

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

PSC 2023/24 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni http://www.di.unipi.it/~bruni/

03 - Unification

Inference

1. a goal

$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow m$$

SOS rule application?

$$(prod)\frac{\mathsf{E}_0 \longrightarrow n_0}{\mathsf{E}_0 \otimes \mathsf{E}_1 \longrightarrow n} \xrightarrow{n = n_0 \cdot n_1}$$

2. take a rule

$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow m$$

$$(prod) rac{\mathsf{E}_0 \longrightarrow n_0 \quad \mathsf{E}_1 \longrightarrow n_1}{\mathsf{E}_0 \otimes \mathsf{E}_1 \longrightarrow n} \quad \stackrel{n = n_0 \cdot n_1}{= n_0 \cdot n_1}$$
 $\mathsf{E}_0 = 1 \oplus 2$
 $\mathsf{E}_0 = 1 \oplus 2$
 $\mathsf{E}_1 = 3 \oplus 4$
 $\mathsf{E}_1 = 3 \oplus 4$
 $\mathsf{E}_1 = n_0 \cdot n_1$
 $\mathsf{E}_$

$$(prod)\frac{1\oplus 2\longrightarrow n_0}{(1\oplus 2)\otimes (3\oplus 4)\longrightarrow m}\stackrel{m=n_0\cdot n_1}{\longrightarrow}$$

4. instantiate

$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow m$$

$$(prod) \cfrac{1 \oplus 2 \longrightarrow n_0}{(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow m} {}_{m = n_0 \cdot n_1}$$

5. recursively solve subgoals

$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow m$$

SOS rule application?

$$(prod)\frac{1\oplus 2\longrightarrow \boxed{3}}{(1\oplus 2)\otimes (3\oplus 4)\longrightarrow m} = \boxed{3\cdot 7}$$

6. combine results

$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow m$$

$$(prod)\frac{1\oplus 2\longrightarrow 3\quad 3\oplus 4\longrightarrow 7}{(1\oplus 2)\otimes (3\oplus 4)\longrightarrow 21}$$

7. return results

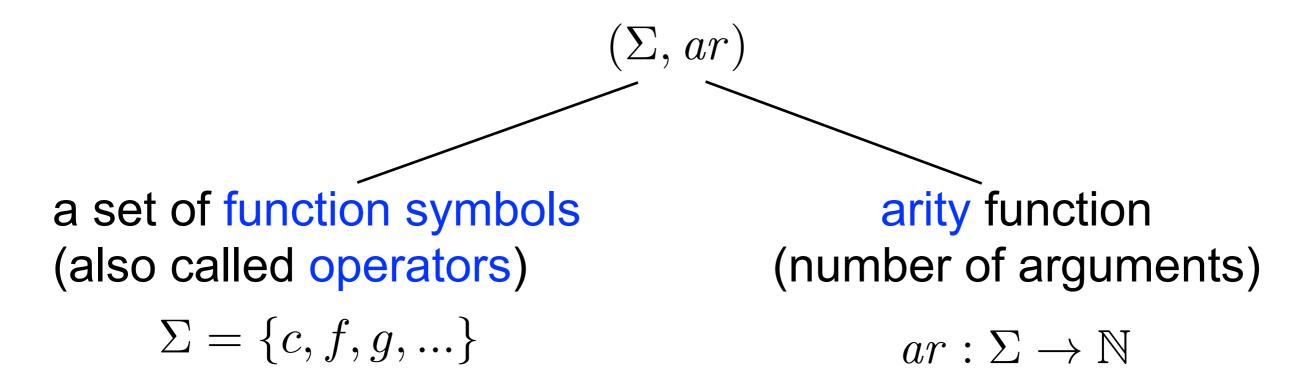
$$(1 \oplus 2) \otimes (3 \oplus 4) \longrightarrow 21$$

Deduction process



Signatures

Unsorted signature



each function symbol has an arity

Running example

$$\Sigma = \{0, succ, plus\}$$
 $ar(0) = 0$ constant
 $ar(succ) = 1$ unary
 $ar(plus) = 2$ binary

