
http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/

Principles for Software Composition

PSC 2020/21 (375AA, 9CFU)

http://www.di.unipi.it/~bruni/
Roberto Bruni

09 - Denotational semantics of commands

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/
http://www.di.unipi.it/~bruni/

Lambda notation

2

33

Lambda notation
Key ingredients

anonymous functions

application

! x. e

<latexit sha1_base64="Q7RmXqQIgU0oUJgm5vaCq7y5i+I=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJyrJREJQRNJRBIg8ptqL1ZRNOOT90t0ZEURBfQQsVHaLlVyj4F+yQAhKmGs3MancnSJQ05DifVmFpeWV1rbhe2tjc2t4p7+41TZxqgQ0Rq1i3AzCoZIQNkqSwnWiEMFDYCoaXud+6Q21kHN3QKEE/hEEk+1IAZZLnqSzaA35vP2C3XHFsZwq+SNwZqbAZ6t3yl9eLRRpiREKBMR3XScgfgyYpFE5KXmowATGEAXYyGkGIxh9Pb57wo9QAxTxBzaXiUxF/T4whNGYUBlkyBLo1814u/ud1Uuqf+2MZJSlhJPJFJBVOFxmhZVYG8p7USAT55chlxAVoIEItOQiRiWnWTinrw53/fpE0T2y3ap9eVyu1i1kzRXbADtkxc9kZq7ErVmcNJljCntgze7EerVfrzXr/iRas2cw++wPr4xtY6JXl</latexit>

denotes a function that waits for one value to be
substituted for and then evaluates

serves as a formal parameter inx

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

x

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

e1 e2

<latexit sha1_base64="7V660RFk9/md0IdpzHMm7INFz90=">AAAB+XicbVC7TsNAEFzzDOEVoKQ5ESFRRXYUBGUEDWWQyENKLOt82YRTzg/drZEiK/wDLVR0iJavoeBfcIwLSJhqNLOrnR0/VtKQbX9aK6tr6xubpa3y9s7u3n7l4LBjokQLbItIRbrnc4NKhtgmSQp7sUYe+Aq7/uR67ncfUBsZhXc0jdEN+DiUIyk4ZVIXPecRvbpXqdo1OwdbJk5BqlCg5VW+BsNIJAGGJBQ3pu/YMbkp1ySFwll5kBiMuZjwMfYzGvIAjZvmcWfsNDGcIhajZlKxXMTfGykPjJkGfjYZcLo3i95c/M/rJzS6dFMZxglhKOaHSCrMDxmhZdYDsqHUSMTnyZHJkAmuORFqybgQmZhkxZSzPpzF75dJp15zGrXz20a1eVU0U4JjOIEzcOACmnADLWiDgAk8wTO8WKn1ar1Z7z+jK1axcwR/YH18A3VUk7Y=</latexit>

e2

<latexit sha1_base64="3dFZt5g9ypIHJU3kgGuq/XRWu08=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrKjICgjaCiDIA8piaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4bKmnItj+twsrq2vpGcbO0tb2zu1feP2ibINICWyJQge663KCSPrZIksJuqJF7rsKOO71K/c4DaiMD/45mIQ48PvHlWApOiXSLw9qwXLGrdga2TJycVCBHc1j+6o8CEXnok1DcmJ5jhzSIuSYpFM5L/chgyMWUT7CXUJ97aAZxFnXOTiLDKWAhaiYVy0T8vRFzz5iZ5yaTHqd7s+il4n9eL6LxxSCWfhgR+iI9RFJhdsgILZMOkI2kRiKeJkcmfSa45kSoJeNCJGKUlFJK+nAWv18m7VrVqVfPbuqVxmXeTBGO4BhOwYFzaMA1NKEFAibwBM/wYj1ar9ab9f4zWrDynUP4A+vjG5ibkhs=</latexit>

e1

<latexit sha1_base64="eiJzLAuZ+OI/dT+9Wx2UO1ZWoeo=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKNphK7Px4EcScEplW5x4AyqNbtu52CLxClIDQo0B9Wv/jAUsY8BCcWN6Tl2RG7CNUmhcFbpxwYjLiZ8jL2UBtxH4yZ51Bk7ig2nkEWomVQsF/H3RsJ9Y6a+l076nO7NvJeJ/3m9mEYXbiKDKCYMRHaIpML8kBFaph0gG0qNRDxLjkwGTHDNiVBLxoVIxTgtpZL24cx/v0jaJ3XntH52c1prXBbNlOEADuEYHDiHBlxDE1ogYAxP8Awv1qP1ar1Z7z+jJavY2Yc/sD6+AZcMkho=</latexit>

is the argument passed to the function

denotes the application of the function toe1

<latexit sha1_base64="eiJzLAuZ+OI/dT+9Wx2UO1ZWoeo=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U+rtLS8srpWXq9sbG5t71R399omjLXAlghVqLseN6hkgC2SpLAbaeS+p7DjTa4yv/OA2sgwuKNphK7Px4EcScEplW5x4AyqNbtu52CLxClIDQo0B9Wv/jAUsY8BCcWN6Tl2RG7CNUmhcFbpxwYjLiZ8jL2UBtxH4yZ51Bk7ig2nkEWomVQsF/H3RsJ9Y6a+l076nO7NvJeJ/3m9mEYXbiKDKCYMRHaIpML8kBFaph0gG0qNRDxLjkwGTHDNiVBLxoVIxTgtpZL24cx/v0jaJ3XntH52c1prXBbNlOEADuEYHDiHBlxDE1ogYAxP8Awv1qP1ar1Z7z+jJavY2Yc/sD6+AZcMkho=</latexit>

e2

<latexit sha1_base64="3dFZt5g9ypIHJU3kgGuq/XRWu08=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrKjICgjaCiDIA8piaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4bKmnItj+twsrq2vpGcbO0tb2zu1feP2ibINICWyJQge663KCSPrZIksJuqJF7rsKOO71K/c4DaiMD/45mIQ48PvHlWApOiXSLw9qwXLGrdga2TJycVCBHc1j+6o8CEXnok1DcmJ5jhzSIuSYpFM5L/chgyMWUT7CXUJ97aAZxFnXOTiLDKWAhaiYVy0T8vRFzz5iZ5yaTHqd7s+il4n9eL6LxxSCWfhgR+iI9RFJhdsgILZMOkI2kRiKeJkcmfSa45kSoJeNCJGKUlFJK+nAWv18m7VrVqVfPbuqVxmXeTBGO4BhOwYFzaMA1NKEFAibwBM/wYj1ar9ab9f4zWrDynUP4A+vjG5ibkhs=</latexit>

reduces the need of parentheses e1(e2)

<latexit sha1_base64="lUbH5dsSbN0t6J4y4nLIZcPSk0E=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESGFJrKjICgjaCiDRB5SYlnnyyaccj5bd2ukyOQnaKGiQ7T8DAX/gm1cQMJUo5ld7ez4kRQGbfvTWlldW9/YLG2Vt3d29/YrB4ddE8aaQ4eHMtR9nxmQQkEHBUroRxpY4Evo+dPrzO89gDYiVHc4i8AN2ESJseAMU6kPnlMDr3HmVap23c5Bl4lTkCop0PYqX8NRyOMAFHLJjBk4doRuwjQKLmFeHsYGIsanbAKDlCoWgHGTPO+cnsaGYUgj0FRImovweyNhgTGzwE8nA4b3ZtHLxP+8QYzjSzcRKooRFM8OoZCQHzJci7QIoCOhAZFlyYEKRTnTDBG0oIzzVIzTZsppH87i98uk26g7zfr5bbPauiqaKZFjckJqxCEXpEVuSJt0CCeSPJFn8mI9Wq/Wm/X+M7piFTtH5A+sj29VPZOT</latexit>

44

Function definition
f (x) ! x2 ! 2 áx + 5

<latexit sha1_base64="KZWiC8B80ustPH4vGodnlVqtqDk=">AAACFnicbVA9TwJBEN3zE/Hr1NJmIzHRGMkdgWhJtLHERNAEkMwtA27c2zt35wyE0PsT/BW2WtkZW1sL/4sHUvj1qpf3ZjLzXhAracnz3p2p6ZnZufnMQnZxaXll1V1br9koMQKrIlKRuQjAopIaqyRJ4UVsEMJA4XlwfTzyz2/RWBnpM+rH2Ayhq2VHCqBUarlbnZ3eLm+QkaC7Cm9477LA93mhIdoR8R7f46WWm/Py3hj8L/EnJMcmqLTcj0Y7EkmImoQCa+u+F1NzAIakUDjMNhKLMYhr6GI9pRpCtM3BOMuQbycWKOIxGi4VH4v4fWMAobX9MEgnQ6Ar+9sbif959YQ6h82B1HFCqMXoEEmF40NWGJmWhLwtDRLB6HPkUnMBBojQSA5CpGKStpZN+/B/p/9LaoW8X8yXTou58tGkmQzbZFtsh/nsgJXZCauwKhPsjj2wR/bk3DvPzovz+jU65Ux2NtgPOG+fGVWdAw==</latexit>

f ! ! x. (x2 ! 2 áx + 5)

<latexit sha1_base64="b6A81UIeKu5wPtpJuWGB7/mrjx4=">AAACIHicbVDLThtBEJx1eJqXkxy5tLCQQIC1a4GSI4JLjiDhh+Q1Vu+4bUbMzi4zvZGRBR/BJ/AVXJMTN5RjkPgX1sYHXnUqVXWpuytKtXLs+/+9wpep6ZnZufniwuLS8krp67e6SzIrqSYTndhmhI60MlRjxZqaqSWMI02N6Pxw5Dd+k3UqMSd8mVI7xr5RPSWRc6lT2u5ByFah6Wu6gFDnyS7CoHK9MTitwg5UQ9lNGAawBXubnVLZr/hjwEcSTEhZTHDUKT2F3URmMRmWGp1rBX7K7SFaVlLTVTHMHKUoz7FPrZwajMm1h+OvrmA9c8gJpGRBaRiL9DoxxNi5yzjKJ2PkM/feG4mfea2Mez/bQ2XSjMnI0SJWmsaLnLQqr4ugqywx4+hyAmVAokVmsgpQylzM8v6KeR/B++8/knq1EuxW9o53y/sHk2bmxKpYExsiED/EvvgljkRNSHEj7sQf8de79e69B+/fy2jBm2S+izfwHp8Bowag8A==</latexit>

unnecessary parentheses
added for clarity

55

Associative rules

e1 e2 e3

<latexit sha1_base64="jnLWkETG7o5LPFRCT+Tl69K4zaY=">AAAB/XicbVBNS8NAEN34WetX1aOXxSJ4Kkmt6LHoxWMF+wFtCJvttC7dbMLuRCih+iu86smbePW3ePC/mMQctPXBwOO9GWbm+ZEUBm3701paXlldWy9tlDe3tnd2K3v7HRPGmkObhzLUPZ8ZkEJBGwVK6EUaWOBL6PqTq8zv3oM2IlS3OI3ADdhYiZHgDFOpD57zAF49rVOvUrVrdg66SJyCVEmBllf5GgxDHgegkEtmTN+xI3QTplFwCbPyIDYQMT5hY+inVLEAjJvkJ8/ocWwYhjQCTYWkuQi/JxIWGDMN/LQzYHhn5r1M/M/rxzi6cBOhohhB8WwRCgn5IsO1SLMAOhQaEFl2OVChKGeaIYIWlHGeinEaTjnNw5n/fpF06jWnUTu7aVSbl0UyJXJIjsgJccg5aZJr0iJtwklInsgzebEerVfrzXr/aV2yipkD8gfWxzdbG5VT</latexit>

(e1 e2) e3

<latexit sha1_base64="wASKGlMKvXvI4zTGJIyAhUz9YAY=">AAAB/3icbVC7TsNAEDyHVwivACXNiQgpNJEdgqCMoKEMEnlIiWWdL5twyvnB3RopsoLEV9BCRYdo+RQK/gXbuICEKVajmV3t7rihFBpN89MoLC2vrK4V10sbm1vbO+XdvY4OIsWhzQMZqJ7LNEjhQxsFSuiFCpjnSui6k8vU796D0iLwb3Aagu2xsS9GgjNMJLsKjvUATv04KSdOuWLWzAx0kVg5qZAcLaf8NRgGPPLARy6Z1n3LDNGOmULBJcxKg0hDyPiEjaGfUJ95oO04O3pGjyLNMKAhKCokzUT4PREzT+up5yadHsNbPe+l4n9eP8LRuR0LP4wQfJ4uQiEhW6S5EkkaQIdCASJLLwcqfMqZYoigBGWcJ2KUxFNK8rDmv18knXrNatROrxuV5kWeTJEckENSJRY5I01yRVqkTTi5I0/kmbwYj8ar8Wa8/7QWjHxmn/yB8fENKF6VuA==</latexit>

is read
application is
left-associative

! x. ! y. ! z. e

<latexit sha1_base64="Ed7mUk/uuAV8UPVIqixVlbg8CLM=">AAACGHicbVC7TsNAEDyHVwgvAyXNiYBEZdkoCMoIGsogEYiURNH6ssAp54fu1ogQwQfwCXwFLVR0iJaOgn/hEhyJ11SjmVnt7oSpkoZ8/90pTExOTc8UZ0tz8wuLS+7yyolJMi2wLhKV6EYIBpWMsU6SFDZSjRCFCk/D3sHQP71EbWQSH1M/xXYE57E8kwLISh13o6VsuAv8yrvlY973bsf02srYccu+54/A/5IgJ2WWo9ZxP1rdRGQRxiQUGNMM/JTaA9AkhcKbUiszmILowTk2LY0hQtMejL654ZuZAUp4ippLxUcifp8YQGRMPwptMgK6ML+9ofif18zobK89kHGaEcZiuIikwtEiI7S0NSHvSo1EMLwcuYy5AA1EqCUHIayY2d5Kto/g9/d/ycm2F1S8naNKubqfN1Nka2ydbbGA7bIqO2Q1VmeC3bEH9sienHvn2XlxXr+iBSefWWU/4Lx9AvxXn0s=</latexit>

! x. (! y. (! z. e))

