

PSC 2020/21 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni http://www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/

05a - Induction

# From your forms



(over 14 answers)

#### Induction everywhere

### How to

prove an existential statement?

$$\exists x. \ P(x)$$

exhibit a witness

$$\exists n \in \mathbb{N}. \ n^2 \leq n$$

$$n = 0$$

disprove a universal statement?

$$\neg \forall x. \ P(x) \equiv \exists x. \ \neg P(x)$$

exhibit a counterexample to P

$$\forall n \in \mathbb{N}. \ n^2 \le n \qquad n = 2$$

$$n=2$$

prove a universal statement?

$$\forall x. \ P(x)$$

use induction!

#### What is common to

natural numbers

lists

trees

grammar languages

terms of a signature

theorems of a logic system

derivations

computations

generated by finite applications of some given rules

base cases

inductive cases

## What is common to

|                            | base case                              | inductive case                        |
|----------------------------|----------------------------------------|---------------------------------------|
| natural numbers            | 0                                      | succ                                  |
| lists                      | nil                                    | cons                                  |
| trees                      | nil                                    | node                                  |
| grammar languages          | productions with only terminal symbols | productions with non terminal symbols |
| terms of a signature       | constants                              | operators                             |
| theorems of a logic system | axioms                                 | inference rules                       |
| derivations                | axioms                                 | inference rules                       |
| computations               | single step                            | concatenation                         |
| <b> </b>                   |                                        |                                       |

# A famous proof

Every non prime number greater than 1 can be written as the product of two or more prime numbers

base case (n = 2): 2 is prime

**inductive case:** taken a generic n, we assume the property holds for all numbers from 2 to n and prove it holds for n+1:

- if n+1 is prime we are done;
- otherwise, let  $n+1=a\cdot b$  for some  $1< a,b\leq n$ . By inductive hypothesis, a and b can be written as product of prime numbers. Let  $a=p_1\cdots p_k$  and  $b=q_1\cdots q_h$ . Then  $n+1=p_1\cdots p_k\cdot q_1\cdots q_h$  can be written as the product of k+h primes.

## A far less known proof

All cats are the same colour

base case (n = 1): trivial

**inductive case:** taken a generic n, we assume the property holds for all groups with  $k \le n$  cats and prove it holds for any group with n+1 cats as well.

Take n+1 cats and place them along a line (this is the hardest part of the proof!).

By inductive hypothesis, the first n cats are the same colour.

By inductive hypothesis, the last n cats are the same colour.

Since the cats in the middle of the line belongs to both groups, by transitivity all n+1 cats are the same colour.



#### Well founded induction

# Ingredients

```
a set of elements A (possibily infinite)
```

a predicate  $P:A\to\mathbb{B}$ 

we want to prove  $\forall a \in A. \ P(a)$ 

a binary relation of precedence  $\prec \subseteq A \times A$ 

(not necessarily transitive)

 $a \prec b$  reads a precedes b

also written  $b \succ a$ 

also written  $a \rightarrow b$  (graph notation)

to use induction, we must guarantee to reach some base cases!

no infinite descending chain is allowed in  $\prec$ 

(well-founded relation)

## Graph of a relation

#### Example:

 $A = \mathbb{B}^*$   $u \prec w$  if u appears in w (with  $u \neq \epsilon$  and  $u \neq w$ )

. . .



# Infinite descending chain



# Infinite descending chain

an infinite sequence  $\{a_i\}_{i\in\mathbb{N}}$  of elements in A such that  $\forall i\in\mathbb{N}.\ a_i\succ a_{i+1}$ 

the sequence can also be seen as a function  $a: \mathbb{N} \to A$   $a(n) = a_n$ 

