectors xr

and x in general comprise six variables, three determining the position of the robot
end-point and three for the orientation of the end-effector, thus x =

[
x y z ϕ ϑ ψ

]T .
Robots are usually not equipped with sensors assessing the pose of the end-effector;
robot sensors measure the joint variables. The pose of the robot end-effector must be
therefore determined by using the equations of the direct kinematic model x = k(q)
introduced in the chapter on robot kinematics (4.4). The positional error of the robot
end-effector is calculated as

x̃ = xr −x = xr −k(q). (7.21)

The positional error must be reduced to zero. A simple proportional control sys-
tem with the gain matrix Kp is introduced

f = Kpx̃. (7.22)

When analyzing equation (7.22) more closely, we find that it reminds us of the equa-
tion describing the behavior of a spring, where the force is proportional to the spring
elongation. This consideration helps us to explain the introduced control principle.
Let as imagine that there are six springs virtually attached to the robot end-effector,
one spring for each degree of freedom (three for position and three for orientation).
When the robot moves away from the desired pose, the springs are elongated and
pull the robot end-effector into the desired pose with the force proportional to the
positional error. The force f therefore pushes the robot end-effector towards the de-
sired pose. As the robot displacement can only be produced by the motors in the
joints, the variables controlling the motors must be calculated from the force f. This
calculation is performed by the help of the transposed Jacobian matrix as shown in
equation (7.20)

u = JT (q)f. (7.23)

The vector u represents the desired joint torques. The control method based on the
transposed Jacobian matrix is shown in Figure 7.10.
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Fig. 7.10 Control based on the transposed Jacobian matrix
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7.2.2 Control based on the inverse Jacobian matrix

The control method is based on the relation between the joint velocities and the
velocities of the robot end-point (4.10), which is given by the Jacobian matrix. In
equation (4.10) we emphasize the time derivatives of external coordinates x and
internal coordinates q

ẋ = J(q)q̇ ⇔ dx
dt

= J(q)
dq
dt

. (7.24)

As dt appears in the denominator on both sides of equation (7.24), it can be omitted.
In this way we obtain the relation between changes of the internal coordinates and
changes of the pose of the robot end-point

dx = J(q)dq. (7.25)

Equation (7.25) is valid only for small displacements.
As with the previously studied control method, based on the transposed Jacobian

matrix, also in this case we first calculate the error of the pose of the robot end-point
by using equation (7.21). When the error in the pose is small, we can calculate the
positional error in the internal coordinates by the inverse relation (7.25)

q̃ = J−1(q)x̃. (7.26)

In this way the control method is translated to the known method of robot control
in the internal coordinates. In the simplest example, based on the proportional con-
troller, we can write

u = Kpq̃. (7.27)

The control method, based on the inverse Jacobian matrix, is shown in Figure 7.11.

7.2.3 PD control of position with gravity compensation

The PD control of position with gravity compensation was already studied in detail
for the internal coordinates. Now we shall derive the analogue control algorithm in
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the external coordinates. The starting point will be equation (7.21) expressing the
error of the pose of the end-effector. The velocity of the robot end-point is calculated
with the help of the Jacobian matrix from the joint velocities

ẋ = J(q)q̇. (7.28)

The equation describing the PD controller in external coordinates is analogous to
that written in the internal coordinates (7.2)

f = Kpx̃−Kd ẋ. (7.29)

In equation (7.29), the pose error is multiplied by the matrix of the positional gains
Kp, while the velocity error is multiplied by the matrix Kd . The negative sign of the
velocity error introduces damping into the system. The joint torques are calculated
from the force f, acting at the tip of the robot, with the help of the transposed Jaco-
bian matrix (in a similar way as in equation (7.23)) and by adding the component
compensating gravity (as in equation (7.7)). The control algorithm is written as

u = JT (q)f + ĝ(q). (7.30)

The complete control scheme is shown in Figure 7.12.

7.2.4 Control of the robot based on inverse dynamics

In the chapter on the control of robots in the internal coordinates, the following
controller based on inverse dynamics was introduced

u = B̂(q)y + n̂(q, q̇). (7.31)

We also learned that the vector y has the characteristics of acceleration

y = q̈, (7.32)
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which was determined in such a way, that the robot tracked the desired trajectory
expressed in the internal coordinates. As it is our aim to develop a control method in
the external coordinates, the y signal must be adequately adapted. Equation (7.31),
linearizing the system, remains unchanged.