<latexit sha1_base64="GQZ7KHW4FgZquL4Xobs8Q4I32Cg=">AAACHHicbVDLSgNBEJyN7/iKevQyGITksuxKRI9BLx4VjApJCL2TThwy+2CmV4xBP8FP8Cu86smbeBU8+C/OxiCaWKeaqmp6uoJESUOe9+HkpqZnZufmF/KLS8srq4W19TMTp1pgTcQq1hcBGFQywhpJUniRaIQwUHge9A4z//wKtZFxdEr9BJshdCPZkQLISq1CqaFsuA382r3jP4++e/fDb6yB5XKrUPRcbwg+SfwRKbIRjluFz0Y7FmmIEQkFxtR9L6HmADRJofA230gNJiB60MW6pRGEaJqD4UW3fDs1QDFPUHOp+FDE3xMDCI3ph4FNhkCXZtzLxP+8ekqd/eZARklKGIlsEUmFw0VGaGmrQt6WGokg+zlyGXEBGohQSw5CWDG13eVtH/749ZPkbMf1K+7uSaVYPRg1M8822RYrMZ/tsSo7YsesxgS7Z4/siT07D86L8+q8fUdzzmhmg/2B8/4FuqKgFQ==</latexit>

is read
abstraction is
right-associative

66

Scoping
! x. e

<latexit sha1_base64="K3rQhhxGVPFqw4ckujPp0hWG8aA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJRBIg8psaL1ZRNOOT+4WyMiKwVfQQsVHaLlUyj4FxzjAhKmGs3ManfHi5Q0ZNufVmFpeWV1rbhe2tjc2t4p7+61TBhrgU0RqlB3PDCoZIBNkqSwE2kE31PY9saXM799j9rIMLihSYSuD6NADqUASiW3p9LoAPhDtcexX67YVTsDXyROTiosR6Nf/uoNQhH7GJBQYEzXsSNyE9AkhcJpqRcbjECMYYTdlAbgo3GT7OgpP4oNUMgj1Fwqnon4eyIB35iJ76VJH+jWzHsz8T+vG9Pw3E1kEMWEgZgtIqkwW2SElmkbyAdSIxHMLkcuAy5AAxFqyUGIVIzTekppH87894ukdVJ1atXT61qlfpE3U2QH7JAdM4edsTq7Yg3WZILdsSf2zF6sR+vVerPef6IFK5/ZZ39gfXwDfqyV7Q==</latexit>

the scope of isx

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

not visible outsidex

<latexit sha1_base64="NWVbpeiBMqV2moEafHd6Lo5ebdQ=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJREKkxIrOl0045Xy27vYQkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6JrKaQ4dHMtK9gBmQQkEHBUroxRpYGEi4C6bXmX/3ANqISN3iLAY/ZBMlxoIzTKX247Bac+tuDrpMvILUSIHWsPo1GEXchqCQS2ZM33Nj9BOmUXAJ88rAGogZn7IJ9FOqWAjGT/Kgc3piDcOIxqCpkDQX4fdGwkJjZmGQToYM782il4n/eX2L40s/ESq2CIpnh1BIyA8ZrkXaANCR0IDIsuRAhaKcaYYIWlDGeSratJJK2oe3+P0y6Z7VvUb9vN2oNa+KZsrkiByTU+KRC9IkN6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BiSGRiQ==</latexit>

e

<latexit sha1_base64="B1htBkQUejbPtsItSS5hdebO2Js=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJREJQRNJSJRB5SYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7S2vrG5Vd6u7Ozu7R9UD4+6JrKaQ4dHMtL9gBmQQkEHBUroxxpYGEjoBbPbzO89gjYiUvc4j8EP2VSJieAMU6kNo2rNrbs56CrxClIjBVqj6tdwHHEbgkIumTEDz43RT5hGwSUsKkNrIGZ8xqYwSKliIRg/yYMu6Jk1DCMag6ZC0lyE3xsJC42Zh0E6GTJ8MMteJv7nDSxOrv1EqNgiKJ4dQiEhP2S4FmkDQMdCAyLLkgMVinKmGSJoQRnnqWjTSippH97y96uke1H3GvXLdqPWvCmaKZMTckrOiUeuSJPckRbpEE6APJFn8uJY59V5c95/RktOsXNM/sD5+AZrhJF2</latexit>

like a local variable

77

Alpha-conversion

! x. (x2 ! 2 áx + 5)

<latexit sha1_base64="NGEAtJGUdQcszYljvvdleH4JM+0=">AAACD3icbVDLSgNBEJz1bXytesxlMAiKuOwGRY+iF48RjAayMfROOnFw9sFMrySECH6CX+FVT97Eq5/gwX9xs+ag0ToVVdV0dwWJkoZc98OamJyanpmdmy8sLC4tr9iraxcmTrXAqohVrGsBGFQywipJUlhLNEIYKLwMbk6G/uUtaiPj6Jx6CTZC6ESyLQVQJjXtoq+ycAt417nb6l6Vd8u+aMXEuzv720275DpuDv6XeCNSYiNUmvan34pFGmJEQoExdc9NqNEHTVIoHBT81GAC4gY6WM9oBCGaRj9/YsA3UwMU8wQ1l4rnIv6c6ENoTC8MsmQIdG3GvaH4n1dPqX3Y6MsoSQkjMVxEUmG+yAgts3aQt6RGIhhejlxGXIAGItSSgxCZmGZ1FbI+vPHv/5KLsuPtOftne6Wj41Ezc6zINtgW89gBO2KnrMKqTLB79sie2LP1YL1Yr9bbd3TCGs2ss1+w3r8AGrGa/Q==</latexit>

! y. (y2 ! 2 áy + 5)

<latexit sha1_base64="R94EgfA+UbqZGM5QTCJAcMLEGhk=">AAACD3icbVDLSgNBEJyNrxhfqx69DAZBEcNuSNBj0ItHBZMISQy9k1aHzD6Y6RWWEMFP8Cu86smbePUTPPgvbtY9+KpTUVVNd5cXKWnIcd6twtT0zOxccb60sLi0vGKvrrVMGGuBTRGqUJ97YFDJAJskSeF5pBF8T2HbGx5N/PYNaiPD4IySCHs+XAXyUgqgVOrbG12VhgfAk8rtdnJR3at2xSAknuzWd/p22ak4Gfhf4uakzHKc9O2P7iAUsY8BCQXGdFwnot4INEmhcFzqxgYjEEO4wk5KA/DR9EbZE2O+FRugkEeouVQ8E/H7xAh8YxLfS5M+0LX57U3E/7xOTJcHvZEMopgwEJNFJBVmi4zQMm0H+UBqJILJ5chlwAVoIEItOQiRinFaVyntw/39/V/SqlbcWqV+Wis3DvNmimyDbbJt5rJ91mDH7IQ1mWB37IE9sifr3nq2XqzXr2jBymfW2Q9Yb58fgZsA</latexit>

names of formal parameters
are inessential:
the two expressions denote
the same function

! x. e ! ! y. (e[y / x])

<latexit sha1_base64="8NEjhAaXA4HSr4biyUrOCA6OEEg=">AAACHXicbVDLSgNBEJyN7/iKevQyGAS9rLsS0WPQi0cF84BkDb2TThwy+3CmNyQE/QU/wa/wqidv4lU8+C9uYgSN1qmoqqa7y4+VNOQ471Zmanpmdm5+Ibu4tLyymltbL5so0QJLIlKRrvpgUMkQSyRJYTXWCIGvsOJ3ToZ+pYvayCi8oH6MXgDtULakAEqlRm63rtJwE3jPvkVex+tEdrPfWt++3cHaZX+v0fN2G7m8Yzsj8L/EHZM8G+OskfuoNyORBBiSUGBMzXVi8gagSQqFN9l6YjAG0YE21lIaQoDGG4xeuuHbiQGKeIyaS8VHIv6cGEBgTD/w02QAdGUmvaH4n1dLqHXkDWQYJ4ShGC4iqXC0yAgt066QN6VGIhhejlyGXIAGItSSgxCpmKTlZdM+3Mnv/5Lyvu0W7IPzQr54PG5mnm2yLbbDXHbIiuyUnbESE+yOPbBH9mTdW8/Wi/X6Fc1Y45kN9gvW2yepUKE1</latexit>

(under suitable conditions on)e, y

<latexit sha1_base64="jsywmOH3DDKBlJP9UhMlrKC2HXc=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkU2CoIygoYyCPKQkihaXzbhlPNDd2tQZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ey4oZKGbPvTKiwtr6yuFddLG5tb2zvl3b2WCSItsCkCFeiOCwaV9LFJkhR2Qo3guQrb7uQq9dsPqI0M/Duahtj3YOzLkRRAiXSLJ9NBuWJX7Qx8kTg5qbAcjUH5qzcMROShT0KBMV3HDqkfgyYpFM5KvchgCGICY+wm1AcPTT/Oos74UWSAAh6i5lLxTMTfGzF4xkw9N5n0gO7NvJeK/3ndiEYX/Vj6YUToi/QQSYXZISO0TDpAPpQaiSBNjlz6XIAGItSSgxCJGCWllJI+nPnvF0nrtOrUqmc3tUr9Mm+myA7YITtmDjtndXbNGqzJBBuzJ/bMXqxH69V6s95/RgtWvrPP/sD6+Aa3lJIv</latexit>

capture-avoiding
substitution
(to be formalised later)

88

Application (beta rule)

(! x. e) e0

<latexit sha1_base64="CNVxb58TMoZs5xwPImvl1jjND1M=">AAACB3icbVC7TgJBFJ3FF+JrldJmIjHBhuwajJZEG0tM5JEAIXeHC06YfWTmrpEQ6P0KW63sjK2fYeG/uOAWCp7q5Jxzc+89XqSkIcf5tDIrq2vrG9nN3Nb2zu6evX9QN2GsBdZEqELd9MCgkgHWSJLCZqQRfE9hwxtezfzGPWojw+CWRhF2fBgEsi8FUCJ17XyxrZJ0D/hDaYonU45dp2sXnJIzB18mbkoKLEW1a3+1e6GIfQxIKDCm5ToRdcagSQqFk1w7NhiBGMIAWwkNwEfTGc+Pn/Dj2ACFPELNpeJzEX9PjME3ZuR7SdIHujOL3kz8z2vF1L/ojGUQxYSBmC0iqXC+yAgtk1aQ96RGIphdjlwGXIAGItSSgxCJGCc15ZI+3MXvl0n9tOSWS2c35ULlMm0myw7ZESsyl52zCrtmVVZjgo3YE3tmL9aj9Wq9We8/0YyVzuTZH1gf3+hGmD8=</latexit>

application of a function

evaluation via substitutione[e0/x]

<latexit sha1_base64="L3Lb/maSW/yg+OOv2GNDs3Lzv2w=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRBRsFQRlBQxkk8pAcY50vm3DK2T7drRGRFYmvoIWKDtHyKxT8C45xAQlTjWZ2tbMTKCkM2vantbC4tLyyWlorr29sbm1XdnbbJk40hxaPZay7ATMgRQQtFCihqzSwMJDQCUaXU79zD9qIOLrBsQIvZMNIDARnmEk9cG9T8O3Jsf/g+ZWqXbNz0HniFKRKCjT9ylevH/MkhAi5ZMa4jq3QS5lGwSVMyr3EgGJ8xIbgZjRiIRgvzTNP6GFiGMZUgaZC0lyE3xspC40Zh0E2GTK8M7PeVPzPcxMcnHupiFSCEPHpIRQS8kOGa5GVAbQvNCCyaXKgIqKcaYYIWlDGeSYmWTvlrA9n9vt50j6pOfXa6XW92rgomimRfXJAjohDzkiDXJEmaRFOFHkiz+TFerRerTfr/Wd0wSp29sgfWB/fY9aV7A==</latexit>

capture-avoiding
substitution

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

99

Example
! x. (x2 ! 2 áx + 5)

<latexit sha1_base64="NGEAtJGUdQcszYljvvdleH4JM+0=">AAACD3icbVDLSgNBEJz1bXytesxlMAiKuOwGRY+iF48RjAayMfROOnFw9sFMrySECH6CX+FVT97Eq5/gwX9xs+ag0ToVVdV0dwWJkoZc98OamJyanpmdmy8sLC4tr9iraxcmTrXAqohVrGsBGFQywipJUlhLNEIYKLwMbk6G/uUtaiPj6Jx6CTZC6ESyLQVQJjXtoq+ycAt417nb6l6Vd8u+aMXEuzv720275DpuDv6XeCNSYiNUmvan34pFGmJEQoExdc9NqNEHTVIoHBT81GAC4gY6WM9oBCGaRj9/YsA3UwMU8wQ1l4rnIv6c6ENoTC8MsmQIdG3GvaH4n1dPqX3Y6MsoSQkjMVxEUmG+yAgts3aQt6RGIhhejlxGXIAGItSSgxCZmGZ1FbI+vPHv/5KLsuPtOftne6Wj41Ezc6zINtgW89gBO2KnrMKqTLB79sie2LP1YL1Yr9bbd3TCGs2ss1+w3r8AGrGa/Q==</latexit>

(! x. (x2 ! 2 áx + 5)) 2

<latexit sha1_base64="Il86/VkGdLZ1Hvql/nbfLW3TcPA=">AAACE3icbVDLTgJBEJzFF+IL9ejBicQEYiS7RKJHohePmMgjASS9Q4MTZx+Z6TUQAjc/wa/wqidvxqsf4MF/cUEOvupUqapOd5cbKmnItt+txNz8wuJScjm1srq2vpHe3KqaINICKyJQga67YFBJHyskSWE91Aieq7Dm3pxN/NotaiMD/5IGIbY86PmyKwVQLLXTu9mmitMd4P38ONu/KhwWmqITEO8fFHO5caGdzth5ewr+lzgzkmEzlNvpj2YnEJGHPgkFxjQcO6TWEDRJoXCUakYGQxA30MNGTH3w0LSG00dGfD8yQAEPUXOp+FTE7xND8IwZeG6c9ICuzW9vIv7nNSLqnrSG0g8jQl9MFpFUOF1khJZxQ8g7UiMRTC5HLn0uQAMRaslBiFiM4spScR/O7+//kmoh7xzlixdHmdLprJkk22F7LMscdsxK7JyVWYUJdsce2CN7su6tZ+vFev2KJqzZzDb7AevtE2AXnCY=</latexit>

a function

its application

22 ! 2 á2 + 5

<latexit sha1_base64="u10wiBwhGYtftAbcUejMyZV4UmY=">AAACAHicbVC7TsNAEDyHVwivACXNiQgJCRHZViIoI2gog0QeUuJE58smnHJ+6G6NFFlp+ApaqOgQLX9Cwb9gGxeQMNVoZlc7O24ohUbT/DQKK6tr6xvFzdLW9s7uXnn/oK2DSHFo8UAGqusyDVL40EKBErqhAua5Ejru9Dr1Ow+gtAj8O5yF4Hhs4oux4AwTaWAP7HO7z0cBUvusPixXzKqZgS4TKycVkqM5LH/1RwGPPPCRS6Z1zzJDdGKmUHAJ81I/0hAyPmUT6CXUZx5oJ85Sz+lJpBkGNARFhaSZCL83YuZpPfPcZNJjeK8XvVT8z+tFOL50YuGHEYLP00MoJGSHNFciqQPoSChAZGlyoMKnnCmGCEpQxnkiRkk/paQPa/H7ZdK2q1atWr+tVRpXeTNFckSOySmxyAVpkBvSJC3CiSJP5Jm8GI/Gq/FmvP+MFox855D8gfHxDcfrlWw=</latexit>

its evaluation= 5

<latexit sha1_base64="ryTvqMt9wL3PP/9oVq1O0G4gCoU=">AAAB9HicbVC7TsNAEFyHVwivACXNiQiJKrJRImiQImgoAyIPKbGi82UTTjk/dLeOFEX5A1qo6BAt/0PBv2AbFxCYajSzq50dL1LSkG1/WIWV1bX1jeJmaWt7Z3evvH/QNmGsBbZEqELd9bhBJQNskSSF3Ugj9z2FHW9ynfqdKWojw+CeZhG6Ph8HciQFp0S6u6wPyhW7amdgf4mTkwrkaA7Kn/1hKGIfAxKKG9Nz7IjcOdckhcJFqR8bjLiY8DH2EhpwH407z5Iu2ElsOIUsQs2kYpmIPzfm3Ddm5nvJpM/pwSx7qfif14tpdOHOZRDFhIFID5FUmB0yQsukAmRDqZGIp8mRyYAJrjkRasm4EIkYJ52Ukj6c5e//kvZZ1alV67e1SuMqb6YIR3AMp+DAOTTgBprQAgEjeIQneLam1ov1ar19jxasfOcQfsF6/wKk85GN</latexit>

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

1010

Example

a function

its application

its evaluation

! x. ! y. (x2 ! 2 áy + 5)

