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Induction everywhere



How to

prove an existential statement?  dJx. P(x)

exhibit a withess
In € N. n? <n n=20

disprove a universal statement? —Vz. P(x) = dJz. -P(z)
exhibit a counterexample to P
Vn e N. n? <n n =2

prove a universal statement? V. P(x)
use induction!



natural numbers

lists

trees

grammar languages

terms of a signature
theorems of a logic system
derivations

computations

What is common to

generated by
finite applications
of some given rules

base cases

Inductive cases



What is common to

base case Inductive case
natural numbers 0 sSUccec
lists nil cons
trees nil node

grammar languages

terms of a signature
theorems of a logic system
derivations

computations

productions with only
terminal symbols

constants

axioms

axioms

single step

productions with non
terminal symbols

operators

iInference rules

Inference rules

concatenation



A famous proof

Every non prime number greater than 1 can be written as
the product of two or more prime numbers

base case (n = 2): 2 is prime

inductive case: taken a generic n, we assume the property holds for all numbers
from 2 to n and prove it holds for n + 1:

e if n+ 1 is prime we are done;

e otherwise, let n+1 =a-b for some 1 < a,b < n. By inductive hypothesis,
a and b can be written as product of prime numbers. Let a = p; ---pr and

b=q1---qy. Thenn—+1=p1---pr-q1---qy can be written as the product
of kK + h primes.



A far less known proof

All cats are the same colour base case (n = 1): trivial

inductive case: taken a generic n, we assume the property holds for all groups
with k& < n cats and prove it holds for any group with n + 1 cats as well.

Take n+ 1 cats and place them along a line (this is the hardest part of the proof!).
By inductive hypothesis, the first n cats are the same colour.
By inductive hypothesis, the last n cats are the same colour.

Since the cats in the middle of the line belongs to both groups, by transitivity all

n + 1 cats are the same coour<
n n
n-+1
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Well founded induction



Ingredients

a set of elements A (possibily infinite)

a predicate P : A — B
we want to prove Va € A. P(a)

a binary relation of precedence < C A x A

a < b reads a precedes b

(not necessarily transitive) .0 .

also written a — b (grap

to use induction, we must guarantee to reach some

no infinite descending chain is allowed in <
(well-founded relation)

|0

n notation)

hase cases!



Graph of a relation

Example:

A=B* u<wifuappearsinw (with v # € and u # w)




Infinite descendmg chain
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Infinite descending chain

an infinite sequence {a; };cn of elements in A

such that Vi € N. a; > a;11

the sequence can also be seen as a functiona: N — A

a(n) = ay
Example e
A = {mon, tue, wed, thu, fri, sat, sun} / \mon
thu T
a(n) = nth day past \ sun



Well-founded relation

A relation iIs called well-founded
if it has no infinite descending chain

n<mifm=n-+1

n<mifm=n-+1
n<mifn<m
n<mifn<m

n<miftn<m

Z Z N Z N Z
QOO0

n<mifn=m

| 4



Transitive closure

a binary relaton < CAx A
its transitive closure <T C Ax A
IS the least relation generated by the following rules

a—<b a<"Tb b=<Tc
a <" b a<Tc

by the first rule, it is obvious that < C <™

it can be proved that (<7)" =<



Transit. and refl. closure

a binary relation < C Ax A

its transitive and reflexive closure <*C Ax A

IS the least relation generated by the following rules

ac A a—<b a<*b b<*c
a <* a a <*0b a <* ¢

it is obvious that < C <TC <*

X

it can be proved that (<™)" =<
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Closures and paths

a binary relation <C Ax A

a <1 b iff there is a non-empty path from a to b in the graph of <

E|]€>O,{Ci}i€[0’k]. a=cy<cL<--<cp=>=0

a <* b iff there is a possibly empty path from a to b in the graph of <

HkZO,{Ci}iG[O’k]. a=cy<c1 <+ <c,=0>
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Closures

n<mifm=n-+1

n<mifm=n-+1

n<mifn<m
n<mifn<m

n<mifn=m

n<<m
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n < m
n < m
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Get ready for theorems:
proofs included

on the right, you see
one of the oldest |
surviving fragments of
Euclid's Elements, a |
textbook used for
millennia to teach
proof-writing
techniques

source: wikipedia -




Theorem

A relation is well-founded iff its transitive closure is well-founded

<Tw.f. = <wlf.

obvious:
any descending chain for < is a descending chain for <™
and thus it is finite because <™ is w.f.