Equivalently

$$(\Sigma, ar)$$

let
$$\Sigma_n \stackrel{\triangle}{=} ar^{-1}(n)$$

= $\{f \in \Sigma \mid ar(f) = n\}$

a signature is an arity-indexed family of sets of operators

$$\Sigma = \{\Sigma_n\}_{n \in \mathbb{N}}$$

Running example

$$\Sigma_0 = \{0\}$$
 $\Sigma_1 = \{ ext{succ}\}$ $\Sigma_2 = \{ ext{plus}\}$ $\Sigma_n = arnothing$ if $n>2$

Terms over a signature

$$\Sigma = \{\Sigma_n\}_{n\in\mathbb{N}} \qquad \text{a signature}$$

$$X = \{x,y,z,\ldots\} \quad \text{an infinite set of variables}$$

 $T_{\Sigma,X}$ denotes the set of all terms over Σ,X

$T_{\Sigma,X}$ is the least set such that:

- if $x \in X$, then $x \in T_{\Sigma,X}$
- if $c \in \Sigma_0$, then $c \in T_{\Sigma,X}$
- if $f \in \Sigma_n$ and $t_1, ..., t_n \in T_{\Sigma,X}$, then $f(t_1, ..., t_n) \in T_{\Sigma,X}$

i.e.
$$T_{\Sigma,X} \ni t ::= x \mid c \mid f(t_1,...,t_n)$$
 $x \in X \quad c \in \Sigma_0 \quad f \in \Sigma_n$

Vars

$$\Sigma = \{\Sigma_n\}_{n \in \mathbb{N}} \quad X = \{x, y, z, \ldots\} \qquad t \in T_{\Sigma, X}$$

vars(t) set of variables that appears in the term t

$$vars: T_{\Sigma,X} \to \wp(X)$$

$$vars(x) \stackrel{\triangle}{=} \{x\}$$

$$vars(c) \stackrel{\triangle}{=} \varnothing$$

$$vars(f(t_1, ..., t_n)) \stackrel{\triangle}{=} \bigcup_{i=1}^{n} vars(t_i)$$

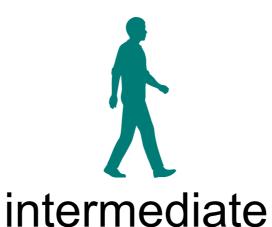
Closed terms

a term with no variables is called closed

$$T_{\Sigma} \stackrel{\triangle}{=} vars^{-1}(\varnothing) = \{ t \in T_{\Sigma,X} \mid vars(t) = \varnothing \}$$

(obviously $T_{\Sigma} \subseteq T_{\Sigma,X}$)

Skill levels



does many things

advanced multitasking

novice does one thing

beginner does nothing

Running example

$$\Sigma_0 = \{0\}$$
 $\Sigma_1 = \{ ext{succ}\}$ $\Sigma_2 = \{ ext{plus}\}$ $\Sigma_n = arnothing$ if $n>2$

vars(t) $t \in ?$ 0 let's complete the schema $\bigcirc_{T_\Sigma} \ \ {\mathcal T}_{\Sigma,X}$ $\{x\}$ \mathcal{X} (obviously $T_{\Sigma} \subseteq T_{\Sigma,X}$) succ(0)C $T_{\Sigma,X}$ succ(x) T_{Σ} $T_{\Sigma,X}$ succ(plus(0), x) $T_{\Sigma,X}$ plus(succ(x), 0) $T_{\Sigma,X}$ succ(succ(0), plus(x)) $T_{\Sigma,X}$ $\bigcirc T_{\Sigma} T_{\Sigma,X}$ succ(plus(w,z)) $\bigcirc T_{\Sigma} T_{\Sigma,X}$ plus(plus(x, succ(y)), plus(0, succ(x)))

Substitutions

$$\rho: X \to T_{\Sigma,X}$$
 a substitution assigns terms to variables

we only consider substitutions that are identity everywhere, except for a finite number of cases, written

$$\rho = [x_1 = t_1 \,, \, \dots, \, x_n = t_n] \qquad \qquad \rho(x) = \left\{ \begin{array}{ll} t_i & \text{if } x = x_i \\ x & \text{otherwise} \end{array} \right.$$
 all different