<latexit sha1_base64="rtrwgGG2h87AbtjU6GUvPBTtxjw=">AAACGnicbVDLSgNBEJyN7/ha9ehlMCiKuOwGgx5FLx4jmERIYuiddOLg7IOZXkkI+gV+gl/hVU/exKsXD/6LmxhBE+tUVFXT3eXHShpy3Q8rMzE5NT0zO5edX1hcWrZXVssmSrTAkohUpC98MKhkiCWSpPAi1giBr7DiX5/0/coNaiOj8Jy6MdYDaIeyJQVQKjXsrZpKw03gHefuh3adu+3OZX4vXxPNiHh3t7DTsHOu4w7Ax4k3JDk2RLFhf9aakUgCDEkoMKbquTHVe6BJCoW32VpiMAZxDW2spjSEAE29N/jnlm8mBijiMWouFR+I+HuiB4Ex3cBPkwHQlRn1+uJ/XjWh1mG9J8M4IQxFfxFJhYNFRmiZFoW8KTUSQf9y5DLkAjQQoZYchEjFJG0um/bhjX4/Tsp5x9t3Cmf7uaPjYTOzbJ1tsG3msQN2xE5ZkZWYYPfskT2xZ+vBerFerbfvaMYazqyxP7DevwB2859u</latexit>

(! x. ! y. (x2 ! 2 áy + 5)) 2

<latexit sha1_base64="u0H7YUfFSOZPAcW+hbxe9GonyV0=">AAACHnicbVDLSgNBEJz1GeMr6tHLYBCi4rIbDHoMevEYwTwgiaF30tHB2QczvZIQkm/wE/wKr3ryJl714L+4iRF81amoqqa7y4uUNOQ4b9bU9Mzs3HxqIb24tLyymllbr5gw1gLLIlShrnlgUMkAyyRJYS3SCL6nsOpdn4z86g1qI8PgnHoRNn24DGRHCqBEamV2cw2VpNvAu/bwi/bsYa57kd/PN0Q7JN7bK+zsDPOtTNaxnTH4X+JOSJZNUGpl3hvtUMQ+BiQUGFN3nYiafdAkhcJBuhEbjEBcwyXWExqAj6bZH/804NuxAQp5hJpLxccifp/og29Mz/eSpA90ZX57I/E/rx5T56jZl0EUEwZitIikwvEiI7RMykLelhqJYHQ5chlwARqIUEsOQiRinLSXTvpwf3//l1TytntgF84OssXjSTMptsm2WI657JAV2SkrsTIT7Jbdswf2aN1ZT9az9fIZnbImMxvsB6zXD8pyoJc=</latexit>

! y. (22 ! 2 áy + 5)

<latexit sha1_base64="F7u91orMV1AtLaBBMn/ZeKgnfw8=">AAACD3icbVDLTgJBEJzFF+IL9chlIjHBGMkugeiR6MUjJvJIAEnv0OCE2Udmek0IwcRP8Cu86smb8eonePBfXJCDgnWqVFWnu8sNlTRk259WYml5ZXUtuZ7a2Nza3knv7tVMEGmBVRGoQDdcMKikj1WSpLARagTPVVh3BxcTv36H2sjAv6ZhiG0P+r7sSQEUS510pqXicBf4MH+fK9wUTgot0Q2ID49LR5101s7bU/BF4sxIls1Q6aS/Wt1ARB76JBQY03TskNoj0CSFwnGqFRkMQQygj82Y+uChaY+mT4z5YWSAAh6i5lLxqYi/J0bgGTP03DjpAd2aeW8i/uc1I+qdtUfSDyNCX0wWkVQ4XWSElnE7yLtSIxFMLkcufS5AAxFqyUGIWIziulJxH87894ukVsg7xXzpqpgtn8+aSbIMO2A55rBTVmaXrMKqTLAH9sSe2Yv1aL1ab9b7TzRhzWb22R9YH9+s55q5</latexit>

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

it is still a function!

1111

Example

a function

its application

its evaluation

! f. ! x. (x2 + f 1)

<latexit sha1_base64="eEnyTfcPmXxCR4AmCIhdZ3YUZh4=">AAACFXicbVA9SwNBEN2LXzF+RS1tVoOgCMddiGgZtLFUMCokMcxtJrpk74PdOYkcpvUn+CtstbITW2sL/4t3MYImvurx3htm5nmRkoYc58PKTUxOTc/kZwtz8wuLS8XllTMTxlpgTYQq1BceGFQywBpJUngRaQTfU3judQ8z//wGtZFhcEq3ETZ9uApkRwqgVGoV1xsqDbeBd+z+D+3Z/a3eZZnv8E7f3W4VS47tDMDHiTskJTbEcav42WiHIvYxIKHAmLrrRNRMQJMUCu8KjdhgBKILV1hPaQA+mmYyeOWOb8YGKOQRai4VH4j4eyIB35hb30uTPtC1GfUy8T+vHlNnv5nIIIoJA5EtIqlwsMgILdOOkLelRiLILkcuAy5AAxFqyUGIVIzT0gppH+7o9+PkrGy7FXv3pFKqHgybybM1tsG2mMv2WJUdsWNWY4Lds0f2xJ6tB+vFerXevqM5azizyv7Aev8CdfGdSw==</latexit>

(! f. ! x. (x2 + f 1)) (! y. (2 áy))

<latexit sha1_base64="+lgC4O1TH/PlhqFI9ndkfqmCnDU=">AAACMXicbVDLSgNBEJz1GddX1KOXwSAkCMtuiOhFCHrxqGBUSGLonXR0cPbBTK8YgvkZP8Gv8KonD4J49SecxCi+6lRUVdPdFaZKGvL9J2dsfGJyajo3487OzS8s5peWj02SaYE1kahEn4ZgUMkYayRJ4WmqEaJQ4Ul4uTfwT65QG5nER9RNsRnBeSw7UgBZqZXfKTaUTbeBd7z+J732+sXrszLf4J1+UCq5ffcr1bVWuSHaCfFuqdTKF3zPH4L/JcGIFNgIB638c6OdiCzCmIQCY+qBn1KzB5qkUHjjNjKDKYhLOMe6pTFEaJq94Zs3fD0zQAlPUXOp+FDE7xM9iIzpRqFNRkAX5rc3EP/z6hl1tps9GacZYSwGi0gqHC4yQkvbH/K21EgEg8uRy5gL0ECEWnIQwoqZLdS1fQS/v/9LjsteUPE2DyuF6u6omRxbZWusyAK2xapsnx2wGhPslt2zB/bo3DlPzovz+hEdc0YzK+wHnLd3IwWmuw==</latexit>

! x. (x2 + (! y. (2 áy)) 1)

<latexit sha1_base64="6SeWb62FgZueW/GGEOkkj0I6ysU=">AAACI3icbVDLTgJBEJz1ifhCPXqZSEwgJrhLMHokevGIiTwSQNI7tDpx9pGZXgMh8Bd+gl/hVU/ejBcP/Iu7iImKdapUVae7yw2VNGTbH9bc/MLi0nJqJb26tr6xmdnarpkg0gKrIlCBbrhgUEkfqyRJYSPUCJ6rsO7enSV+/R61kYF/Sf0Q2x7c+PJaCqBY6mQOWyoOd4H3CqNc76rID3juW+rHUrElugHxfj4/cvLpUbqTydoFewI+S5wpybIpKp3MuNUNROShT0KBMU3HDqk9AE1SKBymW5HBEMQd3GAzpj54aNqDyWNDvh8ZoICHqLlUfCLiz4kBeMb0PTdOekC35q+XiP95zYiuT9oD6YcRoS+SRSQVThYZoWXcGPKu1EgEyeXIpc8FaCBCLTkIEYtRXGHSh/P3+1lSKxacUuHoopQtn06bSbFdtsdyzGHHrMzOWYVVmWAP7Ik9sxfr0Xq13qz3r+icNZ3ZYb9gjT8B6IqhiQ==</latexit>

higher-order: functions as arguments/results

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

(the argument is a function!)

1212

Example

a function

its application

its evaluation

! f. ! x. (x2 + f 1)

<latexit sha1_base64="eEnyTfcPmXxCR4AmCIhdZ3YUZh4=">AAACFXicbVA9SwNBEN2LXzF+RS1tVoOgCMddiGgZtLFUMCokMcxtJrpk74PdOYkcpvUn+CtstbITW2sL/4t3MYImvurx3htm5nmRkoYc58PKTUxOTc/kZwtz8wuLS8XllTMTxlpgTYQq1BceGFQywBpJUngRaQTfU3judQ8z//wGtZFhcEq3ETZ9uApkRwqgVGoV1xsqDbeBd+z+D+3Z/a3eZZnv8E7f3W4VS47tDMDHiTskJTbEcav42WiHIvYxIKHAmLrrRNRMQJMUCu8KjdhgBKILV1hPaQA+mmYyeOWOb8YGKOQRai4VH4j4eyIB35hb30uTPtC1GfUy8T+vHlNnv5nIIIoJA5EtIqlwsMgILdOOkLelRiLILkcuAy5AAxFqyUGIVIzT0gppH+7o9+PkrGy7FXv3pFKqHgybybM1tsG2mMv2WJUdsWNWY4Lds0f2xJ6tB+vFerXevqM5azizyv7Aev8CdfGdSw==</latexit>

(! f. ! x. (x2 + f 1)) (! y. (2 áy))

<latexit sha1_base64="+lgC4O1TH/PlhqFI9ndkfqmCnDU=">AAACMXicbVDLSgNBEJz1GddX1KOXwSAkCMtuiOhFCHrxqGBUSGLonXR0cPbBTK8YgvkZP8Gv8KonD4J49SecxCi+6lRUVdPdFaZKGvL9J2dsfGJyajo3487OzS8s5peWj02SaYE1kahEn4ZgUMkYayRJ4WmqEaJQ4Ul4uTfwT65QG5nER9RNsRnBeSw7UgBZqZXfKTaUTbeBd7z+J732+sXrszLf4J1+UCq5ffcr1bVWuSHaCfFuqdTKF3zPH4L/JcGIFNgIB638c6OdiCzCmIQCY+qBn1KzB5qkUHjjNjKDKYhLOMe6pTFEaJq94Zs3fD0zQAlPUXOp+FDE7xM9iIzpRqFNRkAX5rc3EP/z6hl1tps9GacZYSwGi0gqHC4yQkvbH/K21EgEg8uRy5gL0ECEWnIQwoqZLdS1fQS/v/9LjsteUPE2DyuF6u6omRxbZWusyAK2xapsnx2wGhPslt2zB/bo3DlPzovz+hEdc0YzK+wHnLd3IwWmuw==</latexit>

! x. (x2 + (! y. (2 áy)) 1)

<latexit sha1_base64="6SeWb62FgZueW/GGEOkkj0I6ysU=">AAACI3icbVDLTgJBEJz1ifhCPXqZSEwgJrhLMHokevGIiTwSQNI7tDpx9pGZXgMh8Bd+gl/hVU/ejBcP/Iu7iImKdapUVae7yw2VNGTbH9bc/MLi0nJqJb26tr6xmdnarpkg0gKrIlCBbrhgUEkfqyRJYSPUCJ6rsO7enSV+/R61kYF/Sf0Q2x7c+PJaCqBY6mQOWyoOd4H3CqNc76rID3juW+rHUrElugHxfj4/cvLpUbqTydoFewI+S5wpybIpKp3MuNUNROShT0KBMU3HDqk9AE1SKBymW5HBEMQd3GAzpj54aNqDyWNDvh8ZoICHqLlUfCLiz4kBeMb0PTdOekC35q+XiP95zYiuT9oD6YcRoS+SRSQVThYZoWXcGPKu1EgEyeXIpc8FaCBCLTkIEYtRXGHSh/P3+1lSKxacUuHoopQtn06bSbFdtsdyzGHHrMzOWYVVmWAP7Ik9sxfr0Xq13qz3r+icNZ3ZYb9gjT8B6IqhiQ==</latexit>

3

<latexit sha1_base64="EmpGcePd6828sx5iPG265+SCh/w=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYEQRlBQ5lI5CElVnS+bMIp57N1t4cUWfkCWqjoEC0fRMG/YBsXkDDVaGZXOztBLIVB1/10VlbX1jc2S1vl7Z3dvf3KwWHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqb+d1H0EZE6h5nMfghmygxFpxhKrUuhpWqW3Nz0GXiFaRKCjSHla/BKOI2BIVcMmP6nhujnzCNgkuYlwfWQMz4lE2gn1LFQjB+kged01NrGEY0Bk2FpLkIvzcSFhozC4N0MmT4YBa9TPzP61scX/uJULFFUDw7hEJCfshwLdIGgI6EBkSWJQcqFOVMM0TQgjLOU9GmlZTTPrzF75dJ57zm1WuXrXq1cVM0UyLH5IScEY9ckQa5I03SJpwAeSLP5MWxzqvz5rz/jK44xc4R+QPn4xsdlpFE</latexit>

3

<latexit sha1_base64="EmpGcePd6828sx5iPG265+SCh/w=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYEQRlBQ5lI5CElVnS+bMIp57N1t4cUWfkCWqjoEC0fRMG/YBsXkDDVaGZXOztBLIVB1/10VlbX1jc2S1vl7Z3dvf3KwWHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqb+d1H0EZE6h5nMfghmygxFpxhKrUuhpWqW3Nz0GXiFaRKCjSHla/BKOI2BIVcMmP6nhujnzCNgkuYlwfWQMz4lE2gn1LFQjB+kged01NrGEY0Bk2FpLkIvzcSFhozC4N0MmT4YBa9TPzP61scX/uJULFFUDw7hEJCfshwLdIGgI6EBkSWJQcqFOVMM0TQgjLOU9GmlZTTPrzF75dJ57zm1WuXrXq1cVM0UyLH5IScEY9ckQa5I03SJpwAeSLP5MWxzqvz5rz/jK44xc4R+QPn4xsdlpFE</latexit>

its application

32 + (! y. (2 áy)) 1

<latexit sha1_base64="+gcd9cqoUFxofOYGte89hDDBmR4=">AAACE3icbVDLTgJBEJzFF+IL9ejBicQEYkJ2EaNHohePmMgjASS9Q4MTZh+Z6TUhBG5+gl/hVU/ejFc/wIP/4oIcFK1Tpaor3V1uqKQh2/6wEguLS8srydXU2vrG5lZ6e6dqgkgLrIhABbrugkElfayQJIX1UCN4rsKa27+Y+LU71EYG/jUNQmx50PNlVwqgWGqn949vCvyIZ5sqznSAD/LjbKEpOgHxQS43dtrpjJ23p+B/iTMjGTZDuZ3+bHYCEXnok1BgTMOxQ2oNQZMUCkepZmQwBNGHHjZi6oOHpjWcPjLih5EBCniImkvFpyL+TAzBM2bgufGkB3Rr5r2J+J/XiKh71hpKP4wIfTFZRFLhdJERWsYNIe9IjUQwuRy59LkADUSoJQchYjGKK0vFfTjz3/8l1ULeKeZProqZ0vmsmSTbYwcsyxx2ykrskpVZhQl2zx7ZE3u2HqwX69V6+x5NWLPMLvsF6/0LraqbwA==</latexit>

its evaluation
its application

32 + 2 á1 = 11

<latexit sha1_base64="wWN70W3yFXkQx5PUiTqAY1oAL48=">AAACB3icbVDLSsNAFJ3UV62vaJduBosgCCWpFd0IRTcuK9gHtLFMprd16OTBzI1QQj/Ar3CrK3fi1s9w4b+YxCy09awO59zLPfe4oRQaLevTKCwtr6yuFddLG5tb2zvm7l5bB5Hi0OKBDFTXZRqk8KGFAiV0QwXMcyV03MlV6nceQGkR+Lc4DcHx2NgXI8EZJtLALJ/c1egxrfX5MEBq0wtq2wOzYlWtDHSR2DmpkBzNgfnVHwY88sBHLpnWPdsK0YmZQsElzEr9SEPI+ISNoZdQn3mgnTgLP6OHkWYY0BAUFZJmIvzeiJmn9dRzk0mP4b2e91LxP68X4ejciYUfRgg+Tw+hkJAd0lyJpBWgQ6EAkaXJgQqfcqYYIihBGeeJGCU1lZI+7PnvF0m7VrXr1dObeqVxmTdTJPvkgBwRm5yRBrkmTdIinEzJE3kmL8aj8Wq8Ge8/owUj3ymTPzA+vgEyfJaM</latexit>