20



Theorem

A relation is well-founded iff its transitive closure is well-founded

<wf. = <twf. = —(=xTwf) = a(<wf.)

by contraposition:
we assume <71 is not w.f. and prove < is not w.f.
take an infinite descending chain for <™
ag =" ay =T ag =T .-
a <71 b iff there is a non-empty path from a to b in the graph of <
7 S ) S G N S

thus we get an infinite descending chain for <
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Acyclic relation

a binary relation <C Ax A

< has a cycle if a <* a for somea € A

We say that < is acyclic if it has no cycle

note that < is acyclic iff <™ is such

22



Theorem

Well-founded relations are acyclic

by contraposition:
we prove that if < has a cycle then it is not well-founded

take @ € A such that a <1 a

then we have an infinite descending chain for <™

a-=Ta=Tax="--.

therefore <™ is not w.f.

by the previous theorem, < is not w.f.
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Theorem

If A is finite and < acyclic, then < is well-founded

the proof exploits the pigeonhole principle

24



Pigeonhole principle
(aka drawer principle)

If n items are put into m < n slots,

then at least one slot must contain more than one item

- ; K -+ > - - s e
= |

In the picture: ten pigeons and nine holes
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Theorem

If A is finite and < acyclic, then < is well-founded

by contraposition:
we prove that if < is not well-founded then it has a cycle

take an infinite descending chain for <
ap ~— a1 ~ ag = -
let kK = |A| and consider ay, ..., ar (they are k + 1 elements)
by the pigeonhole principle, a; = a; forsome 0 <1 < 7 <k
A ~ Qjt1 = = Qj—1 = Qj = Q4
thus a; <™ a; and < has a cycle
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Minimal elements

a binary relation <C Ax A

let ) C Aand m € )

m is minimal in () if none of the elements in () precedes m

Ve e Q). A m
=-dre@.r<m

(2 has no minimal element means Vm € ). dxr € ). x < m

27



Minimal elements

minimal unique”?
element? que:
N, < g CQCN v, v,
7, < ZCQCZ % o
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Lemma

< is w.f. iff any non empty () C A has a minimal element

(D) < has an infinite descending chain iff
(2) there is a (non empty) () € A with no minimal element

(D) = @ Take an infinite descending chain {a;};en
the set Q = {a; | i € N} has no minimal element

(if it had one, say ag, then ag.i1 < ag!)
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Lemma

< is w.f. iff any non empty () C A has a minimal element

(D) < has an infinite descending chain iff
(2) there is a (non empty) () € A with no minimal element

2 = 1 Take ¥ C QQ C A with no minimal element

Since () # @ we can pick ag € Q)
Since ag cannot be minimal, we can take a1 € Q) s.t. a; < ag
Since a; cannot be minimal, we can take as € Q) s.t. as < a;

Since a; cannot be minimal, we can take ar11 € Q) s.t. apr1 < ag
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Theorem [w.f. induction]

Let < C A x A be w.f.
(Vae A. Pla)) < (Va€e A. (Vb<a. P(b)) = Pla))

Set H(a) = Vb < a. P(b) S(a) = H(a) = P(a)

(Vae€e A. Pla)) < (Vae A. S(a))
@ ®)

O =@  Assume Va. P(a) Take a generica € A
S(a)=(H(a) = P(a)) = (—H(a) V P(a)) = (-H(a) V tt) = tt

31



Theorem [w.f. mduc’rlon]

Let{CAXAbve H() Vb%aP(b)
O (Va€ A Pla)) & (VacA S()) @

D=0 = O=-0 Assume Jac A. -P(a)
Take Q = {g € A| —P(q)} # @

Since < is w.f., then Q has a minimal element m € Q)
Obviously =P(m) (because m € Q)
Since m is minimal, Vb < m. b € ()
i.e. Vb <m. P(b) =
Thus Him)A—-P(m) = —(H(m)= P(m)) = -S(m)
i.e. dJa € A. =S(a)

32



w.f. induction principle

aw.f. relation <CAx A

Va € A. ( (Vb <a. P(b)) = P(a) )
Va € A. P(a)

Advantage: when proving P(a) for a generic a,

we can exploit the assumption Vb < a. P(b)!
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Weak mathematical
iInduction

Va € A. ( (Vb < a. P(b)) = P(a) )
Va € A. P(a)

