PSC 2023/24 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http://www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

| - Haskell

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

Lambda notation, again

Bound variables

int f(int x) { return x"2 + 2*x + 5 }

int £f(int y) { return y"2 + 2*xy + 5 }

X2 + 2%x + b
y 2 + 2%y + 5

fé)\a:.xQ——anLE) let f x
FEXNy. 2 +2y+5 let £y

they are all the same!
names of local variables are not important:
alpha-conversion

A\,
A\

AL,
Y+ 2245
M\Z.

Free variables

? 4+ 2+ 5 they are not the same!
y? 4+ 2y + 5 names of global variables matter
? 4+ 22+ 5 the same enclosing context
Y2 + 2y + 5 can make a difference
AT. T

we say it binds the occurrences of xint

2 +22+45
are they all equivalent
(by alpha-conversion)?
22 +22+45

Free variables: formally
tuo=x | Ax.t | tt | ..

fv : LTerms — p(Var)

fv(z) = {z}
fv(dz. t) = fv(t)\ {z}
fV(tl ?fg) é fV(tl) U fV(tQ)

fv(Ax. 2° + 22+ 5) = {2}
fv(\y. y° + 22+ 5) = {z}
fv(dz. 22 +22+5) =0

5

Alpha-conversion, again
Ax. t = My. (t]Y/.]) if y & fv(Ax. t)

Mo, 22 +224+5=My. (22 +22+5)[Y/z]) = My, y* + 22+ 5

Ae. 2% 4+ 22+ 5 # Az ((x° + 22 +5)[*/4]) because z € fv(Az. ° + 2z + 5)

Beta rule, again

(Ax. t) e =t[°/,]

how is (capture-avoiding) substitution defined?
and why is it called “capture-avoiding”?

Capture-avoiding substitution

Substitution, 1st try

e { g B

y otherwise

coaa | Ayt ify==x
(Ay-) /] = {)\?y/, (t[¢/2]) Ot}ylel”WiSe

(t1 t2)[*/2] = ta[*/a] (t2[°/2])

A

t1 2z Ay, 2+ 2y + 5 to =y
<

t1 ta = (A\z. M\y. ° + 2y + 5) Yu
= (\y. ‘|‘2?J‘|‘5)[/]
= Ay ((z° +2y +5)[Y/2])

= \y. y° +2y+5 -
captured variable!
\/9 p

free

Capture-avoiding

free variables occurring in e
should remain free after the application of /]

solution: alpha-convert before substituting!

(Ay- 2° +2y +5)[/a] = (N2 (2% + 2y + 5[/)] /]
= (\z. 2 +224+5)[Y/,]
=\z. (" +22+5)[Y/.])

= \z. y° +22+5
free

Substitution, 2nd try

e ify==zx

y otherwise
superfluous: no free

AY. t if y = x occurrences to replace
Az. (t[7/4]1¢/z]) otherwise, with

z & tv(e) Ufv(Ay. t) U{x}
t

Substitution, final

y[/a] = { ; gt]gf/leijlse
(Ay.)¢/ = Xz (t7/,][°/2]) with 2 & fv(e) Ufv(Ay.) U {z}
(t1 t2)[*/a] = t1[/a] (t2[/4])

Higher Order Functional Languages
Haskell

From your forms

@ 5Sstelle @ 4stelle © 3stelle
® 2stelle @ 1stella
Functional programming

D

(over 8 answers)

Imperative vs Functional

tell the machine how to compute;
Imperative style a sequence of tasks to execute;
manipulation of mutable states

tell the machine what to compute;
declarative style;

define what functions are,

not how to compute them,;

functions have no side effects;

can’t set and change variable’s content;
manipulation of values

Purely functional
style

Declarative style

Any experience of functional programming?
Have you ever used a spreadsheet?