its evaluation

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

1313

Conditional

<latexit sha1_base64="roI2QWWQWAki5NKr+0FKXb+9Re0=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAIHiTsBlGPQS8eI5gHJGHpnXSSIbMPZnqVsOQL/AqvevImXv0KD/6LmzUHTaxTUdVNV5cXKWnItj+t3NLyyupafr2wsbm1vVPc3WuYMNYC6yJUoW55YFDJAOskSWEr0gi+p7Dpja6nfvMetZFhcEfjCLs+DALZlwIoldziAfKOloMhgdbhA0fXOUW34hZLdtnOwBeJMyMlNkPNLX51eqGIfQxIKDCm7dgRdRPQJIXCSaETG4xAjGCA7ZQG4KPpJln8CT+ODVDII9RcKp6J+HsjAd+Yse+lkz7Q0Mx7U/E/rx1T/7KbyCCKCQMxPURSYXbICC3TXpD3pEYimCZHLgMuQAMRaslBiFSM06IKaR/O/PeLpFEpO+dl5/asVL2aNZNnh+yInTCHXbAqu2E1VmeCJeyJPbMX69F6td6s95/RnDXb2Wd/YH18A/nwmWk=</latexit>e ! e1, e2
<latexit sha1_base64="Y6lrI7N4HEz9wU68BmfbbkJCpWY=">AAACFnicbZC7TsNAEEXX4RXCy0BJs0qCRBXZKYAygoYySOQhJVG03kySVdZra3eMFFnp+QS+ghYqOkRLS8G/YBsXkDDV0b0zmpnrhVIYdJxPq7C2vrG5Vdwu7ezu7R/Yh0dtE0SaQ4sHMtBdjxmQQkELBUrohhqY70noeLPr1O/cgzYiUHc4D2Hgs4kSY8EZJtLQLsd9M6ZiTKtQpTgFlcDQrVKQBlKsVxdDu+LUnKzoKrg5VEhezaH91R8FPPJBIZfMmJ7rhDiImUbBJSxK/chAyPiMTaCXoGI+mEGc/bKgp5FhGNAQNBWSZiL8noiZb8zc95JOn+HULHup+J/Xi3B8OYiFCiMExdNFKCRkiwzXIgkJ6EhoQGTp5UCFopxphghaUMZ5IkZJaqUkD3f5+1Vo12vuec29rVcaV3kyRXJCyuSMuOSCNMgNaZIW4eSBPJFn8mI9Wq/Wm/X+01qw8plj8qesj2+x35zE</latexit>

if e then e1 elsee2

<latexit sha1_base64="aiiwdgvALP/AD8cqci2w877boO0=">AAACyXicjVFNb9NAEN2Yr1K+UjhyWREhcUCWjarCoZUquCBxKRJpK2WjaLyepKvurt3dcRpjuRf+Br+GK/wB/g3rJEj048CcnmbmzZt5k5VaeUqS373o1u07d+9t3N988PDR4yf9raeHvqicxKEsdOGOM/ColcUhKdJ4XDoEk2k8yk4/dPWjOTqvCvuF6hLHBmZWTZUECqlJf0cYZbnIcYpnXOhAzIEv4ou/sI4v+GK35sKp2QmBc8U5X7yuJ/1BEifL4NdBugYDto6DyVavEXkhK4OWpAbvR2lS0rgBR0pqbDdF5bEEeQozHAVowaAfN8sDW/6y8kAFL9Fxpfkyif8yGjDe1yYLnQboxF+tdcmbaqOKpu/GjbJlRWhlJ0RK41LIS6eCc8hz5ZAIus2RB7MkOCBCpzhIGZJVsPKSoCcDrnZ5OMriuSyMAZs3K4/bRnRbONSNyCql84C4mAcbnAI7C9qiCKq82Wvbm/iVmv/3CLFqD3PCu9Krz7kODt/E6U6cft4e7L9fP26DPWcv2CuWsrdsn31kB2zIJPvOfrCf7Ff0KTqLFtHXVWvUW3OesUsRffsDIOnkHw==</latexit>

min != ! x. ! y. x < y ! x, yexample

Denotational semantics of commands

14

15

From your forms

(over 14 answers)

Denotational semantics

21%

43%

14%

21%

5 stelle 4 stelle 3 stelle 2 stelle 1 stella

1616

Denotational semantics

134 6 Denotational Semantics of IMP

6.2 Denotational Semantics of IMP

As we said, we will use lambda notation as a meta-language; this means that we will
express the semantics of IMP by translating IMP syntax into lambda terms.

The denotational semantics of IMP consists of three separateinterpretationfunc-
tions, one for each syntax category (Aexp,Bexp,Com):

Aexp: each arithmetic expression is mapped to a function from states to integers:

A : Aexp! (! ! Z)

Bexp: each boolean expression is mapped to a function from states to booleans:

B : Bexp! (! ! B)

Com: each command is mapped to a (partial) function from states to states:

C : Com! (! ! !)

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A

We shall deÞneA by structural recursion over the syntax of arithmetic expressions.
Let us Þx some notation. We will rely on deÞnitions of the form

A !n" def= "# . n

with the following meaning:

¥ A : Aexp! ! ! Z is the interpretation function,
¥ n is an arithmetic expression (i.e., a term inAexp). The surrounding brackets!

and" emphasise that it is a piece of syntax rather then part of the meta-language.
¥ the expressionA !n" is a function whose type is! ! Z. Notice that also the right

part of the equation must be of the same type! ! Z.

We shall often deÞne the interpretation functionA by writing equalities such as

A !n" # def= n

instead of

A !n" def= "# . n

In this way, we simplify the notation in the right-hand side. Notice that both sides of
the equation (A !n" # andn) have typeZ.

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
⇢

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

Lifting

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

?

1717

Denotational sem. (ctd)

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

p = f (p)

<latexit sha1_base64="sYnD/Usz65qKBdNebRnHGnrHk9M=">AAAB+HicbVC7TsNAEDyHVwivACXNiQgpNJGNgqBBiqChDBJ5SIkVnS+bcORsn+7WSMHKP9BCRYdo+RsK/gXbuICEqUYzu9rZ8ZQUBm370yosLa+srhXXSxubW9s75d29tgkjzaHFQxnqrscMSBFACwVK6CoNzPckdLzJVep3HkAbEQa3OFXg+mwciJHgDBOprS5GVXU8KFfsmp2BLhInJxWSozkof/WHIY98CJBLZkzPsRW6MdMouIRZqR8ZUIxP2Bh6CQ2YD8aNs7QzehQZhiFVoKmQNBPh90bMfGOmvpdM+gzvzLyXiv95vQhH524sAhUhBDw9hEJCdshwLZIagA6FBkSWJgcqAsqZZoigBWWcJ2KU9FJK+nDmv18k7ZOaU6+d3tQrjcu8mSI5IIekShxyRhrkmjRJi3ByT57IM3mxHq1X6816/xktWPnOPvkD6+MbZYeTFw==</latexit>

a Þxpoint equation!

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

(

<latexit sha1_base64="cXt9yYk6t5lHien1ajM0ew04qzw=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjICgjaCgTiTykxIrOl0045Xy27vaQIitfQAsVHaLlgyj4F2zjAgJTjWZ2tbMTxFIYdN0Pp7S2vrG5Vd6u7Ozu7R9UD496JrKaQ5dHMtKDgBmQQkEXBUoYxBpYGEjoB/ObzO8/gDYiUne4iMEP2UyJqeAMU6lTH1drbsPNQf8SryA1UqA9rn6OJhG3ISjkkhkz9NwY/YRpFFzCsjKyBmLG52wGw5QqFoLxkzzokp5ZwzCiMWgqJM1F+LmRsNCYRRikkyHDe7PqZeJ/3tDi9MpPhIotguLZIRQS8kOGa5E2AHQiNCCyLDlQoShnmiGCFpRxnoo2raSS9uGtfv+X9M4bXrNx0WnWWtdFM2VyQk5JnXjkkrTILWmTLuEEyCN5Is+OdV6cV+fte7TkFDvH5Bec9y8McZE5</latexit>

)

<latexit sha1_base64="FoUsoJvOdMfLXMKAsqLfzCRchPY=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFBE9koCMoIGspEIg8psaLzZRNOOZ+tuz2kyMoX0EJFh2j5IAr+Bdu4gISpRjO72tkJYikMuu6ns7K6tr6xWdoqb+/s7u1XDg47JrKaQ5tHMtK9gBmQQkEbBUroxRpYGEjoBtPbzO8+gjYiUvc4i8EP2USJseAMU6l1PqxU3Zqbgy4TryBVUqA5rHwNRhG3ISjkkhnT99wY/YRpFFzCvDywBmLGp2wC/ZQqFoLxkzzonJ5awzCiMWgqJM1F+L2RsNCYWRikkyHDB7PoZeJ/Xt/i+NpPhIotguLZIRQS8kOGa5E2AHQkNCCyLDlQoShnmiGCFpRxnoo2raSc9uEtfr9MOhc1r167bNWrjZuimRI5JifkjHjkijTIHWmSNuEEyBN5Ji+OdV6dN+f9Z3TFKXaOyB84H98OAJE6</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

!

<latexit sha1_base64="Ygll3yr7aqwHtytIhQZwDoOcdUo=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeURNH5sglHzmdztxcpWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzt+JIVB1/10CkvLK6trxfXSxubW9k55d69pQqs5NHgoQ932mQEpFDRQoIR2pIEFvoSWP75K/dYEtBGhusVpBL2AjZQYCs4wkZpdeLBi0i9X3KqbgS4SLycVkqPeL391ByG3ASjkkhnT8dwIezHTKLiEWalrDUSMj9kIOglVLADTi7O0M3pkDcOQRqCpkDQT4fdGzAJjpoGfTAYM78y8l4r/eR2Lw4teLFRkERRPD6GQkB0yXIukBqADoQGRpcmBCkU50wwRtKCM80S0SS+lpA9v/vtF0jypeqfVs5vTSu0yb6ZIDsghOSYeOSc1ck3qpEE4uSdP5Jm8OI/Oq/PmvP+MFpx8Z5/8gfPxDXv0k8k=</latexit>

Denotational sem. (ctd)

1818

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).partial functions

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

sets of pairs
(! , ! !)

<latexit sha1_base64="NFvFBcdTUHb/DylJpfUauqhV/OQ=">AAACBHicbVC7TgJREL2LL8TXqqXNjcSIiSG7BqMl0cYSE3kkQMjsZcAb7j5y7ywJIbR+ha1WdsbW/7DwX1wWCgVPMyfnzGRmjhcpachxvqzMyura+kZ2M7e1vbO7Z+8f1EwYa4FVEapQNzwwqGSAVZKksBFpBN9TWPcGt1O/PkRtZBg80CjCtg/9QPakAEqkjm0XWkb2fTifldOzjp13ik4KvkzcOcmzOSod+7vVDUXsY0BCgTFN14moPQZNUiic5FqxwQjEAPrYTGgAPpr2OL18wk9iAxTyCDWXiqci/p4Yg2/MyPeSTh/o0Sx6U/E/rxlT77o9lkEUEwZiuoikwnSREVomkSDvSo1EML0cuQy4AA1EqCUHIRIxTjLKJXm4i98vk9pF0S0VL+9L+fLNPJksO2LHrMBcdsXK7I5VWJUJNmTP7IW9Wk/Wm/VufcxaM9Z85pD9gfX5AyzGl1Y=</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

CPO!

<latexit sha1_base64="0eVAP1pPVndRR0pRSRwXSlriv/A=">AAAB/HicbVC7TsNAEDyHVwivACXNiQSJKrIRCMqINHQEiTxEYkXnyyaccj5bd2ukyApfQQsVHaLlXyj4F2zjAhKmGs3samfHC6UwaNufVmFpeWV1rbhe2tjc2t4p7+61TRBpDi0eyEB3PWZACgUtFCihG2pgvieh400aqd95AG1EoG5xGoLrs7ESI8EZJtJdo3ldHfS9AKuDcsWu2RnoInFyUiE5moPyV38Y8MgHhVwyY3qOHaIbM42CS5iV+pGBkPEJG0MvoYr5YNw4SzyjR5FhGNAQNBWSZiL83oiZb8zU95JJn+G9mfdS8T+vF+Howo2FCiMExdNDKCRkhwzXIqkC6FBoQGRpcqBCUc40QwQtKOM8EaOkm1LShzP//SJpn9Sc09rZzUmlfpk3UyQH5JAcE4eckzq5Ik3SIpwo8kSeyYv1aL1ab9b7z2jBynf2yR9YH98Wl5ST</latexit>

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

<latexit sha1_base64="6UB0uISmr+oB1nSWI8fPhnpL3Lw=">AAACknicjVFNTxRBEO0dURBRQb156bAx4bSZMUQICQnKxYMHSFwg2dmQmp7atUJ3z9BdvWQzmV/gVX+c/8aeZQ/ycbBOL68+3quqotbkOU3/9JInK0+fra49X3+x8fLV682tN2e+Ck7hUFW6chcFeNRkccjEGi9qh2AKjefF1XGXP5+h81TZ7zyvcWxgamlCCjhSpweXm/10kC5CPgTZEvTFMk4ut3pNXlYqGLSsNHg/ytKaxw04JqWxXc+DxxrUFUxxFKEFg37cLJy28kPwwJWs0UnSckHivx0NGO/npoiVBviHv5/ryMdyo8CT/XFDtg6MVnVCTBoXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5I+jZgJu7Mi5l8UZVxoAt4/o4weu2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZHLbtY/2BZv89Ir8tj3Piu7L7z3kIzj4Osk+D7HS3f/Rl+bg18V5six2RiT1xJL6KEzEUSqD4KX6J38m75CD5nBzflia9Zc9bcSeSb38BjCnOgw==</latexit>:

136 6 Denotational Semantics of IMP

6.2.3 Denotational Semantics of Commands: The FunctionC

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com! (! ! !)

Since commands can diverge, the codomain ofC is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can deÞne an equivalent total function. So we deÞne

C : Com! (! ! ! ")

This will simplify the notation.
Instead of presenting the whole, structurally recursive, deÞnition ofC and then

discussing its deÞning equations, we give each rule separately accompanied by the
necessary explanations.

We start from the simplest commands: skip and assignments.

C !skip" " def= " (6.1)

We see thatC !skip" is the identity function:skip does not modify the memory.

C !x := a" " def= " [A ! a" " / x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modiÞes the memory by assigning the corresponding value to the
locationx.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we Þrst interpretc0 in the starting memory and thenc1 in the state produced
by c0. The problem is that from the Þrst application ofC !c0" we obtain a value in
! " , not necessarily in! , so we cannot applyC !c1". To work this problem out we
introduce alifting operator(á)#: it takes a function in! ! ! " and returns a function
in ! " ! ! " , i.e., its type is(! ! ! ") ! (! " ! ! ").

DeÞnition 6.9(Lifting). Let f : ! ! ! " . We deÞne a functionf # : ! " ! ! " as
follows:

f #(x) =
!

" if x = "
f (x) otherwise

So the deÞnition of the interpretation function forc0;c1 is

C !c0;c1" " def= C !c1"# (C !c0" ") (6.3)

Note that we apply the lifted versionC !c1"# of C !c1" to the argumentC !c0" " .