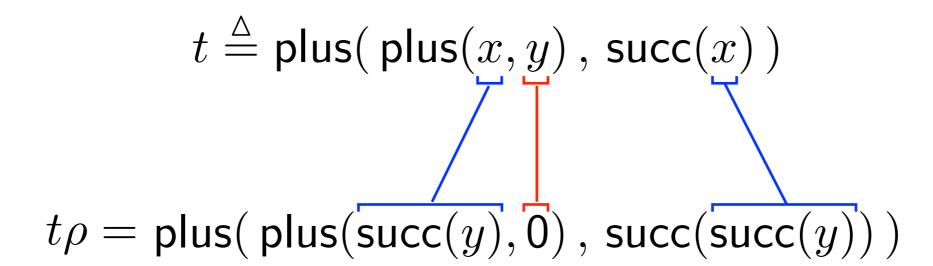
Notation

 $\rho: X \to T_{\Sigma,X}$ a substitution assigns terms to variables

overloaded notation for the lifted function $\rho: T_{\Sigma,X} \to T_{\Sigma,X}$

- ho(t) denotes the term obtained by simultaneous application of the substitution to all variable occurrences in t
 - $t\rho$ alternative notation

$$\rho \stackrel{\triangle}{=} [x = \operatorname{succ}(y), y = 0]$$



mgt relation

t is more general than t' if $\exists \rho$. $t' = t\rho$

in which case, we also say t^\prime is an instance of t

plus(x,succ(y))	mgt	plus(0,succ(succ(z)))
plus(0,x)	mgt	plus(y,0)
plus(y, 0)	mgt	plus(0,x)
$\begin{array}{c} plus(0,x) \\ plus(y,0) \end{array}$	mgt	plus(0, 0)

mgt relation

mgt is transitive and reflexive

$$\int \int t \operatorname{mgt} t$$
if $(t_1 \operatorname{mgt} t_2)$ and $(t_2 \operatorname{mgt} t_3)$, then $(t_1 \operatorname{mgt} t_3)$

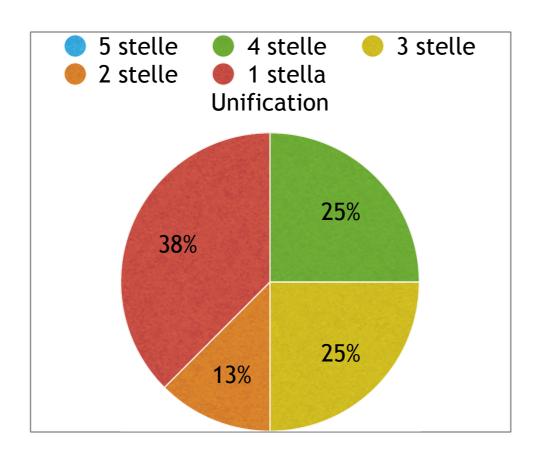
there are terms $t \neq t'$ such that (t mgt t') and (t' mgt t) succ(x) succ(y)

mgt can be extended to substitutions pointwise

$$\rho$$
 mgt ρ' if $\exists \rho''$. $\forall x$. $\rho'(x) = \rho''(\rho(x))$

Unification (in its simplest form: syntactic, first-order)

From your forms



(over 8 answers)

Unification problem

Given a set of potential equalities

$$\mathcal{G} = \{\ell_1 \stackrel{?}{=} r_1, ..., \ell_n \stackrel{?}{=} r_n\}$$

where $\ell_1, ..., \ell_n, r_1, ..., r_n \in T_{\Sigma, X}$

can we find a substitution ρ such that

$$\forall i \in [1, n]. \ \rho(\ell_i) = \rho(r_i)$$
 ?

we call such a ρ a solution of $\mathcal G$

$$sols(\mathcal{G}) \stackrel{\triangle}{=} \{ \rho \mid \forall i \in [1, n]. \ \rho(\ell_i) = \rho(r_i) \}$$

Intuitively

Intuitively

$$\mathcal{G} = \{\mathsf{plus}(x,0) \stackrel{?}{=} \mathsf{plus}(0,y)\}$$

$$sols(\mathcal{G}) \stackrel{\triangle}{=} \{ [x = 0, y = 0] \}$$

$$\mathcal{G} = \{ \operatorname{succ}(x) \stackrel{?}{=} \operatorname{succ}(\operatorname{succ}(y)) \}$$

$$sols(\mathcal{G}) \stackrel{\triangle}{=} \{ [x = succ(y)], [x = succ(0), y = 0], \ldots \}$$

Unification problem

More interestingly, can we solve the following problem?