#### Example

 $A = \{\mathsf{mon}, \mathsf{tue}, \mathsf{wed}, \mathsf{thu}, \mathsf{fri}, \mathsf{sat}, \mathsf{sun}\}$ 

$$a(n) = n$$
th day past



### Well-founded relation

A relation is called well-founded if it has no infinite descending chain

$$\mathbb{N}$$
  $n \prec m \text{ if } m = n + 1$ 
 $\mathbb{Z}$   $n \prec m \text{ if } m = n + 1$ 
 $\mathbb{N}$   $n \prec m \text{ if } n < m$ 
 $\mathbb{Z}$   $n \prec m \text{ if } n < m$ 
 $\mathbb{N}$   $n \prec m \text{ if } n \leq m$ 
 $\mathbb{N}$   $n \prec m \text{ if } n \leq m$ 
 $\mathbb{N}$   $n \prec m \text{ if } n = m$ 

#### Transitive closure

a binary relation  $\prec \subseteq A \times A$ 

its transitive closure  $\prec^+ \subset A \times A$ 

is the least relation generated by the following rules

$$\frac{a \prec b}{a \prec^+ b}$$

$$\frac{a \prec b}{a \prec^{+} b} \qquad \frac{a \prec^{+} b \quad b \prec^{+} c}{a \prec^{+} c}$$

by the first rule, it is obvious that  $\prec \subset \prec^+$ 

it can be proved that  $(\prec^+)^+ = \prec^+$ 

### Transit. and refl. closure

a binary relation 
$$\prec \subseteq A \times A$$

its transitive and reflexive closure  $\prec^* \subset A \times A$ 

$$\prec^* \subset A \times A$$

is the least relation generated by the following rules

$$\frac{a \in A}{a \prec^* a} \qquad \frac{a \prec b}{a \prec^* b}$$

$$\frac{a \prec b}{a \prec^* b}$$

$$\frac{a \prec^* b \quad b \prec^* c}{a \prec^* c}$$

it is obvious that  $\prec \subseteq \prec^+ \subseteq \prec^*$ 

it can be proved that  $(\prec^*)^* = \prec^*$ 

# Closures and paths

a binary relation  $\prec \subseteq A \times A$ 

 $a \prec^+ b$  iff there is a non-empty path from a to b in the graph of  $\prec$ 

$$\exists k > 0, \{c_i\}_{i \in [0,k]}. \ a = c_0 \prec c_1 \prec \cdots \prec c_k = b$$

 $a \prec^* b$  iff there is a possibly empty path from a to b in the graph of  $\prec$ 

$$\exists k \geq 0, \{c_i\}_{i \in [0,k]}. \ a = c_0 \prec c_1 \prec \cdots \prec c_k = b$$

### Closures

# Get ready for theorems: proofs included

on the right, you see one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques (source: wikipedia)



#### Theorem

A relation is well-founded iff its transitive closure is well-founded

$$\prec^+$$
 w.f.  $\Rightarrow \prec$  w.f.

#### obvious:

any descending chain for  $\prec$  is a descending chain for  $\prec^+$  and thus it is finite because  $\prec^+$  is w.f.

#### Theorem

A relation is well-founded iff its transitive closure is well-founded

$$\prec$$
 w.f.  $\Rightarrow \prec^+$  w.f.  $\equiv \neg(\prec^+$  w.f.)  $\Rightarrow \neg(\prec$  w.f.)

by contraposition:

we assume  $\prec^+$  is not w.f. and prove  $\prec$  is not w.f.

take an infinite descending chain for  $\prec^+$ 

$$a_0 \succ^+ a_1 \succ^+ a_2 \succ^+ \cdots$$

 $a \prec^+ b$  iff there is a non-empty path from a to b in the graph of  $\prec$ 

$$a_0 \succ \cdots \succ a_1 \succ \cdots \succ a_2 \succ \cdots$$

thus we get an infinite descending chain for ≺

# Acyclic relation

a binary relation  $\prec \subseteq A \times A$ 

 $\prec$  has a cycle if  $a \prec^+ a$  for some  $a \in A$ 

We say that  $\prec$  is acyclic if it has no cycle

note that  $\prec$  is acyclic iff  $\prec^+$  is such

### Theorem

#### Well-founded relations are acyclic

#### by contraposition:

we prove that if  $\prec$  has a cycle then it is not well-founded

take  $a \in A$  such that  $a \prec^+ a$ 

then we have an infinite descending chain for  $\prec^+$ 

$$a \succ^+ a \succ^+ a \succ^+ \cdots$$

therefore  $\prec^+$  is not w.f.

by the previous theorem,  $\prec$  is not w.f.