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

1919

Monotone and continuous

Take Rb,c =
!

(! !! , ! !)
(! , ! !)

B! b"! ! C! c"! = ! !! ,
(! , !)

B! Âb"!

"

<latexit sha1_base64="GOfPTVB1iLPQw0VZMgE0l8zValM=">AAADMHiclVJNb9NAEF2br2K+UjgioRUJapGiyEZFcEGq2gvHgkhbKRtF683EXXXXa+2OgWC5N34NNwT/BU6IKz+BE+vUQEl6YU5Pb97MvpmdtFDSYRx/DcILFy9dvrJ2Nbp2/cbNW5312/vOlFbAUBhl7GHKHSiZwxAlKjgsLHCdKjhIj3eb/MFrsE6a/BXOCxhrnuVyJgVHT03Wg3svJ1XaF3X0jDIFM2RVxGaWi2qTOZlpvrHRb8HD+jf3l2E6NW8rNjMGc4Pg5DugPaY5Hgmuqp2aKZX6ZseANGXWtvi0nLI3MM2A/pHvnpWLFbk32Drq1fSkf9L6XHb1X6ZYDtmqs14dMSuzI2T1pNONB/Ei6CpIWtAlbexNOj/Z1IhSQ45CcedGSVzguOIWpVDgG5cOCv8Wz2DkYc41uHG1+MiaPigdR0MLsFQquiDhbEXFtXNznXplM45bzjXkuTmHmtu5nZ6XHJU4ezquZF6UCLloXKBUsHDhhJX+fIBOpQVE3owFVOZUcMsRwUrKhfBk6e8p8stKllezCvYfDZKtweMXW93tnXZta+QuuU82SUKekG3ynOyRIRHB++BD8Cn4HH4Mv4Tfwu+n0jBoa+6QfyL88Qs3zgm0</latexit>

clearly !Rb,c = ! b,c

<latexit sha1_base64="PDdB3yUCpu0i+qJwty7/dIu38GI=">AAACMXicbVDLSgNBEJz1GeMr6tHLYBA8SNgVRS+C6EGPUcwDkhB6J51kyMzuMtOrhCVXv8ab6L/kJl79A09uHgcfqVN1VTdUlx8pacl1h87c/MLi0nJmJbu6tr6xmdvaLtswNgJLIlShqfpgUckASyRJYTUyCNpXWPF7VyO/8oDGyjC4p36EDQ2dQLalAEqlZo7XH2ULu0DJ3aCZ+IdiwM95/Rq0hsnYzOXdgjsG/0+8KcmzKYrN3Fe9FYpYY0BCgbU1z42okYAhKRQOsvXYYgSiBx2spTQAjbaRjD8Z8P3YAoU8QsOl4mMRf14koK3taz/d1EBd+9cbiTM9SxpM37RmmbWY2meNRAZRTBiIUQqSCscprDAy7Q95SxokgtFbyGXABRggQiM5CJGKcVpoNi3L+1vNf1I+KnjHhZPb4/zF5bS2DNtle+yAeeyUXbAbVmQlJtgTe2av7M15cYbOu/MxWZ1zpjc77Becz29gzapN</latexit>

when we see as operating over
partial functions

! b,c

<latexit sha1_base64="bw8BSunO9x83oIoVVoCg4Mb5LII=">AAACG3icbVA9SwNBFNyLXzF+RS1tFoNgIeFOIloGLbSMYD4gCeHd5iUu2b07dt8J4cjfsBP9L3Zia+FfsfIuptCYqYaZeTBv/EhJS6776eSWlldW1/LrhY3Nre2d4u5ew4axEVgXoQpNyweLSgZYJ0kKW5FB0L7Cpj+6yvzmAxorw+COxhF2NQwDOZACKJU6nWvQGnqJfyImvWLJLbtT8P/Em5ESm6HWK351+qGINQYkFFjb9tyIugkYkkLhpNCJLUYgRjDEdkoD0Gi7ybTzhB/FFijkERouFZ+K+PsiAW3tWPtpUgPd23kvExd6ljSYsekvMtsxDS66iQyimDAQWQuSCqctrDAyXQp5Xxokguwt5DLgAgwQoZEchEjFOJ2ukI7lzU/znzROy16lfHZbKVUvZ7Pl2QE7ZMfMY+esym5YjdWZYBF7ZM/sxXlyXp035/0nmnNmN/vsD5yPbxmjogM=</latexit>

!Rb,c

<latexit sha1_base64="CtUkNUfEfCxUNCmQIASvbvFLiPo=">AAACInicbVDLTgJBEJz1ifha9OhlIjHxYMiuweiR6MUjGnkkQEjv0MCE2UdmeiVkw6d4M/ov3ownE7/EkwtyUKBOlarqpLq8SElDjvNprayurW9sZray2zu7e/t27qBqwlgLrIhQhbrugUElA6yQJIX1SCP4nsKaN7iZ+LVH1EaGwQONImz50AtkVwqgVGrbueZQdrAPlNyP24l3JsZtO+8UnCn4InFnJM9mKLft72YnFLGPAQkFxjRcJ6JWApqkUDjONmODEYgB9LCR0gB8NK1kWn3MT2IDFPIINZeKT0X8e5GAb8zI99KkD9Q3895EXOoZ8kGPdGeZ2Yipe9VKZBDFhIGYtCCpcNrCCC3TwZB3pEYimLyFXAZcgAYi1JKDEKkYpwtm07Hc+WkWSfW84BYLF3fFfOl6NluGHbFjdspcdslK7JaVWYUJNmRP7IW9Ws/Wm/VuffxGV6zZzSH7B+vrB0gIpLM=</latexit>

is (monotone and) continuous, and so is ! b,c

<latexit sha1_base64="bw8BSunO9x83oIoVVoCg4Mb5LII=">AAACG3icbVA9SwNBFNyLXzF+RS1tFoNgIeFOIloGLbSMYD4gCeHd5iUu2b07dt8J4cjfsBP9L3Zia+FfsfIuptCYqYaZeTBv/EhJS6776eSWlldW1/LrhY3Nre2d4u5ew4axEVgXoQpNyweLSgZYJ0kKW5FB0L7Cpj+6yvzmAxorw+COxhF2NQwDOZACKJU6nWvQGnqJfyImvWLJLbtT8P/Em5ESm6HWK351+qGINQYkFFjb9tyIugkYkkLhpNCJLUYgRjDEdkoD0Gi7ybTzhB/FFijkERouFZ+K+PsiAW3tWPtpUgPd23kvExd6ljSYsekvMtsxDS66iQyimDAQWQuSCqctrDAyXQp5Xxokguwt5DLgAgwQoZEchEjFOJ2ukI7lzU/znzROy16lfHZbKVUvZ7Pl2QE7ZMfMY+esym5YjdWZYBF7ZM/sxXlyXp035/0nmnNmN/vsD5yPbxmjogM=</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
!

n$N

n
b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

!" . !

<latexit sha1_base64="pCFfPUaXRY5pimIEJBwsY/iJ+0o=">AAACJXicbVDLTgJBEJzFF+ILHzcvE4mJJ7JrMHokevGIiTwSlpDeocEJM7ubmV4TJPgt3oz+izdj4sn/8OSCHBSoU6WqOqmuIFbSkut+Opml5ZXVtex6bmNza3snv7tXs1FiBFZFpCLTCMCikiFWSZLCRmwQdKCwHvSvxn79Ho2VUXhLgxhbGnqh7EoBlErt/IGv0nAHuG9lT0Px0Q8iaucLbtGdgM8Tb0oKbIpKO//tdyKRaAxJKLC26bkxtYZgSAqFo5yfWIxB9KGHzZSGoNG2hpP2I36cWKCIx2i4VHwi4t+LIWhrBzpIkxrozs56Y3GhZ0mDGZjOIrOZUPeiNZRhnBCGYtyCpMJJCyuMTDdD3pEGiWD8FnIZcgEGiNBIDkKkYpKOmEvH8manmSe106JXKp7dlArly+lsWXbIjtgJ89g5K7NrVmFVJtgDe2Iv7NV5dt6cd+fjN5pxpjf77B+crx8N2aWU</latexit>

6.2 Denotational Semantics of IMP 137

Let us now consider the conditional command. Recall that the! -calculus provides
a conditional operator; then we have immediately

C ! if b then c0 elsec1" " def= B !b" " ! C !c0" " ,C !c1" " (6.4)

The deÞnition of the denotational semantics of the while command is more
intricate. We could think to deÞne the interpretation simply as

C !while b do c" " def= B !b" " ! C !while b do c"" (C !c" ") , "

Obviously this deÞnition is not a structural recursion, because the same expression
C !while b do c" whose meaning we want to deÞne appears in the right-hand side
of the deÞning equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, likeB !b" andC !c". To solve this issue we will
reduce the problem of deÞning the semantics of iteration to a Þxpoint calculation.
Let us deÞne a function#b,c : ($! $#) ! $! $# :

#b,c
def= !%. ! " . B !b" " ! %" (C !c" "), "

$#

$! $#

($! $#)! $! $#

The function#b,c takes a function%: $! $# , and returns the function

! " . B !b" " ! %" (C !c" "), "

of type$! $# , which given a memory" evaluatesB !b" " and depending on the
outcome returns either%" (C !c" ") or " . Note that the deÞnition of#b,c refers only
to subterms of the commandwhile b do c. Clearly we require thatC !while b do c"
is a Þxpoint of#b,c, i.e., that

C !while b do c" = #b,c C !while b do c"

As there can be several Þxpoints for#b,c, we deÞneC !while b do c" to be the
least one. Next we show that#b,c is a monotone and continuous function, so that we
can prove that#b,c has a least Þxpoint and that by the Þxpoint Theorem 5.6

C !while b do c" def= Þx #b,c =
G

n$N
n

b,c(# $! $#) (6.5)

To prove continuity we will consider#b,c as operating on partial functions:

#b,c : ($! $) %! ($! $).

2020

Bottom
! !

<latexit sha1_base64="vL1LVjs3GsA/tIPxPxfLOnMTiRE=">AAACGnicbVA9TwJBFNzDL8Qv1NJmIzGxIncGoyXRxhKjfCQcIe+WB27YvbvsvjMhhJ9hZ/S/2BlbG/+KlQdeocBUk5l5ybwJYiUtue6Xk1tZXVvfyG8WtrZ3dveK+wcNGyVGYF1EKjKtACwqGWKdJClsxQZBBwqbwfB66jcf0VgZhfc0irGjYRDKvhRAqdT27+RAQ9cPIuoWS27ZnYEvEi8jJZah1i1++71IJBpDEgqsbXtuTJ0xGJJC4aTgJxZjEEMYYDulIWi0nfGs8oSfJBYo4jEaLhWfifj3Ygza2pEO0qQGerDz3lRc6lnSYEamt8xsJ9S/7IxlGCeEoZi2IKlw1sIKI9OhkPekQSKYvoVchlyAASI0koMQqZikyxXSsbz5aRZJ46zsVcrnt5VS9SqbLc+O2DE7ZR67YFV2w2qszgSL2BN7Ya/Os/PmvDsfv9Gck90csn9wPn8Aj9qhvw==</latexit>

has a bottom element: !

<latexit sha1_base64="SzqewVUAX9H9AIF254+tQPbtWBE=">AAACE3icbVDLSgNBEJyNrxhfUY9eBoPgKexKRI9BLx4jmAckS+iddJIhsw9meoUQ8gveRP/Fm3j1A/wVT+6ue9AkdSqqqqG6vEhJQ7b9ZRXW1jc2t4rbpZ3dvf2D8uFRy4SxFtgUoQp1xwODSgbYJEkKO5FG8D2FbW9ym/rtR9RGhsEDTSN0fRgFcigFUCr1vJD65YpdtTPwZeLkpMJyNPrl794gFLGPAQkFxnQdOyJ3BpqkUDgv9WKDEYgJjLCb0AB8NO4s6zrnZ7EBCnmEmkvFMxH/XszAN2bqe0nSBxqbRS8VV3qGfNBTPVhldmMaXrszGUQxYSDSFiQVZi2M0DJZCPlAaiSC9C3kMuACNBChlhyESMQ4mayUjOUsTrNMWhdVp1a9vK9V6jf5bEV2wk7ZOXPYFauzO9ZgTSbYmD2xF/ZqPVtv1rv18RstWPnNMfsH6/MHAcyezQ==</latexit>

! ! ! !

<latexit sha1_base64="7ihqAM+UCPN9a+9eD+gcE14dHOM=">AAACL3icbZA/SwNBEMX3/Bvjv1NLQRaDYBXuJKJl0MYyolEhF8LcZhIXd++O3TklhHR+GjvR7yI2YutXsPJyptAkr3r83gzMvDBR0pLnvTszs3PzC4uFpeLyyurauruxeWXj1Aisi1jF5iYEi0pGWCdJCm8Sg6BDhdfh3ekwv75HY2UcXVIvwaaGbiQ7UgBlqOXuBBeyq4EHRnZvCYyJH/gvagVhTC235JW9XHzS+CNTYiPVWu530I5FqjEiocDahu8l1OyDISkUDopBajEBcQddbGQ2Ao222c//GPC91ALFPEHDpeI5xL8bfdDW9nSYTWqgWzueDeHUzJIG0zPtaWEjpc5xsy+jJCWMxPAKkgrzK6wwMmsPeVsaJILhW8hlxAUYIEIjOQiRwTSrs5iV5Y9XM2muDsp+pXx4XilVT0a1Fdg222X7zGdHrMrOWI3VmWCP7Im9sFfn2XlzPpzP39EZZ7Szxf7J+foBaMyp4A==</latexit>

has a bottom element: !" . !

<latexit sha1_base64="PIfS03tohZSaCEgXtunT9OcE1zY=">AAACJHicbVA9TwJBFNzDL8QvlNJmIzGxIndGoyXRxhIT+Ug4Qt4tD9ywe3fZfWdCCP4VO6P/xc5Y2PhDrDxOCgWmmszMS+ZNECtpyXU/ndzK6tr6Rn6zsLW9s7tX3D9o2CgxAusiUpFpBWBRyRDrJElhKzYIOlDYDIbXU7/5gMbKKLyjUYwdDYNQ9qUASqVuseSrNNwD38qBhsqjH0TULZbdipuBLxJvRspshlq3+O33IpFoDEkosLbtuTF1xmBICoWTgp9YjEEMYYDtlIag0XbGWfkJP04sUMRjNFwqnon492IM2tqRDtKkBrq3895UXOpZ0mBGprfMbCfUv+yMZRgnhKGYtiCpMGthhZHpZMh70iARTN9CLkMuwAARGslBiFRM0g0L6Vje/DSLpHFa8c4q57dn5erVbLY8O2RH7IR57IJV2Q2rsToTbMSe2At7dZ6dN+fd+fiN5pzZTYn9g/P1A66+pWo=</latexit>

to avoid ambiguities

we denote the bottom element of a domain byD

<latexit sha1_base64="pbGyk/2gIse1G5qVTaNUsM9A1Do=">AAACEHicbVDLSgNBEJyNrxhfUY9eBoPgKexKRI9BPXhMwDwgWULvpBOHzD6Y6RXCki/wJvov3sSrf+CveHKz7kFj6lRUVUN1eZGShmz70yqsrK6tbxQ3S1vbO7t75f2DtgljLbAlQhXqrgcGlQywRZIUdiON4HsKO97keu53HlAbGQZ3NI3Q9WEcyJEUQKnUvBmUK3bVzsD/EycnFZajMSh/9YehiH0MSCgwpufYEbkJaJJC4azUjw1GICYwxl5KA/DRuElWdMZPYgMU8gg1l4pnIv6+SMA3Zup7adIHujeL3lxc6hnyQU/1cJnZi2l06SYyiGLCQMxbkFSYtTBCy3Qe5EOpkQjmbyGXAReggQi15CBEKsbpXqV0LGdxmv+kfVZ1atXzZq1Sv8pnK7IjdsxOmcMuWJ3dsgZrMcGQPbJn9mI9Wa/Wm/X+Ey1Y+c0h+wPr4xtIsp1S</latexit>

! D

<latexit sha1_base64="N1haSX90uyPGOfauL6hJ8hFuBlo=">AAACFXicbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAxqYRnBPCBZwt3JTRwz+2DmrhBC/sFO9F/sxNbaX7Fyd91Ck5zqcM65cO7xIiUN2faXVVhaXlldK66XNja3tnfKu3tNE8ZaYEOEKtRtDwwqGWCDJClsRxrB9xS2vNFV6rceURsZBnc0jtD1YRjIgRRAidTseiH1rnvlil21M/B54uSkwnLUe+Xvbj8UsY8BCQXGdBw7IncCmqRQOC11Y4MRiBEMsZPQAHw07iRrO+VHsQEKeYSaS8UzEf9eTMA3Zux7SdIHujezXiou9Az5oMe6v8jsxDS4cCcyiGLCQKQtSCrMWhihZbIR8r7USATpW8hlwAVoIEItOQiRiHEyWikZy5mdZp40T6rOafXs9rRSu8xnK7IDdsiOmcPOWY3dsDprMMEe2BN7Ya/Ws/VmvVsfv9GCld/ss3+wPn8AYCafhA==</latexit>

! ! !