Given a set of potential equalities

$$\mathcal{G} = \{\ell_1 \stackrel{?}{=} r_1, ..., \ell_n \stackrel{?}{=} r_n\}$$

where $\ell_1,...,\ell_n,r_1,...,r_n \in T_{\Sigma,X}$

can we find a most general solution ρ ?

$$\rho \in sols(\mathcal{G})$$
 and

$$\forall \rho' \in sols(\mathcal{G}). \ \rho \ \mathsf{mgt} \ \rho'$$

Unification algorithm

Idea: we iteratively reduce the set \mathcal{G} by solution-preserving tranformations until either a solution is found or we can prove there is no solution

$$\mathcal{G}\cdots\mathcal{G}_1\cdots\mathcal{G}_n\cdots\{x_1\stackrel{?}{=}t_1,...,x_k\stackrel{?}{=}t_k\}$$

Solutions may not exist and even if they exist may not be unique

Termination

$$\mathcal{G} = \{\ell_1 \stackrel{?}{=} r_1, ..., \ell_n \stackrel{?}{=} r_n\}$$

 \mathcal{G} and \mathcal{G}' are equivalent if $sols(\mathcal{G}) = sols(\mathcal{G}')$

the algorithm terminates successfully when we reach

$$\mathcal{G}'=\{x_1\stackrel{?}{=}t_1,...,x_k\stackrel{?}{=}t_k\}$$
 equivalent to \mathcal{G} all different $\{x_1,...,x_k\}\cap\bigcup_{i=1}^k vars(t_i)=\varnothing$

any such \mathcal{G}' defines a straightforward solution $[x_1 = t_1, ..., x_k = t_k]$

Notation

$$\mathcal{G} = \{\ell_1 \stackrel{?}{=} r_1, ..., \ell_n \stackrel{?}{=} r_n\}$$

$$vars(\mathcal{G}) \stackrel{\triangle}{=} \bigcup_{i=1}^{n} (vars(\ell_i) \cup vars(r_i))$$

$$\mathcal{G}\rho \stackrel{\triangle}{=} \{\ell_1\rho \stackrel{?}{=} r_1\rho, ..., \ell_n\rho \stackrel{?}{=} r_n\rho\}$$

Unification algorithm

delete

$$\mathcal{G} \cup \{t \stackrel{?}{=} t\}$$
 becomes \mathcal{G}

eliminate

$$\mathcal{G} \cup \{x \stackrel{?}{=} t\}$$
 becomes if $x \in vars(\mathcal{G}) \setminus vars(t)$
$$\mathcal{G}[x = t] \cup \{x \stackrel{?}{=} t\}$$

swap

$$\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} x\}$$
becomes
 $\mathcal{G} \cup \{x \stackrel{?}{=} f(t_1,...,t_m)\}$

decompose

$$\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} f(u_1,...,u_m)\}$$
becomes
 $\mathcal{G} \cup \{t_1 \stackrel{?}{=} u_1,...,t_m \stackrel{?}{=} u_m\}$

occur-check

$$\mathcal{G} \cup \{x \stackrel{?}{=} f(t_1,...,t_m)\}$$
 fails if $x \in vars(f(t_1,...,t_m))$

conflict

$$\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} g(u_1,...,u_h)\}$$
 fails if $f \neq g$ or $m \neq h$

```
\{\operatorname{plus}(\operatorname{succ}(x),x)\stackrel{?}{=}\operatorname{plus}(y,0)\}
                                                                \mathcal{G} \cup \{f(t_1, ..., t_m) \stackrel{?}{=} f(u_1, ..., u_m)\}
                                                                   becomes \mathcal{G} \cup \{t_1 \stackrel{?}{=} u_1, ..., t_m \stackrel{?}{=} u_m\}
    \{\operatorname{succ}(x)\stackrel{?}{=}y\,,\,x\stackrel{?}{=}\mathbf{0}\}
                                                             \mathcal{G} \cup \{x \stackrel{?}{=} t\}
                                                           becomes if x \in vars(\mathcal{G}) \setminus vars(t)
                                                \mathcal{G}[x=t] \cup \{x \stackrel{?}{=} t\}
     \{ succ(0) \stackrel{?}{=} y, x \stackrel{?}{=} 0 \}
                                                                          \mathcal{G} \cup \{f(t_1, ..., t_m) \stackrel{?}{=} x\}
                                                                                        becomes
                                                                          \mathcal{G} \cup \{x \stackrel{?}{=} f(t_1, ..., t_m)\}
     \{y \stackrel{?}{=} \operatorname{succ}(0), x \stackrel{?}{=} 0\}
                      success! \rho = [y = \operatorname{succ}(0), x = 0]
```