The value of a cell is defined in terms of those of other cells:
what is to be computed, not how it must be computed

we do not specify the order in which cells are calculated:
cells are computed according to their dependencies

we do not decide how to allocate memory:
only those cells which are in use are allocated

we specify the value of a cell by an expression:
its parts can be evaluated in any order

16

Functional style: HO

Higher-Order:

functions as values,
functions as parameters,
functions are returned,
functions are composed

how many elements of a
list will pass the test?

length (filter test xs)

alistinT”

a predicate in T->Bool

a function in (T->Bool) -> T* -> T~

a function ir|17 T* -=> Int

Purity: no side effects

the result of a function is determined only by its input

a variable is just a name bound to some (HO) value:
shorthands for expressions

variables do not vary

programs are typically shorter, maybe less efficient;
closer to semantics, ease verification of correctness;
more robust, easier to maintain

Haskell: a purely functional programming language

http://www.haskell.org/

Downloads Community Documentation

Declarative, statically typed code.
X-Haske
\am = filterPrime [2..]
where filterPrime (p:xs) =

p : filterPrime [x | x <- xs, x ‘mod* p /= 0]

An advanced, purely functional programming language

Try it! Got 5 minutes?

Type Haskell expressions in here. Type (help to start the tutorial.

A Or try typing these out and see what happens (click to insert):

23 * 36 or reverse "hello" or foldr (:) [] [1,2,3] or do line <- getLine;
putStrLn line or readFile "/welcome"

These 10 actions are supported in this sandbox.

Haskell: origins

named after mathematical logician Haskell B. Curry

1987: Haskell project begun

1998: first version appear

2003: the Haskell Report was published
(first stable version)

Graham Hutton, “Programming in Haskell”, ch.1-8,14,15

20

Features

Referential If a function is called twice with the same
transparency argument, it returns the same result;
compiler can reason on program’s behaviour;
one can deduce a function is correct and build
more complex functions by composition

Statically type inference: you don’t have to label all data,

typed their types can be figured out;
many possible errors are caught at compile time

Polymorphism one definition of function works for many types

Overloading different definitions of the same function-name
for different types

Laziness calculation starts only if some result is needed;
infinite data structures can be manipulated

21

M NOT LAZY

I'M JUST SIWING MY
ENERGY F(III WHEN |

"2 1IN

REALLY/NEEDIT:

More features (less bugs)

Purity: no side effects

Typeful: types are pervasive, no dubious use of types
Concise: shorter programs, less typing (on the keyboard)
High level: closer to the algorithm description

Memory managed: programmers can focus on the algorithm

Compositionality: solve problems by composing functions that
solve smaller problems

Data encapsulation and polymorphism not exclusive to OOP:
modules and type classes

23

A taste of Haskell

math. notation Haskell notation
f(x)=2x+3 f x = 2*%x + 3
g(z,y) ="+ ay +y° g (X,y) = X"2 + x*y + y"2
] abs x
o B B
abs(x) = v x_Q x>=0 - %
—x otherwise otherwise = -x
abs(f(9(2,3))) abs (£(g(3,2)))

set comprehension list comprehension
{x|xze XA f(x) > 5} [x | x<-X , £ x > 5]

24

The power of recursion

No assignments: no loops
(loops over lists exist: list comprehension)
Recursion is used in place of loops

powerZ n
1
2 * power2(n-1)

n==
n>0

25

Haskell: some principles

evaluate expressions (syntactic terms)
to yield values (abstract entities regarded as answers)

every value has an associated type
the association is called typing

you can think of types as sets of values

as expressions denote values
types are denoted by type expressions

values are first-class (passed around, returned as results)
types are not first-class

26

Haskell: GHCi

Interactive shell or interpreter, executing read-eval-print loop
programmers enter expressions/declarations one at a time
they are type checked, compiled and executed

if an expression does not parse correctly
or does not pass the type-checking phase of the compiler,
no code is generated and no code is executed

once an identifier is defined it is available at subsequent lines

27

GHCi expressions

typical interaction: prompt user’s input

~ /

Prelude> expression

\\\\\\value

1t :: type

/ \ T inferred type
read “has type”

special identifier
bound to the value of
the last expression entered

output

28

GHCi declarations

typical interaction:
keyword

/

Prelude> let i1d = expression

id :: type \\\\

defining symbol

29

GHCi declarations

more generally:

function name formal parameters

N _

Prelude> let 1d arguments = expression
id :: argtype -> restype

/ N

arguments types result type

30

GHCi session

Last login: Wed Mar 18 11:13:21 on ttys000

Cat:~ bruni$ ghci
GHCi, version 8.6.3: http://www.haskell.org/ghc/ :? for help

Prelude> ||

31