<latexit sha1_base64="4YILPuI43E/2TLSRW4Gp/KoegbA=">AAACI3icbVC7TsNAEDyHd3gFKGlOREhUkY2CoETQUIIgCVISWevLJpxyZ1t3a0Rk5VfoEPwLHaKh4EeosI0LXlPNzuxKsxPESlpy3TenMjM7N7+wuFRdXlldW69tbLZtlBiBLRGpyFwHYFHJEFskSeF1bBB0oLATjE9zv3OLxsoovKJJjH0No1AOpQDKJL+22Qsi8tPepRxp8PNh6tfqbsMtwP8SryR1VuLcr330BpFINIYkFFjb9dyY+ikYkkLhtNpLLMYgxjDCbkZD0Gj7aZF9yncTCxTxGA2Xihcifr9IQVs70UG2qYFu7G8vF//1LGkwEzP4z+wmNDzqpzKME8JQ5ClIKixSWGFk1hjygTRIBPlbyGXIBRggQiM5CJGJSVZhNSvL+13NX9Leb3jNxsFFs358Uta2yLbZDttjHjtkx+yMnbMWE+yO3bNH9uQ8OM/Oi/P6tVpxypst9gPO+ycv0KUu</latexit>

! ! ! ! !

<latexit sha1_base64="zA6p+w0+zFo4Pl3/SJKYnGj9cJ8=">AAACNnicbZC7TsNAEEXXvAmvACXNigiJKrIRCMoIGkoQ5CHFkTXeDGHFrm3tjkGRlS/ga+gQfAkNHaKlpsJOUgDJra7OnZFmbpgoacl135yZ2bn5hcWl5dLK6tr6Rnlzq2Hj1Aisi1jFphWCRSUjrJMkha3EIOhQYTO8Oyvy5j0aK+PomvoJdjT0InkjBVCOgvKeH8YUZP6V7GngvpG9WwJj4gc+QkGRD4Jyxa26Q/FJ441NhY11EZS//W4sUo0RCQXWtj03oU4GhqRQOCj5qcUExB30sJ3bCDTaTjZ8Z8D3UgsU8wQNl4oPIf7eyEBb29dhPqmBbu3/rIBTM0saTN90p4XtlG5OOpmMkpQwEsUVJBUOr7DCyLxE5F1pkAiKt5DLiAswQIRGchAih2neaikvy/tfzaRpHFS9w+rR5WGldjqubYntsF22zzx2zGrsnF2wOhPskT2xF/bqPDvvzofzORqdccY72+yPnK8fw/+tHg==</latexit>

2121

Example

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

138 6 Denotational Semantics of IMP

Partial functions inS ! S can be represented as sets of pairs(s ,s 0) that we write
as formulass 7! s 0. Then the effect ofGb,c can be represented by the immediate
consequence operators for the following set of rules:

RGb,c

def
=

!
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

ÂB JbKs

s 7! s

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#RGb,c = Gb,c.

The only formulas appearing in the rules ares 00 7! s 0 (as a premise of the Þrst rule),
s 7! s 0 ands 7! s (as conclusions); the other formulas express side conditions:
B JbKs ^ C JcKs = s 00 for the Þrst rule andÂB JbKs for the second rule. An
instance of the Þrst rule schema is obtained by picking two memoriess ands 00

such thatB JbKs is true andC JcKs = s 00. Then for everys 0 such thats 00 7! s 0

we can derives 7! s 0. The second rule schema is an axiom expressing thats 7! s
wheneverÂB JbKs .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#RGb,c. Now
by using Theorem 5.10 we have

Þx Gb,c = Þx #RGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC JwK def
= Þx Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we haveGtrue,skipj = j, that isGtrue,skip is the identity function. Then each
functionj is a Þxpoint ofGtrue,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO? of functionsS ! S?.
Then we have

Þx Gtrue,skip = ls . ?S?

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

is the identity function

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

138 6 Denotational Semantics of IMP

Partial functions in! ! ! can be represented as sets of pairs(" , " !) that we write
as formulas" "# " !. Then the effect of#b,c can be represented by the immediate
consequence operators for the following set of rules:

R#b,c

def=
!

B !b" " C !c" " = " !! " !! "# " !

" "# " !
,

ÂB !b" "

" "# "

"

Note that there are inÞnitely many instances of the rules, but each rule has only a
Þnite number of premises, and that

#R#b,c = #b,c.

The only formulas appearing in the rules are" !! "# " ! (as a premise of the Þrst rule),
" "# " ! and" "# " (as conclusions); the other formulas express side conditions:
B !b" " $ C !c" " = " !! for the Þrst rule andÂB !b" " for the second rule. An
instance of the Þrst rule schema is obtained by picking two memories" and" !!

such thatB !b" " is true andC !c" " = " !!. Then for every" ! such that" !! "# " !

we can derive" "# " !. The second rule schema is an axiom expressing that" "# "
wheneverÂB !b" " .

Since all the rules obtained in this way have a Þnite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of#R#b,c. Now
by using Theorem 5.10 we have

Þx #b,c = Þx #R#b,c = IR#b,c

Let us conclude this section with three examples which explain how to use the
deÞnitions we have given.

Example 6.6.Let us consider the command

w = while true do skip

Now we will see how to calculate its semantics. We haveC !w" def= Þx #true,skip where

#true,skip$" = B ! true" " # $ %(C !skip" ") , "

= true # $ %(C !skip" ") , "

= $ %(C !skip" ")

= $ %"

= $"

So we have#true,skip$ = $, that is#true,skip is the identity function. Then each
function$ is a Þxpoint of#true,skip, but we are looking for the least Þxpoint. This
means that the sought solution is the least function in theCPO& of functions! # ! & .
Then we have

Þx #true,skip = %". &! &

every element is a
Þxpoint

2222

Example
<latexit sha1_base64="Gs47zDpHcFyzgby3j0cyMK3WMIo=">AAACw3icjVHbihNBEO2Mt3W9ZfXRl8Yg+GKYkUVFWFkUwccVzO5COoSankq2SXfP2F2TbGjmN/waX/Uf/Bt7JkHcy4P1dDh1OVWn8korT2n6u5fcuHnr9p2du7v37j94+Ki/9/jYl7WTOJKlLt1pDh61sjgiRRpPK4dgco0n+eJjmz9ZovOqtF9pXeHEwNyqmZJAkZr205UocIbfuDBAZ/ksrM6Uxkbw8/eZ+EsWZcu8Ozh/mU37g3SYdsGvgmwLBmwbR9O9XhBFKWuDlqQG78dZWtEkgCMlo9SuqD1WIBcwx3GEFgz6SehOa/jz2gOVvELHleYdif92BDDer00eK9td/eVcS16XG9c0ezsJylY1oZWtEMXDOyEvnYqeIS+UQyJoN0euLJfggAid4iBlJOto4gVBTwbc2hXxKIsrWRoDtggbh5vQuelQB5HXShcRcbGMNjgFdh61RRlVeThomuv6a7X87xFiUx7nxHdll59zFRy/Gmavh9mX/cHhh+3jdthT9oy9YBl7ww7ZZ3bERkyy7+wH+8l+JZ+SReIS2pQmvW3PE3YhkuYPg0Lh4A==</latexit>

w != while x > 1 do x := x ! 1

<latexit sha1_base64="6ZworQdspaTVGtqDCAmPZQL4iRE=">AAADK3icjVHLbhMxFPUMrzI8msKSjUVAKqiNZhAChBRUtQtYFom0leIQ3XFuEqu2Z7A9aaPR/Ac/wdewArHlNxDOZECk6YK7Or6Pc3zvSXMprIvjb0F45eq16zc2bka3bt+5u9naundks8Jw7PFMZuYkBYtSaOw54SSe5AZBpRKP09ODRf14hsaKTH9w8xwHCiZajAUH51PD1mf2FpSCYZnu8IpRNgOTT4UHVkwURF0aMQVuykGW+xWTMjXAT9HR8zcJM+bPq+lmRkymDozJzqKG6ePT7b8EBysEr7vnu+scT3aiJRi22nEnroOug6QBbdLE4XArKNko44VC7bgEa/tJnLtBCcYJLrGKWGEx91owwb6HGhTaQVmfsKKPCwsuozkaKiStk/jvRAnK2rlKfediHXuxtkheVusXbvxqUAqdFw41Xwg5IbEWstwI7w3SkTDoHCx+jlRoysGAc2gEBc59svBmrQhap8DMzcgvpfGMZ95BPfLr4xg/VWV9cIOyZGkh5Mij2ldnBOiJ12aZV6Vlt6oumy/E7L8p2LLd83i7kovmrIOjZ53kRSd5/7y9t98Yt0EekIdkmyTkJdkj78gh6RFOfgWPgt2gE34Jv4bfwx/L1jBoZu6TlQh//gZUAgkP</latexit>

! b,c ! " = B!x > 1"" ! ! ! (C!x := x " 1""), "
<latexit sha1_base64="CWNGl5at1/lcyL35ubjunBOZqgY=">AAAC3nicjVHLbtNAFJ2YVzGvFJZsRkRICYLURgjYFFWwQWJTJNJWit1wPblxRp0Zm5lx2mjkLTvElt/gaxA7+BPGiYXoY8FdHZ177j33kZWCGxtFPzvBpctXrl7buB7euHnr9p3u5t09U1Sa4YgVotAHGRgUXOHIcivwoNQIMhO4nx29afL7C9SGF+qDXZaYSsgVn3EG1lOT7rttGvYTw3MJ/ZPBq3gQJprncwtaF8dhsgBdzvnho1YyPnR/tU/iemviTup08Dhck5NuLxpGq6DnQdyCHmljd7LZccm0YJVEZZkAY8ZxVNrUgbacCazDpDJYAjuCHMceKpBoUrfauqYPKwO2oCVqygVdkfhvhQNpzFJmXinBzs3ZXENelBtXdvYydVyVlUXFGiPLBa6MDNPcnxPplGu0FprJkXJFGWiwFjWnwJgnK3/fU4bGStBLPfVLKTxmhZSgpn59nOGn2iXNFBqFS7KKi6lHtLm91RxU7r2TwrtSt13XF9VXfPHfLZK13Pfx74rPPuc82Hs6jJ8P4/fPejuv28dtkPvkAemTmLwgO+Qt2SUjwsh38oP8Ir+Dj8Hn4EvwdS0NOm3NPXIqgm9/AMgk6uM=</latexit>

= (! (x) > 1) ! " ! (! [! (x) " 1/ x]), !

<latexit sha1_base64="4Lnz/PEzNWlp75AB7SD6w6qNIOI=">AAACq3icjVHJjhMxEHWabQhbBi5IXCwiJA4QdY8QcEEawYXjsGRmRBxF1e5Kxhrb3djljCKr+Rqu8D/8De4kB2Y5UKenV8urelU2WnnK8z+97Nr1Gzdv7dzu37l77/6Dwe7DQ18HJ3Esa1274xI8amVxTIo0HjcOwZQaj8rTD13+aInOq9p+pVWDUwMLq+ZKAiVqNngszlSFJ0DxczuL5QvZigrn+L0/GwzzUb4OfhkUWzBk2ziY7faiqGoZDFqSGryfFHlD0wiOlNTY9kXw2IA8hQVOErRg0E/j+oSWPwseqOYNOq40X5P4b0cE4/3KlKnSAJ34i7mOvCo3CTR/O43KNoHQyk6IlMa1kJdOJW+QV8ohEXSbI1eWS3BAhE5xkDKRIZl1TtCTAbdyVTrK4pmsjQFbxY1zbRTdFg51FGVQukqIi2WywSmwi6Qt6qTK47u2vao/qOV/jxCb8jQnvau4+JzL4HBvVLweFZ9eDfffbx+3w56wp+w5K9gbts8+sgM2ZpL9YD/ZL/Y7e5l9yb5lYlOa9bY9j9i5yPAvlMfYnw==</latexit>

!Rb,c
!=

<latexit sha1_base64="bewEr+WxPnh+rOgJjxzijJLJOO8=">AAAC03icjVHLblMxEHUur1JeKSzZWKRIqVRFuRUCNkgRbFgWibSV4iia60yCVT9u7bmhwbobxJbf4GvYgsTf4JtkQR8LZuOjc2bmeGaKUqtA/f6fVnbj5q3bd7bubt+7/+Dho/bO46PgKi9xKJ12/qSAgFpZHJIijSelRzCFxuPi9F2jHy/QB+XsR1qWODYwt2qmJFCiJu2BmHmQsY5dEdTcwP762avFvjCFO49i5hxZRxjUF+S7a7l7vic0nvF8t560O/1efxX8Ksg3oMM2cTjZaUUxdbIyaElqCGGU90saR/CkpMZ6W1QBS5CnMMdRghYMhnFcjVrz51UAcrxEz5XmKxL/rYhgQliaImUaoE/hstaQ12mjimavx1HZsiK0sjEipXFlFKRXaYfIp8ojETQ/R64sl+CBCL3iIGUiq7TUC4aBDPiln6ahLH6Wzhiw0zQ+zvCsjqL5hUcdRVEpPU2Ii0Vag1dg58lbuOTK45u6vq6+Uov/biHW6alPOld++ThXwdFBL3/Zyz+86Azebg63xZ6yZ6zLcvaKDdh7dsiGTLIf7Cf7xX5nwyxmX7Nv69Sstal5wi5E9v0vDAno0w==</latexit>

(! , !)
! (x) ! 1

<latexit sha1_base64="7OYsuvxuWT8ymJ7MIxvjo78qDrU=">AAADDnicjVHJbhNBEO0ZloSw2XDk0sJBcaRgPAgBl6AILhyDhJNIbmPV9JRNK70M3T2OTWv+ga/hhrjyCxz5E9pLgCwH6vT0XlW9WvJSCue73Z9JeuXqtetr6zc2bt66feduo3nvwJnKcuxxI409ysGhFBp7XniJR6VFULnEw/z4zVw/nKB1wuj3flbiQMFYi5Hg4CM1bAQ2ssBDmzkxVrC1tbMC2/Up95dhO0zlZhpLjPHaeHTiM9LNpd6ebr+iGTvBYoz0tNvuEvQ/hD9Jj7P6yTBM68FmPWy0up3uIuhFkK1Ai6xif9hMAisMrxRqzyU418+6pR8EsF5wifUGqxyWwI9hjP0INSh0g7C4Uk0fVQ68oSVaKiRdkPhvRQDl3EzlMVOB/+jOa3PyMq1f+dHLQRC6rDxqPjfyQuLCyHEr4vmRFsKi9zCfHKnQlIMF79EKCpxHsor/OGPovAI7s0VcSuMJN0qBLuL6OMJPdWDzKSzKwPJKyCIiyibxDFaAHkdvZqIrDbt1fVl9JSb/3YIt02Of+K7s/HMugoOnnex5J3v3rLX3evW4dfKAPCRtkpEXZI+8JfukRzj5lawljaSZfkm/pt/S78vUNFnV3CdnIv3xG8NJ/EQ=</latexit>

(! !! , ! !)
(! , ! !)

