PSC 2020/21 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/

22a - Temporal logic

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://www.di.unipi.it/~bruni/

Testing

how do you guarantee that your code is correct?
testing can show the presence of bugs

not their absence
coverage of all cases: difficult to achieve

especially in concurrent systems!
(because of nondeterminism)

Formal logics

what does it mean to be correct? to satisfy some properties
how are these properties expressed? in some syntax
formal logics serve 1o express properties about programs

safety: something bad will not happen

liveness: something good will happen

model checking are certain properties satisfied
(by a model of the program)?

Temporal logics

notion of time (discrete, infinite)
properties of states (atomic proposition)

linear operators at the next instant
always
never
eventually

path quantifiers (nondeterministic systems)
for all possible futures
In a possible future

4

Modal logics

notion of time (discrete, infinite)

properties of states (atomic proposition)

modal operators at the next step

at any next step
(like HM logic)

fix point operators recursively defined formulas
minimal / maximal fixpoint

(meaning of a formula:
the set of states where it holds)

5

LTL
Linear temporal logic

Linear Temporal Loglc

models T N T N e LT ™ L

o
0 1 2 n
syntax

v oou= tt [| Y [Yo A | o Vi
p atomic proposition p € P

Oy NEXT: ¥ holds at the next instant of time
F) FINALLY: ¥ holds sometimes in the future

G GLOBALLY: ¥ holds always in the future
YwoU¥1 UNTIL: v holds until 1 is true

O sometimes written X or N

7

Linear Structure

S: P — p(N)

,//

set of atomic propositions

S(p) IS the set of time Iinstants
in which p holds

S(p) = {n | p holds at n}

Shift Sk P — o(N)
S*(p)={n—k|n>kAneS(p))}
S*(p) = {m | m+k € S(p)}

8

LTL: satisfaction

LTL formula

szw/
/

linear structure

LTL: satisfaction

S = tt current time: O
S =) iff S b= 1

S = Ay iff S =1 and S = 9y

S =V iff S =1 or S =y

g = iff 0 € S(p)

S = Oy iff ST =

S = Fy iff 3k e N. S* = ¢

S | Gy iff Vk € N. S* |=

S

= oUtp1 iff Fk € N. S¥ =9y and Vi < k. S* |= 1o

/—& =\ /‘$~ X =
SEO P ® ®
0 1 2 n

S - F /A _—A 9 _— — A, @ _—
— p @ o ® . ®
0 1 2 n

—=\ A = s
S=Gop ° ° ° : °

0 1 2 n

—p U ¢ ° ° ° ®
0 1 2

n
Cop Y Lopd Loply Lopy {og.)

LTL: equivalent formulas

Yo =11 IfF VS, S =Yg &= S =

Fy=tt Uy
G ¢ = —(F)
E—l(ttU_l?ﬁ)

o = 1 = by V g

Examples

G —error
error will never arise

press = F error

If you press now, an error will arise in the future
G F enter

enter will happen infinitely often (fairness)
F G idle
the system will stay idle from some time in the future onward
G (req = (req U eval))

whenever a request is made, it holds until evaluated

LTL
automata-like models

models

syntax

P

LTL, again

/N/—&/'& /‘\‘/-&

®
0 1 2 N

tt [fF |~ | Yo A1 | Yo Vb
p

atomic proposition p € P

O NEXT: ¥ holds at the next instant of time
Fu FINALLY: ¥ holds sometimes in the future

G GLOBALLY: ¥ holds always in the future
oU¥1 UNTIL: ¥ holds until 1 is true

O sometimes written X or N

16

Automata-like models

\p} {Q} {p7 T}

)

{p, q}

the formula must be satisfied along all (infinite) traces

(if we enter a deadlock state, the last state is repeated forever)

k Exercise

~ Fq Q (v} {p} {p} -
C}- ~e #Gp Q (v} {a} {a} -
who oy U Q (v} (v} {0} -+
= qUp v,
= Glg=6Gq) @&

the formula must be satisfied along all (infinite) traces

(if we enter a deadlock state, the last state is repeated forever)

k Exercise

~ G(gUp) Q{p} - {p}{a} {a} -

Co >oi> :Gp\/Fq Q
{p}\v L Fg=-Gp @ {0} (g} {poa} -

{p:q} = Gq=0q) @

the formula must be satisfied along all (infinite) traces

(if we enter a deadlock state, the last state is repeated forever)

CTL*, CTL
Computational tree logic

20

Computational Tree Logic

e
models T
e
\ ()
\o—>
\0
syntax (CTL")
Y = tt | fF | Y | Yo Ay | Yo V1 classical ops
p| Oy | Fy | Gy | YgUry linear ops

Ee) POSSIBLY: there is a path that satisfies
AY ALWAYS: every path satisfies

21

Infinite Tree

/
\

/N

T=(V,—) directed graph

free
vo € V root: a distinguished vertex (no incoming arc)

exactly one directed path from vy to any other vertex v € V'
infinite
every node has a child

22

Branching Structure
T = (V,—) infinite tree S: P — p(V)

S(p) = {x € V | z satisfies p}

/

T .
./ \. .
T~
\‘ D

> @

\p
23

Infinite Path

T =(V,—) S:P — p(V) branching structure

infinite path 7T'=(V,—) #7#:N—=V (m=uwvovy---)

such that Vk € N. v — v

path Shlftlng T = VU1 * * - 7Tk = VpUktq " "

mT: N—V NV
7Tk(2) =m(k +1)

24

CTL™: satisfaction

infinite path CTL* formula

e

S, m =

/

branching structure

CTL™: satisfaction

S, mE=tt

S, m (% iff S, m =

STeEYo NP1 fE S, m =Yg and S, 71 = Yy

S, m =gV, TES,m =g or S,m =1

S, mhEDp iff 7(0) € S(p)

S, = Oy iff S, 7! = state ops
S, 7 = Fa iff 3k € N. S, 7" |= ¢

S, = Gy iff Yk e N. S, 7" = 9

S,m = YoUty iff Ik e N. S, 7% =17 and Vi < k. S, 7* = g

S, m = Ey iff 37", 7' (0)
S, m = AY iff Vo', 7' (0)

7(0) and S, 7’ = path ops
7(0) implies S, 7" = 1

26

CTL*: equivalent formulas

o =y iff VS V. S,mEYy e S, E Y

A =-(E)
AAp=A
AE ¢ =Eq

LTL formulas as CTL* ones

W A

27

Examples

E O
analogous to HML formula <4
AGp

p holds at any reachable state
EFp

p holds at some reachable state
AFp
on every path there is a state where p holds

E (pUq)
there is a path where p holds until g

28

Example

Example

> @

CTL

33

CTL formulas

each path op (A/E) appears immediately before a linear op

each linear op (O/F/G/U) appears immediately after a path op
EO ¢ EF EG E (00 U 1)
A O A F 9 A G 1 A (o U 1)

AGF+ CTL* not CTL

34

CTL formulas

AO¢@ EO¢ AG ¢ EG ¢

A[¢ 9) ¢2] E[¢ U ¢2]

m m M m

35

CTL: minimal set of ops

~. .v. EO- EG- E(U)

AF) = —(EG —) EF ¢ = E(tt U)

— —IE(tt U_Iw)

A (Yo U 1) =—(EG =1 VE(=P1 U =(10o V 1)))

36

Expressiveness