We shall again start from the equation relating the joint velocities to the robot
end-effector velocities

ẋ = J(q)q̇. (7.33)

By calculating the time derivative of equation (7.33), we obtain

ẍ = J(q)q̈+ J̇(q, q̇)q̇. (7.34)

The error of the pose of the robot end-effector is determined as the difference be-
tween its desired and its actual pose

x̃ = xr −x = xr −k(q). (7.35)

In a similar way the velocity error of the robot end-effector is determined

˙̃x = ẋr − ẋ = ẋr −J(q)q̇. (7.36)

The acceleration error is the difference between the desired and the actual
acceleration

¨̃x = ẍr − ẍ. (7.37)

When developing the inverse dynamics based controller in the internal coordinates,
equation (7.19) was derived describing the dynamics of the control error in the form
¨̃q+ Kd ˙̃q+ Kpq̃ = 0. An analogous equation can be written for the error of the end-
effector pose. From this equation the acceleration ẍ of the robot end-effector can be
expressed

¨̃x + Kd ˙̃x + Kpx̃ = 0 ⇒ ẍ = ẍr + Kd ˙̃x + Kpx̃. (7.38)

From equation (7.34) we express q̈ taking into account the equality y = q̈

y = J−1(q)
(
ẍ− J̇(q, q̇)q̇

)
. (7.39)

By replacing ẍ in equation (7.39) with expression (7.38), the control algorithm based
on inverse dynamics in the external coordinates is obtained

y = J−1(q)
(
ẍr + Kd ˙̃x + Kpx̃− J̇(q, q̇)q̇

)
. (7.40)

The control scheme encompassing the linearization of the system based on inverse
dynamics (7.31) and the closed loop control (7.40) is shown in Figure 7.13.

7.3 Control of the contact force

The control of position is sufficient when a robot manipulator follows a trajectory
in free space. When contact occurs between the robot end-effector and the envi-
ronment, position control is not an appropriate approach. Let us imagine a robot
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Fig. 7.13 Robot control based on inverse dynamics in external coordinates

manipulator cleaning a window with a sponge. As the sponge is very compliant, it
is possible to control the force between the robot and window by controlling the
position between the robot gripper and the window. If the sponge is sufficiently
compliant and when we know the position of the window accurately enough, the
robot will appropriately accomplish the task.

If the compliance of the robot tool or its environment is smaller, then it is not so
simple to execute the tasks which require contact between the robot and its environ-
ment. Let us now imagine a robot scraping paint from a glassy surface while using a
stiff tool. Any uncertainty in the position of the glassy surface or malfunction of the
robot control system will prevent satisfactory execution of the task; either the glass
will break, or the robot will uselessly wave in the air.

In both robot tasks, i.e. cleaning a window or scraping a smooth surface, it is
more reasonable that instead of position of the glassy surface we determine the
force that the robot should exert on the environment. Most of the modern industrial
robots are carrying out relatively simple tasks, such as spot welding, spray painting
and various point-to-point operations. Several robot applications, however, require
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control of the contact force. A characteristic example is grinding or a similar robot
machining task. An important area of industrial robotics is also robot assembly,
where several component parts are to be assembled. In such robot tasks, sensing
and controlling the forces is of utmost importance.

Accurate operation of a robot manipulator in an uncertain, non-structured and
changeable environment is required for efficient use of robots in an assembly task.
Here, several component parts must be brought together with high accuracy. Mea-
surement and control of the contact forces enable the required positional accuracy
of the robot manipulator to be reached. As relative measurements are used in robot
force control, the absolute errors in positioning of either the manipulator or the ob-
ject are not as critical as in robot position control. When dealing with stiff objects,
already small changes in position produce large contact forces. Measurement and
control of those forces can lead to significantly higher positional accuracy of robot
movement.

When a robot is exerting force on the environment, we deal with two types of
robot tasks. In the first case we would like the robot end-effector to be brought into
a desired pose while the robot is in contact with the environment. This is the case of
robot assembly. A characteristic example is that of inserting a peg into a hole. The
robot movement must be of such nature that the contact force is reduced to zero or
to a minimal value allowed. In the second type of robot task, we require of the robot
end-effector to exert a predetermined force on the environment. This is the example
of robot grinding. Here, the robot movement depend on the difference between the
desired and the actually measured contact force.

The robot force control method will be based on control of the robot using in-
verse dynamics. Because of the interaction of the robot with the environment, an
additional component, representing the contact force f, appears in the inverse dy-
namic model. As the forces acting at the robot end-effector are transformed into the
joint torques by the use of the transposed Jacobian matrix (4.17), we can write the
robot dynamic model in the following form

B(q)q̈ + C(q, q̇)q̇+ Fvq̇+ g(q) = τ −JT (q)f. (7.41)

On the right hand side of the equation (7.5) we added the component −JT (q)f rep-
resenting the force of interaction with the environment. It can be seen that the force
f acts through the transposed Jacobian matrix in a similar way as the joint torques,
i.e. it tries to produce robot motion. The model (7.41) can be rewritten in a shorter
form by introducing

n(q, q̇) = C(q, q̇)q̇+ Fq̇+ g(q), (7.42)

which gives us the following dynamic model of a robot in contact with its
environment

B(q)q̈ + n(q, q̇) = τ −JT (q)f. (7.43)
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7.3.1 Linearization of a robot system through inverse dynamics

Let us denote the control output, representing the desired actuation torques in the
robot joints, by the vector u. Equation (7.43) can be written as follows

B(q)q̈+ n(q, q̇)+ JT (q)f = u. (7.44)

From equation (7.44) we express the direct dynamic model

q̈ = B−1(q)
(
u−n(q, q̇)−JT (q)f)

)
. (7.45)

Equation (7.45) describes the response of the robot system to the control input u.
By integrating the acceleration, while taking into account the initial velocity value,
the actual velocity of the robot motion is obtained. By integrating the velocity, while
taking into the account the initial position, we calculate the actual positions in the
robot joints. The described model is represented by the block Robot in Figure 7.14.