! (x) > 1 ! ! !! = ! [! (x) " 1 / x]<latexit sha1_base64="p+ta1xV6ua9Cx2gdmpuc5ziWtAc=">AAACSnicbVBNT9tAEF2nKR8phaQcuawaVeoBRXZBwAUJ0UuPIBGIFEdovJ6kK3bXZnccFFn+BVzhX/EH+jd6Q1xYhxwKdE5P783ovXlJrqSjMPwTND40Py4tr6y2Pq19Xt9od76cu6ywAvsiU5kdJOBQSYN9kqRwkFsEnSi8SK5+1vrFFK2TmTmjWY4jDRMjx1IAeep0+7LdDXvhfPh7EC1Aly3m5LIT7MRpJgqNhoQC54ZRmNOoBEtSKKxaceEwB3EFExx6aECjG5XzpBX/VjigjOdouVR8TuK/FyVo52Y68Zsa6Ld7q9Xk/7RhQeODUSlNXhAaURuRVDg3csJKXwHyVFokgjo5cmm4AAtEaCUHITxZ+E5eGTrSYGc29U8ZvBGZ1mDSMk5xjNdVGdcpLKoyTgqpUo94PPU1WAlm4r3jzLvy8rCqqpavOXpb6ntw/qMX7fWi093u0fGi8BW2xb6y7yxi++yI/WInrM8EQ3bL7th98BD8DR6Dp5fVRrC42WSvptF8BjsIs6w=</latexit>,

<latexit sha1_base64="4Lnz/PEzNWlp75AB7SD6w6qNIOI=">AAACq3icjVHJjhMxEHWabQhbBi5IXCwiJA4QdY8QcEEawYXjsGRmRBxF1e5Kxhrb3djljCKr+Rqu8D/8De4kB2Y5UKenV8urelU2WnnK8z+97Nr1Gzdv7dzu37l77/6Dwe7DQ18HJ3Esa1274xI8amVxTIo0HjcOwZQaj8rTD13+aInOq9p+pVWDUwMLq+ZKAiVqNngszlSFJ0DxczuL5QvZigrn+L0/GwzzUb4OfhkUWzBk2ziY7faiqGoZDFqSGryfFHlD0wiOlNTY9kXw2IA8hQVOErRg0E/j+oSWPwseqOYNOq40X5P4b0cE4/3KlKnSAJ34i7mOvCo3CTR/O43KNoHQyk6IlMa1kJdOJW+QV8ohEXSbI1eWS3BAhE5xkDKRIZl1TtCTAbdyVTrK4pmsjQFbxY1zbRTdFg51FGVQukqIi2WywSmwi6Qt6qTK47u2vao/qOV/jxCb8jQnvau4+JzL4HBvVLweFZ9eDfffbx+3w56wp+w5K9gbts8+sgM2ZpL9YD/ZL/Y7e5l9yb5lYlOa9bY9j9i5yPAvlMfYnw==</latexit>

!Rb,c
!=

<latexit sha1_base64="bewEr+WxPnh+rOgJjxzijJLJOO8=">AAAC03icjVHLblMxEHUur1JeKSzZWKRIqVRFuRUCNkgRbFgWibSV4iia60yCVT9u7bmhwbobxJbf4GvYgsTf4JtkQR8LZuOjc2bmeGaKUqtA/f6fVnbj5q3bd7bubt+7/+Dho/bO46PgKi9xKJ12/qSAgFpZHJIijSelRzCFxuPi9F2jHy/QB+XsR1qWODYwt2qmJFCiJu2BmHmQsY5dEdTcwP762avFvjCFO49i5hxZRxjUF+S7a7l7vic0nvF8t560O/1efxX8Ksg3oMM2cTjZaUUxdbIyaElqCGGU90saR/CkpMZ6W1QBS5CnMMdRghYMhnFcjVrz51UAcrxEz5XmKxL/rYhgQliaImUaoE/hstaQ12mjimavx1HZsiK0sjEipXFlFKRXaYfIp8ojETQ/R64sl+CBCL3iIGUiq7TUC4aBDPiln6ahLH6Wzhiw0zQ+zvCsjqL5hUcdRVEpPU2Ii0Vag1dg58lbuOTK45u6vq6+Uov/biHW6alPOld++ThXwdFBL3/Zyz+86Azebg63xZ6yZ6zLcvaKDdh7dsiGTLIf7Cf7xX5nwyxmX7Nv69Sstal5wi5E9v0vDAno0w==</latexit>

(! , !)
! (x) ! 1 <latexit sha1_base64="p+ta1xV6ua9Cx2gdmpuc5ziWtAc=">AAACSnicbVBNT9tAEF2nKR8phaQcuawaVeoBRXZBwAUJ0UuPIBGIFEdovJ6kK3bXZnccFFn+BVzhX/EH+jd6Q1xYhxwKdE5P783ovXlJrqSjMPwTND40Py4tr6y2Pq19Xt9od76cu6ywAvsiU5kdJOBQSYN9kqRwkFsEnSi8SK5+1vrFFK2TmTmjWY4jDRMjx1IAeep0+7LdDXvhfPh7EC1Aly3m5LIT7MRpJgqNhoQC54ZRmNOoBEtSKKxaceEwB3EFExx6aECjG5XzpBX/VjigjOdouVR8TuK/FyVo52Y68Zsa6Ld7q9Xk/7RhQeODUSlNXhAaURuRVDg3csJKXwHyVFokgjo5cmm4AAtEaCUHITxZ+E5eGTrSYGc29U8ZvBGZ1mDSMk5xjNdVGdcpLKoyTgqpUo94PPU1WAlm4r3jzLvy8rCqqpavOXpb6ntw/qMX7fWi093u0fGi8BW2xb6y7yxi++yI/WInrM8EQ3bL7th98BD8DR6Dp5fVRrC42WSvptF8BjsIs6w=</latexit>,

<latexit sha1_base64="tv+NZpMxF/ILlMjZL7KKl93/uB0=">AAAC9nicjVHJbhNBEG0PWwibA0cuLRyEIwUzgxBwAUVw4RgknERyG6umXeO00svQ3WNsWvMr3BBXfoNP4Cu4wo0e2yxZDtTp6dWrerXkpRTOp+m3VnLu/IWLl9Yur1+5eu36jfbGzT1nKsuxz4009iAHh1Jo7HvhJR6UFkHlEvfzo5dNfn+K1gmj3/h5iUMFEy0KwcFHatTmrLDAQ5c5MVEweBuWoDvbup/VD0ZhVg+3l9S9rfq37C/DtpnKzSywwhivjUcnPiDd/NPkOc0261G7k/bSRdDTIFuBDlnF7mijFdjY8Eqh9lyCc4MsLf0wgPWCS6zXWeWwBH4EExxEqEGhG4bFNWp6t3LgDS3RUiHpgsR/KwIo5+Yqj0oF/tCdzDXkWblB5YunwyB0WXnUvDHyQuLCyHEr4pmRjoVF76GZHKnQlIMF79EKCpxHsop3P2bovAI7t+O4lMb33CgFehzXxwLf1YE1U1iUgeWVkOOIKJvGM1gBehK9mYmuNDyr67PqKzH97xZsKY994ruyk885DfYe9rLHvez1o87Oi9Xj1shtcod0SUaekB3yiuySPuHkK/lOfpCfySz5mHxKPi+lSWtVc4sci+TLLynm9hY=</latexit>

(! [! (x) ! 1/ x], ! ")
(! , ! ")

! (x) > 1

<latexit sha1_base64="gtmZw8KwENVgKc0XjoOY+tpAjCw=">AAACknicjVHJbhNBEG0PAUJYsnHj0oqFxMmaQYggJKQslxxySCScRPJYUU1P2ZTS3TN0VxtZo/kCruHj+Jv0OD6Q5UCdnl4t71VVUWvynKZ/e8mTlafPnq++WHv56vWb9Y3NrTNfBadwqCpduYsCPGqyOGRijRe1QzCFxvPi6rDLn8/Qearsd57XODYwtTQhBRyp0+Jyo58O0kXIhyBbgr5YxsnlZq/Jy0oFg5aVBu9HWVrzuAHHpDS2a3nwWIO6gimOIrRg0I+bhdNWvg8euJI1OklaLkj8t6MB4/3cFLHSAP/w93Md+VhuFHjyZdyQrQOjVZ0Qk8aFkFeO4glQluSQGTrnKMlKBQ6Y0ZEEpSIZ4k3uCHo24OaujEtZ/KUqY8CWcX2c4M+2yTsXDnWTF4F0GZHMZ/EMjsBOo3ZeRVXZfGvbx/oDzf57RH5bHufEd2X3n/MQnH0cZJ8H2emn/t7B8nGr4p3YER9EJnbFnjgSJ2IolEDxW1yLP8nb5Guynxzelia9Zc+2uBPJ8Q3jWc6r</latexit>

b <latexit sha1_base64="9XpwHpxyxtGGsOYM7plyVqvTPtU=">AAACknicjVHJbhNBEG0PAUJYsnHj0oqFxMmaQYggJKQslxxySCScRPJYUU1P2ZTS3TN0VxtZo/kCruHj+Jv0OD6Q5UCdnl4t71VVUWvynKZ/e8mTlafPnq++WHv56vWb9Y3NrTNfBadwqCpduYsCPGqyOGRijRe1QzCFxvPi6rDLn8/Qearsd57XODYwtTQhBRypU3W50U8H6SLkQ5AtQV8s4+Rys9fkZaWCQctKg/ejLK153IBjUhrbtTx4rEFdwRRHEVow6MfNwmkr3wcPXMkanSQtFyT+29GA8X5uilhpgH/4+7mOfCw3Cjz5Mm7I1oHRqk6ISeNCyCtH8QQoS3LIDJ1zlGSlAgfM6EiCUpEM8SZ3BD0bcHNXxqUs/lKVMWDLuD5O8Gfb5J0Lh7rJi0C6jEjms3gGR2CnUTuvoqpsvrXtY/2BZv89Ir8tj3Piu7L7z3kIzj4Oss+D7PRTf+9g+bhV8U7siA8iE7tiTxyJEzEUSqD4La7Fn+Rt8jXZTw5vS5Pesmdb3Ink+Ablh86s</latexit>c

2323

Example
<latexit sha1_base64="Gs47zDpHcFyzgby3j0cyMK3WMIo=">AAACw3icjVHbihNBEO2Mt3W9ZfXRl8Yg+GKYkUVFWFkUwccVzO5COoSankq2SXfP2F2TbGjmN/waX/Uf/Bt7JkHcy4P1dDh1OVWn8korT2n6u5fcuHnr9p2du7v37j94+Ki/9/jYl7WTOJKlLt1pDh61sjgiRRpPK4dgco0n+eJjmz9ZovOqtF9pXeHEwNyqmZJAkZr205UocIbfuDBAZ/ksrM6Uxkbw8/eZ+EsWZcu8Ozh/mU37g3SYdsGvgmwLBmwbR9O9XhBFKWuDlqQG78dZWtEkgCMlo9SuqD1WIBcwx3GEFgz6SehOa/jz2gOVvELHleYdif92BDDer00eK9td/eVcS16XG9c0ezsJylY1oZWtEMXDOyEvnYqeIS+UQyJoN0euLJfggAid4iBlJOto4gVBTwbc2hXxKIsrWRoDtggbh5vQuelQB5HXShcRcbGMNjgFdh61RRlVeThomuv6a7X87xFiUx7nxHdll59zFRy/Gmavh9mX/cHhh+3jdthT9oy9YBl7ww7ZZ3bERkyy7+wH+8l+JZ+SReIS2pQmvW3PE3YhkuYPg0Lh4A==</latexit>

w != while x > 1 do x := x ! 1

<latexit sha1_base64="4Lnz/PEzNWlp75AB7SD6w6qNIOI=">AAACq3icjVHJjhMxEHWabQhbBi5IXCwiJA4QdY8QcEEawYXjsGRmRBxF1e5Kxhrb3djljCKr+Rqu8D/8De4kB2Y5UKenV8urelU2WnnK8z+97Nr1Gzdv7dzu37l77/6Dwe7DQ18HJ3Esa1274xI8amVxTIo0HjcOwZQaj8rTD13+aInOq9p+pVWDUwMLq+ZKAiVqNngszlSFJ0DxczuL5QvZigrn+L0/GwzzUb4OfhkUWzBk2ziY7faiqGoZDFqSGryfFHlD0wiOlNTY9kXw2IA8hQVOErRg0E/j+oSWPwseqOYNOq40X5P4b0cE4/3KlKnSAJ34i7mOvCo3CTR/O43KNoHQyk6IlMa1kJdOJW+QV8ohEXSbI1eWS3BAhE5xkDKRIZl1TtCTAbdyVTrK4pmsjQFbxY1zbRTdFg51FGVQukqIi2WywSmwi6Qt6qTK47u2vao/qOV/jxCb8jQnvau4+JzL4HBvVLweFZ9eDfffbx+3w56wp+w5K9gbts8+sgM2ZpL9YD/ZL/Y7e5l9yb5lYlOa9bY9j9i5yPAvlMfYnw==</latexit>

!Rb,c
!=

<latexit sha1_base64="bewEr+WxPnh+rOgJjxzijJLJOO8=">AAAC03icjVHLblMxEHUur1JeKSzZWKRIqVRFuRUCNkgRbFgWibSV4iia60yCVT9u7bmhwbobxJbf4GvYgsTf4JtkQR8LZuOjc2bmeGaKUqtA/f6fVnbj5q3bd7bubt+7/+Dho/bO46PgKi9xKJ12/qSAgFpZHJIijSelRzCFxuPi9F2jHy/QB+XsR1qWODYwt2qmJFCiJu2BmHmQsY5dEdTcwP762avFvjCFO49i5hxZRxjUF+S7a7l7vic0nvF8t560O/1efxX8Ksg3oMM2cTjZaUUxdbIyaElqCGGU90saR/CkpMZ6W1QBS5CnMMdRghYMhnFcjVrz51UAcrxEz5XmKxL/rYhgQliaImUaoE/hstaQ12mjimavx1HZsiK0sjEipXFlFKRXaYfIp8ojETQ/R64sl+CBCL3iIGUiq7TUC4aBDPiln6ahLH6Wzhiw0zQ+zvCsjqL5hUcdRVEpPU2Ii0Vag1dg58lbuOTK45u6vq6+Uov/biHW6alPOld++ThXwdFBL3/Zyz+86Azebg63xZ6yZ6zLcvaKDdh7dsiGTLIf7Cf7xX5nwyxmX7Nv69Sstal5wi5E9v0vDAno0w==</latexit>