$$\{\mathsf{plus}(\mathsf{0},x) \stackrel{?}{=} \mathsf{succ}(y)\} \quad \mathsf{plus} \neq \mathsf{succ}$$

$$\underbrace{\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} g(u_1,...,u_h)\}}_{\mathsf{fails} \quad \mathsf{if} \ f \neq g \ \mathsf{or} \ m \neq h}$$

failure!

$$\{\operatorname{succ}(x)\stackrel{?}{=}y\,,\,\operatorname{succ}(y)\stackrel{?}{=}x\}$$

$$\operatorname{succ}(x) \stackrel{:}{=} y \,,\, \operatorname{succ}(y) \stackrel{:}{=} x \}$$
 $\begin{array}{c} \operatorname{swap} \\ \mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} x\} \\ \operatorname{becomes} \\ \mathcal{G} \cup \{x \stackrel{?}{=} f(t_1,...,t_m)\} \end{array}$

 $\{\operatorname{succ}(x) \stackrel{?}{=} y, x \stackrel{?}{=} \operatorname{succ}(y)\}$

 $\mathcal{G} \cup \{x \stackrel{?}{=} t\}$ becomes if $x \in vars(\mathcal{G}) \setminus vars(t)$ $\mathcal{G}[x=t] \cup \{x \stackrel{?}{=} t\}$

$$\{\operatorname{succ}(\operatorname{succ}(y))\stackrel{?}{=} y\,,\,x\stackrel{?}{=}\operatorname{succ}(y)\}$$

$$\{y \stackrel{?}{=} \operatorname{succ}(\operatorname{succ}(y)), x \stackrel{?}{=} \operatorname{succ}(y)\}\ y \in vars(\operatorname{succ}(\operatorname{succ}(y)))$$

swap $\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} x\}$ becomes $\mathcal{G} \cup \{x \stackrel{?}{=} f(t_1, ..., t_m)\}$

occur-check

failure!

$$\mathcal{G} \cup \{x \stackrel{?}{=} f(t_1,...,t_m)\}$$
 fails if $x \in vars(f(t_1,...,t_m))$

* Exercise

 $\{\mathsf{plus}(x,\mathsf{succ}(x)) \stackrel{?}{=} \mathsf{plus}(\mathsf{0},y) \ , \ \mathsf{plus}(y,z) \stackrel{?}{=} \mathsf{plus}(z,w)\}$

delete

 $\mathcal{G} \cup \{t \stackrel{?}{=} t\}$ becomes \mathcal{G}

eliminate

$$\mathcal{G} \cup \{x \stackrel{?}{=} t\}$$
 becomes if $x \in vars(\mathcal{G}) \setminus vars(t)$
$$\mathcal{G}[x = t] \cup \{x \stackrel{?}{=} t\}$$

swap

 $\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} x\}$ becomes $\mathcal{G} \cup \{x \stackrel{?}{=} f(t_1,...,t_m)\}$

decompose

$$\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} f(u_1,...,u_m)\}$$
becomes
$$\mathcal{G} \cup \{t_1 \stackrel{?}{=} u_1,...,t_m \stackrel{?}{=} u_m\}$$

occur-check

 $\mathcal{G} \cup \{x \stackrel{?}{=} f(t_1, ..., t_m)\}$ fails if $x \in vars(f(t_1, ..., t_m))$

conflic

 $\mathcal{G} \cup \{f(t_1,...,t_m) \stackrel{?}{=} g(u_1,...,u_h)\}$ fails if $f \neq g$ or $m \neq h$