PSC 2020/21 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/

24 - Google Go


http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://www.di.unipi.it/~bruni/

Google Go
concurrency oriented programming



Google Go

http://golang.org/




Go features

facilitate building reliable and efficient software
open source

compiled, garbage collected

functional and OO features

statically typed (light type system)

concurrent



Go principles

C, C++, Java:

too much typing (writing verbose code)
and too much typing (writing explicit types)
(and poor concurrency)

Python, JS:
no strict typing, no compiler issues
runtime errors that should be caught statically

Google Go:
compiled, static types, type inference
(and nice concurrency primitives)



Go project
designed by Ken Thompson, Rob Pike, Robert Griesemer

2007: started experimentation at Google
nov 2009: first release (more than 250 contributors)

may 2012: version 1.0 (two yearly releases since 2013)
feb 2021: version 1.16

C. Doxsey, Introducing Go (2016). Ch: 1-4, 6-7, 10

OREILLY"

Introducing

e




Go concurrency

any function can be executed in a separate lightweight thread

go f(x)

goroutines run in the same address space
package sync provides basic synchronisation primitives
programmers are encouraged NOT TO USE THEM!

do not communicate by sharing memory
Instead, share memory by communicating

use built-in high-level concurrency primitives:
channels and message passing
(inspired by process algebras)

7



Go channels

channels can be created and passed around

var ch = make(chan int)
creates a channel for transmitting integers
chl = ch
ch1l and ch refers to the same channel
go f(ch)
go g(ch)
f and g share the channel ch



Directionality

channels are alway created bidirectional

var ch = make(chan int)

channel types can be annotated with directionality

var rec <-chan int
rec can only be used to receive integers

var snd chan<- int
snd can only be used to send integers

rec = ch
snd = ch
are valid assignments
rec = snd // invalid!



Go communication

to send a value (like ch!2) ch <- 2
to receive and store in x (like ch?x) x = <- ch
to receive and throw the value away <- ch

to close a channel (by the sender) close(ch)
to check if a channel has been closed (by the receiver)

x,0k = <= ch // either value,true or 0, false



Go sync communication

by default the communication is synchronous

BOTH send and receive are BLOCKING!

asynchronous channels can be created
by allocating a buffer of fixed size

var ch = make(chan int, 100)

creates an asynchronous channel of size 100

receive on asynchronous channel is of course still blocking
send is blocking only if the buffer is full

no dedicated type for asynchronous channels:
buffering is a property of values not of types



Go communication

to choose between different options

select {
case Xx = <- chl: { ..}
case ch2 <- v: { .. }

// both send and receive actions
default: { .. }

}

the selection is made pseudo-randomly among enabled cases
If no case is enabled, the default option is applied

If no case is enabled, and no default option is given
the select blocks until (at least) one case is enabled

12



Example

non-blocking receive

select {
case X = <- ch: { .. }
default: { .. }

receives on x from ch, if data available
otherwise proceeds



Name mobility

channels can be sent over channels (like in recalculus)

var mob = make(chan chan int)
a channel for communicating channels

mob <- ch

send the channel ch over mob



Go playground

ﬁ The Go Playground -+

The Go Playground m m w [Hello, playground ¢J

// You can edit this code!
// Click here and start typing.
package main

import "fmt"

func main() {
fmt.Println("Hello, tH#")
}

Hello, tH#R



Name mobility: secrecy




Name mobility: secrecy




Concurrent prime sieve

77377 chy
3.5.7,9, ... 3.5.7.9..
Chl
711, 5.7.9, .. 5.7.9..