(! , !)
! (x) ! 1 <latexit sha1_base64="p+ta1xV6ua9Cx2gdmpuc5ziWtAc=">AAACSnicbVBNT9tAEF2nKR8phaQcuawaVeoBRXZBwAUJ0UuPIBGIFEdovJ6kK3bXZnccFFn+BVzhX/EH+jd6Q1xYhxwKdE5P783ovXlJrqSjMPwTND40Py4tr6y2Pq19Xt9od76cu6ywAvsiU5kdJOBQSYN9kqRwkFsEnSi8SK5+1vrFFK2TmTmjWY4jDRMjx1IAeep0+7LdDXvhfPh7EC1Aly3m5LIT7MRpJgqNhoQC54ZRmNOoBEtSKKxaceEwB3EFExx6aECjG5XzpBX/VjigjOdouVR8TuK/FyVo52Y68Zsa6Ld7q9Xk/7RhQeODUSlNXhAaURuRVDg3csJKXwHyVFokgjo5cmm4AAtEaCUHITxZ+E5eGTrSYGc29U8ZvBGZ1mDSMk5xjNdVGdcpLKoyTgqpUo94PPU1WAlm4r3jzLvy8rCqqpavOXpb6ntw/qMX7fWi093u0fGi8BW2xb6y7yxi++yI/WInrM8EQ3bL7th98BD8DR6Dp5fVRrC42WSvptF8BjsIs6w=</latexit>,

<latexit sha1_base64="tv+NZpMxF/ILlMjZL7KKl93/uB0=">AAAC9nicjVHJbhNBEG0PWwibA0cuLRyEIwUzgxBwAUVw4RgknERyG6umXeO00svQ3WNsWvMr3BBXfoNP4Cu4wo0e2yxZDtTp6dWrerXkpRTOp+m3VnLu/IWLl9Yur1+5eu36jfbGzT1nKsuxz4009iAHh1Jo7HvhJR6UFkHlEvfzo5dNfn+K1gmj3/h5iUMFEy0KwcFHatTmrLDAQ5c5MVEweBuWoDvbup/VD0ZhVg+3l9S9rfq37C/DtpnKzSywwhivjUcnPiDd/NPkOc0261G7k/bSRdDTIFuBDlnF7mijFdjY8Eqh9lyCc4MsLf0wgPWCS6zXWeWwBH4EExxEqEGhG4bFNWp6t3LgDS3RUiHpgsR/KwIo5+Yqj0oF/tCdzDXkWblB5YunwyB0WXnUvDHyQuLCyHEr4pmRjoVF76GZHKnQlIMF79EKCpxHsop3P2bovAI7t+O4lMb33CgFehzXxwLf1YE1U1iUgeWVkOOIKJvGM1gBehK9mYmuNDyr67PqKzH97xZsKY994ruyk885DfYe9rLHvez1o87Oi9Xj1shtcod0SUaekB3yiuySPuHkK/lOfpCfySz5mHxKPi+lSWtVc4sci+TLLynm9hY=</latexit>

(! [! (x) ! 1/ x], ! ")
(! , ! ")

! (x) > 1

<latexit sha1_base64="ZCtIW1slrqSfWsL7db4onHtbVnw=">AAAC3nicjVHLbhMxFHWGVymvFJZsLCKkRKqiTIWATaUKNkhsCiJtpTiEO57bxKrtmdp3UiJrtuwQW36Dr0Hs4E/wJFnQx4K78dG5j3OvT1Zq5Wkw+NVKrl2/cfPWxu3NO3fv3X/Q3np44IvKSRzKQhfuKAOPWlkckiKNR6VDMJnGw+zkdZM/nKPzqrAfaFHi2MDUqmMlgSI1ab8VZyrHGVB4X09Cti3rj2lXzMHZgmbKTnt8l4vAu8KrqYHt1dMTRuV8hbufe0LjKU9FPWl3Bv3BMvhlkK5Bh61jf7LVCiIvZGXQktTg/SgdlDQO4EhJjfWmqDyWIE9giqMILRj047C8uuZPKw9U8BIdV5ovSfy3I4DxfmGyWGmAZv5iriGvyo0qOn45DsqWFaGVjRApjUshL52K34k8Vw6JoNkcubJcggMidIqDlJGs4v+eE/RkwC1cHo+yeCYLY8Dm8Xw8xtM6iGYLhzqIrFI6j4g3JpBTYKdRWxRRlYfdur6qv1Lz/x4hVuVxTrQrvWjOZXCw00+f99N3zzp7r9bGbbDH7AnrspS9YHvsDdtnQybZD/aT/WZ/kk/Jl+Rr8m1VmrTWPY/YuUi+/wX/iewt</latexit>

!R1
b,c(!) = { (! , !) | ! (x) ! 1}

<latexit sha1_base64="GR4Dk6/zgXNfROsJ1E9m+0gGXkg=">AAACwXicjVHJbhNBEG0PWwibA0cuLSykICFrJkLAJVJELhwDwkkkj7Fqesp2Kd09Q3eNI6s1f8HXcIWf4G/ocXzIdqBOr14tr5ai1uQ5Tf/2kjt3791/sPVw+9HjJ0+f9XeeH/uqcQpHqtKVOy3AoyaLIybWeFo7BFNoPCnODrv4yRKdp8p+41WNEwNzSzNSwJGa9of5OZW4AA5f22ko3qr2e7qbL8HZihdk52/kvrzkTvuDdJiuTd4E2QYMxMaOpju9kJeVagxaVhq8H2dpzZMAjklpbLfzxmMN6gzmOI7QgkE/CevFWvm68cCVrNFJ0nJN4uWKAMb7lSlipgFe+OuxjrwtNm549nESyNYNo1WdEJPGtZBXjuLFUJbkkBm6yVGSlQocMKMjCUpFsoknvCLo2YBbuTIuZfFcVcaALeP6OMMfbci7KRzqkBcN6TKi9WHZEdh51M6rqCrDftveVt/Q8r9b5BfpsU98V3b9OTfB8d4wez/MvrwbHHzaPG5LvBSvxK7IxAdxID6LIzESSvwUv8Rv8Sc5TCipE3eRmvQ2NS/EFUvCP76m4aQ=</latexit>

!R0
b,c(!) = !

<latexit sha1_base64="UBUVgNNbsa4DYeb1uc0sUKf/BHg=">AAADEnicjVHNbhMxEPYuf6XlJ+XnxMUiQkqkKmQRAg5UquDCsSDSVopDNOudbKza3q3tTRtZK16Cp+GGuPICPADvgTfJgSY9MBd/mplvvhl/aSmFdf3+7yi+dv3GzVtbt7d37ty9d7+1++DIFpXhOOCFLMxJChal0Dhwwkk8KQ2CSiUep6fvm/rxDI0Vhf7s5iWOFORaTAQHF1Lj1ld2LjKcgvOf6rFP93j9RXfYDIwu3FTovEv3KfMdZkWuYG/5dJkSGV3izkWXSTyjCasp41W50TxMnl+Mlozk7RpJs3rcavd7/UXQTZCsQJus4nC8G3mWFbxSqB2XYO0w6Zdu5ME4wSXW26yyWAI/hRyHAWpQaEd+8VM1fVZZcAUt0VAh6SKJ/zI8KGvnKg2dCtzUrtea5FW1YeUmb0Ze6LJyqHkj5ITEhZDlRgQLkGbCoHPQbI5UaMrBgHNoBAXOQ7IKnlwStE6BmZssHKXxnBdKgc7C+TjBs9qzZguD0rO0EjILiDbGOSNA50GbFUGV+v26vopfidl/j2DL9jAn2JWsm7MJjl70kle95OPL9sG7lXFb5Al5SjokIa/JAflADsmAcPIn2okeRY/jb/H3+Ef8c9kaRyvOQ3Ip4l9/AXaS/XU=</latexit>

!Rn
b,c(!) = { (! , !) | ! (x) ! 1} " { (! , ! [1/x]) | 1 < ! (x) ! n}

<latexit sha1_base64="O+b4gFwP+1woOdanC5AwKjbMpU4=">AAADBHicjVFNbxMxEPUu0Jby0RSOXCwipESqQjZCwCVSBReOBZG2UhyiWe8ksWp7t7Y3bWTtlV/DDXHlbyB+DBLeJAfS9MBc/PTmzTzbLy2ksK7b/R3Fd+7e29ndu7//4OGjxweNwyenNi8NxwHPZW7OU7AohcaBE07ieWEQVCrxLL14X/fP5misyPVntyhwpGCqxURwcIEaNy7ZlchwBs5/qsY+PeLVl16LzcHo3M2EnrZpn25Lkk0J42VBmW8xK6YKjlbHMHl5PWozJTK6IlrX7X6PVeNGs9vpLotug2QNmmRdJ+PDyLMs56VC7bgEa4dJt3AjD8YJLrHaZ6XFAvgFTHEYoAaFduSXf1PRF6UFl9MCDRWSLkn8d8KDsnah0qBU4Gb2Zq8mb+sNSzd5O/JCF6VDzWsjJyQujSw3Inw60kwYdA7qmyMVmnIw4BwaQYHzQJYhhQ1D6xSYhcnCozRe8Vwp0Fl4Pk7wsvKsvoVB6VlaCpkFROscnBGgp8Gb5cGV+n5V3TZfivl/r2AredgT4kpuhrMNTnud5HUn+fiqefxuHdweeUaekxZJyBtyTD6QEzIgnPwif6KdaDf+Gn+Lv8c/VtI4Ws88JRsV//wLaor50A==</latexit>

!R2
b,c(!) = !R1

b,c(!) ! { (! , ! [1/x]) | ! (x) = 2 }
<latexit sha1_base64="yyN1hoN28ST4uuemGy+Sr3jOyTU=">AAADBHicjVFNbxMxEPUu0Jby0RSOXCwipESqQrZFwCVSBReOBZG2UhyiWe8ksWp7t7Y3bWTtlV/DDXHlbyB+DBLeJAfS9MBc/PTmzTzbLy2ksK7b/R3Fd+7e29reub/74OGjx3uN/SenNi8Nxz7PZW7OU7Aohca+E07ieWEQVCrxLL14X/fPZmisyPVnNy9wqGCixVhwcIEaNS7ZlchwCs5/qkY+PeDVl6MWm4HRuZsKPWnTHt2UHK5LGC8LynyLWTFRcLA8BsnL62GbKZHRJdG6bveOWDVqNLud7qLoJkhWoElWdTLajzzLcl4q1I5LsHaQdAs39GCc4BKrXVZaLIBfwAQHAWpQaId+8TcVfVFacDkt0FAh6YLEfyc8KGvnKg1KBW5qb/Zq8rbeoHTjt0MvdFE61Lw2ckLiwshyI8KnI82EQeegvjlSoSkHA86hERQ4D2QZUlgztE6BmZssPErjFc+VAp2F5+MYLyvP6lsYlJ6lpZBZQLTOwRkBehK8WR5cqe9V1W3zpZj99wq2lIc9Ia7kZjib4PSwk7zuJB9fNY/frYLbIc/Ic9IiCXlDjskHckL6hJNf5E+0FW3HX+Nv8ff4x1IaR6uZp2St4p9/AXGv+dM=</latexit>

!R3
b,c(!) = !R2

b,c(!) ! { (! , ! [1/x]) | ! (x) = 3 }

<latexit sha1_base64="Fnu5+VYofTSJ8+iYnuXfr46v1is=">AAACl3icjVHJbhNBEG0PWwhbAifEpYWFxMmaQQhyQUQgoRwTCTuRPFZU01M2RXqZdFcbWaP5B67wZ/wNPY4PZDlQp6dXy3tVVTWaAuf5n0F26/adu/e27m8/ePjo8ZOd3aeT4KJXOFZOO39SQUBNFsdMrPGk8Qim0nhcnX3u88dL9IGc/cqrBmcGFpbmpIATNSlV7Tic7gzzUb4OeR0UGzAUmzg83R20Ze1UNGhZaQhhWuQNz1rwTEpjt13GgA2oM1jgNEELBsOsXdvt5KsYgJ1s0EvSck3ivx0tmBBWpkqVBvhbuJrryZty08jzvVlLtomMVvVCTBrXQkF5SndAWZNHZuidoyQrFXhgRk8SlEpkTIe5JBjYgF/5Oi1l8YdyxoCt0/o4x/OuLXsXHnVbVpF0nZAsl+kMnsAuknbpkqpsP3TdTf2Rlv89orwoT3PSu4qrz7kOJm9GxbtRcfR2uP9p87gt8UK8FK9FId6LfXEgDsVYKPFd/BS/xO/sefYx+5IdXJRmg03PM3EpsqO/M4XQ9A==</latexit>á á á

<latexit sha1_base64="Fnu5+VYofTSJ8+iYnuXfr46v1is=">AAACl3icjVHJbhNBEG0PWwhbAifEpYWFxMmaQQhyQUQgoRwTCTuRPFZU01M2RXqZdFcbWaP5B67wZ/wNPY4PZDlQp6dXy3tVVTWaAuf5n0F26/adu/e27m8/ePjo8ZOd3aeT4KJXOFZOO39SQUBNFsdMrPGk8Qim0nhcnX3u88dL9IGc/cqrBmcGFpbmpIATNSlV7Tic7gzzUb4OeR0UGzAUmzg83R20Ze1UNGhZaQhhWuQNz1rwTEpjt13GgA2oM1jgNEELBsOsXdvt5KsYgJ1s0EvSck3ivx0tmBBWpkqVBvhbuJrryZty08jzvVlLtomMVvVCTBrXQkF5SndAWZNHZuidoyQrFXhgRk8SlEpkTIe5JBjYgF/5Oi1l8YdyxoCt0/o4x/OuLXsXHnVbVpF0nZAsl+kMnsAuknbpkqpsP3TdTf2Rlv89orwoT3PSu4qrz7kOJm9GxbtRcfR2uP9p87gt8UK8FK9FId6LfXEgDsVYKPFd/BS/xO/sefYx+5IdXJRmg03PM3EpsqO/M4XQ9A==</latexit>á á á

<latexit sha1_base64="h3WpXNmvJJPYiJ/YQGKOhOEr1ew=">AAADM3icjVFNbxMxEPUuUEr4SuHIxSJCSqQoZCsoHKhU0QvHguiHFEeR1ztJR7W9W9ubD1n7X/gT/BjEDXHlP+BsgqBND8zFzzPveTzz0kKidf3+tyi+dfvO1t3te437Dx4+etzceXJi89IIOBa5zM1Zyi1I1HDs0Ek4KwxwlUo4TS8Ol/XTKRiLuf7sFgUMFZ9oHKPgLqRGzS9McXcuuPSHFZMyNVxcgKMzyoz5c9mnNQmdH+O8arMZZnDOnf9UjXzaFVUnMGiD+TazOFG8uzo6TGFGV7g97zAJlzRhVYOJsthkD5KX8+FKkrz7K6oao2ar3+vXQTdBsgYtso6j0U7kWZaLUoF2QnJrB0m/cEPPjUMhIXygtFCEyfgEBgFqrsAOfb3Kir4oLXc5LcBQlLROwr8Kz5W1C5UG5nIn9nptmbypNijd+O3Qoy5KB1osGzmUUDeywmDwCGiGBpzjy58DRU0FN9w5MEi5ECFZBtOuNLROcbMwWRhKw0zkSnGdhfFhDJeVr10zID1LS5RZQJRNwxoMcj0JvVkeulK/X1U36Uuc/vcTbEWvaruS6+ZsgpPdXrLXSz6+ah28Xxu3TZ6R56RNEvKGHJAP5IgcExFtRd3odbQXf42/xz/inytqHK01T8mViH/9ButgCTY=</latexit>

C!w" = Þx(!Rb,c) = { (! , !) | ! (x) ! 1} " { (! , ! [1/x]) | 1 < ! (x)}