In a similar way as when developing the control method based on inverse dy-
namics, we will linearize the system by including the inverse dynamic model into
the closed loop

u = B̂(q)y + n̂(q, q̇)+ JT (q)f, (7.46)

The use of circumflex denotes the estimated parameters of the robot system. The dif-
ference between equation (7.46) and equation (7.14), representing the control based
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Fig. 7.14 Linearization of the control system by implementing the inverse dynamic model and the
measured contact force
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on inverse dynamics in internal coordinates, is the component JT (q)f, compensat-
ing the influence of external forces on the robot mechanism. The control scheme,
combining equations (7.45) and (7.46) is shown in Figure 7.14. Assuming that the
estimated parameters are equal to the actual robot parameters, it can be observed,
that by introducing the closed loop (7.46), the system is linearized because there are
only two integrators between the input y and the output q, as already demonstrated
in Figure 7.8.

7.3.2 Force control

After linearizing the control system, the input vector y must be determined. The
force control will be translated to control of the pose of the end-effector. This can
be, in a simplified way, explained with the following reasoning: if we wish the robot
to increase the force exerted on the environment, the robot end-effector must be dis-
placed in the direction of the action of the force. Now we can use the control system
which was developed to control the robot in the external coordinates (7.40). The
control scheme of the robot end-effector including the linearization, while taking
into account the contact force, is shown in Figure 7.15.

Up to this point we mainly summarized the knowledge of the pose control of the
robot end-effector as explained in the previous chapters. In the next step we will
determine the desired pose, velocity and acceleration of the robot end-effector, on
the basis of the force measured between the robot end-point and its environment.

Let us assume that we wish to control a constant desired force fr. With the force
wrist sensor, the contact force f is measured. The difference between the desired and
measured force represents the force error

f̃ = fr − f. (7.47)

The desired robot motion will be calculated based on the assumption that the force f̃
must displace a virtual object with inertia Bc and damping Fc. In our case the virtual
object is in fact the robot end-effector. For easier understanding, let us consider a
system with only one degree of freedom. When a force acts on such a system, an

u
RobotInverse

dynamics
yPosition

control

Direct
kinematics

xr
xr˙

x
x

˙

q
q
f

˙

xr¨

Fig. 7.15 Robot control based on inverse dynamics in external coordinates including the contact
force
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accelerated movement will start. The movement will be determined by the force,
the mass of the object and the damping. The robot end-effector therefore behaves
as a system consisting of a mass and a damper, which are under the influence of
the force f̃. For more degrees of freedom we can write the following differential
equation describing the movement of the object

f̃ = Bcẍc + Fcẋc. (7.48)

The matrices Bc and Fc determine the movement of the object under the influence
of the force f̃. From equation (7.48) the acceleration of the virtual object can be
calculated

ẍc = B−1
c

(
f̃−Fcẋc

)
. (7.49)

By integrating the equation (7.49), the velocities and the pose of the object are calcu-
lated, as shown in Figure 7.16. In this way the reference pose xc, reference velocity
ẋc and reference acceleration ẍc are determined from the force error. The calculated
variables are inputs to the control system, shown in Figure 7.15. In this way the force
control was translated into the already known robot control in external coordinates.

In order to simultaneously control also the pose of the robot end-effector, parallel
composition is included. Parallel composition assumes that the reference control
variables are obtained by summing the references for force control (xc, ẋc, ẍc) and
references for the pose control (xd , ẋd , ẍd). The parallel composition is defined by
equations

xr = xd + xc

ẋr = ẋd + ẋc

ẍr = ẍd + ẍc

(7.50)

The control system incorporating the contact force control, parallel composition and
control of the robot based on inverse dynamics in external coordinates is shown in
Figure 7.17. The force control is obtained by selecting

B–1f +
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–

+
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~
c

¨

xc

xc

˙

Fig. 7.16 Force control translated into control of the pose of robot end-effector
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Fig. 7.17 Direct force control in the external coordinates

xr = xc

ẋr = ẋc

ẍr = ẍc

(7.51)

The described control method enables the control of force. However, it does not
enable independent control of the pose of the robot end-effector as it is determined
by the error in the force signal.
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