A=N
< ={(n,n+1) | n &N} (immediate precedence relation)

e if a =0, then there is no b < 0, hence (Vb < 0. P(b)) = tt and
((Vb<0. P(b)) = P((0) ) =tt = P(0) = P(0)

o if a=n+1, then there is only one b such that b < n + 1,
namely b = n then

((Vb<n+1. P(b) = Pn+1))=Pn) = Pn+1)
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Weak mathematical
induction principle

P(0) VneN. (P(n)=Pn+1))
vn € N. P(n)

Weak: we can exploit P(n),
for proving P(n + 1)



Strong mathematical
induction principle

Vae A. ((Vb<a. P(b)) = P(a) )
Va € A. P(a)

A=N
< = < (strictly-less-than relation)

e if a =0, as before, then there is no b < 0, hence
((Vb<0. P(b)) = P(0)) = P(0)

e ifa=n+1,then (Vb<n+1. P(b))=PO)AP(1)A---NP(n) and
((WVb<n+1. P(b)) = Pn+1))=(PO)A---ANP(n)) = P(n+1)
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Strong mathematical
induction

P(0) VvneN. ((PO)A---APn))=P(n+1))

Vn € N. P(n)

Strong: we can exploit more hypotheses than P(n),

for proving P(n + 1)!
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Structural induction

38



Immediate subterms

a signature {X, }en

Take A =T (closed terms)

< ={(ti, f(t1, s tn)) | f € Snvi € [1, 0]}

(immediate subterm relation)

Example
>0 =10} X1 = {succ} X5 = {plus}
0 < succ(0) < plus(0, succ(0))
0 < plus(0, succ(0))
0 £ plus(succ(0), succ(0))
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Lemma

Ty, < is w.f.

Let depth : Ts: — N defined as:

ifCEZ()

depth(c) 1
1 + max;ep; n) depth(t;) if f € X,

depth(f(t1,....tn))

A
A

By definition, if £ < ¢’ then depth(t) < depth(t’)
Any descending chain in < induces a descending chain in <

Since < is w.f., so is <

40



Structural induction
principle

Vn e N.VfeX, Vi, ...ty € Ts. (P(t1) A---AP(t,)) = P(f(ti,...,tn))

Vt € Ty . P(t)



Corollary

I, <1 is w.f.

Because <7 is the transitive closure of a w.f. relation

Example
>0 =10} X1 = {succ} X5 = {plus}
0 <" succ(0) <™ plus(0, succ(0))
0 <™ plus(0, succ(0))
0 <™ plus(succ(0), succ(0))
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Termination of
arithmetic expressions

rclde ope€{+,x,—}

a =2z | n|aopa nec7 Mé{a\azlde%Z}

<CL0,0‘>HTLO <a1,a>%n1

(x,0) — o(x) (n,o0) —n  {(agop ai,o) — ng 0p N1

P(a) £Vo € M. 3m € Z. {a,0) — m
Va. P(a) ?
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Structural induction
principle
Vo € lde. P(x) Vn € Z. P(n)

\V/a(), ai. P(CLQ) /N\ P(al) — P(a() op al)
Va. P(a)




Base case

Vx € lde. P(x) Take a generic x € Ide

We want to prove P(z) = Vo. Im. (z,0) — m
the only

%variable

Take a generic ¢ € M and consider the goal (z,0) — m

By rule we have <aj, O'> — m ’\[mza(w)]

(x,0) — o(x)

And we are done (taking m = o(x))
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Base case

Vn € Z. P(n)  Take a genericn € Z

We want to prove P(n) = Vo. Im. (n,o) — m
the only

%variable

Take a generic ¢ € M and consider the goal (n,0) — m

By rule we have (n,o) — m "\ jm=n]

(n,o) —n

And we are done (taking m = n)
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Inductive case

Yag,a1. P(ag) A P(a1) = P(agop a;) Take generic ag, a;

We assume P(ag) = Vo. Img. (ag, o) — mg

P(Cbl) é\V/O' Hml. <a1,0> — 1Ny

We want to prove P(ag op a1) = Vo. Im. (ag op a1, c) — m
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Inductive case (ctd)

Take a generic ¢ € M and consider the goal (ag op a1,0) — m

<CL(),O'> — No <a1,0) — N1
(ag op a1,0) — ng op Nq

By rule we have

<CL() Op axy, O-> —m \[m:moopml] <CL(), 0> — Mo, <a17 U> —

By inductive hypotheses, there are mg, m; s.t.
<CL(),O'> — myg and <CL1,0‘> — My

And we are done (taking m = mg op m;q)
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