### Theorem

If A is finite and  $\prec$  acyclic, then  $\prec$  is well-founded

the proof exploits the pigeonhole principle

# Pigeonhole principle (aka drawer principle)

If n items are put into m < n slots, then at least one slot must contain more than one item



in the picture: ten pigeons and nine holes

#### Theorem

If A is finite and  $\prec$  acyclic, then  $\prec$  is well-founded

#### by contraposition:

we prove that if  $\prec$  is not well-founded then it has a cycle take an infinite descending chain for  $\prec$ 

$$a_0 \succ a_1 \succ a_2 \succ \cdots$$

let k = |A| and consider  $a_0, ..., a_k$  (they are k + 1 elements)

by the pigeonhole principle,  $a_i = a_j$  for some  $0 \le i < j \le k$ 

$$a_i \succ a_{i+1} \succ \cdots \succ a_{j-1} \succ a_j = a_i$$

thus  $a_i \prec^+ a_i$  and  $\prec$  has a cycle

### Minimal elements

a binary relation  $\prec \subseteq A \times A$ 

 $\mathsf{let}\ Q \subseteq A \ \mathsf{and}\ m \in Q$ 

m is minimal in Q if none of the elements in Q precedes m

$$\forall x \in Q. \ x \not\prec m$$
$$\equiv \neg \exists x \in Q. \ x \prec m$$

Q has no minimal element means  $\forall m \in Q$ .  $\exists x \in Q$ .  $x \prec m$ 

## Minimal elements

minimal element?

unique?

$$\mathbb{N}, <$$

$$\mathbb{N}, < \emptyset \subset Q \subseteq \mathbb{N}$$



$$\mathbb{Z},<$$

$$\mathbb{Z}, < \emptyset \subset Q \subseteq \mathbb{Z}$$





$$\wp(\mathbb{N}), \subset$$

$$\wp(\mathbb{N}), \subset \varnothing \subset Q \subseteq \wp(\mathbb{N})$$





#### Lemma

- $\prec$  is w.f. iff any non empty  $Q\subseteq A$  has a minimal element  $\equiv$
- - 2 there is a (non empty)  $Q\subseteq A$  with no minimal element
- ①  $\Rightarrow$  ② Take an infinite descending chain  $\{a_i\}_{i\in\mathbb{N}}$  the set  $Q=\{a_i\mid i\in\mathbb{N}\}$  has no minimal element (if it had one, say  $a_k$ , then  $a_{k+1}\prec a_k!$ )

### Lemma

- $\prec$  is w.f. iff any non empty  $Q\subseteq A$  has a minimal element  $\equiv$
- 1  $\prec$  has an infinite descending chain iff
  - 2 there is a (non empty)  $Q\subseteq A$  with no minimal element
- $\textcircled{2}\Rightarrow \textcircled{1}$  Take  $\varnothing\subset Q\subseteq A$  with no minimal element Since  $Q\neq\varnothing$  we can pick  $a_0\in Q$
- Since  $a_0$  cannot be minimal, we can take  $a_1 \in Q$  s.t.  $a_1 \prec a_0$
- Since  $a_1$  cannot be minimal, we can take  $a_2 \in Q$  s.t.  $a_2 \prec a_1$

. . .

Since  $a_k$  cannot be minimal, we can take  $a_{k+1} \in Q$  s.t.  $a_{k+1} \prec a_k$ 

## Theorem [w.f. induction]

Let  $\prec \subseteq A \times A$  be w.f.

$$(\forall a \in A. \ P(a)) \Leftrightarrow (\forall a \in A. \ (\forall b \prec a. \ P(b)) \Rightarrow P(a))$$

Set 
$$H(a) \stackrel{\triangle}{=} \forall b \prec a. \ P(b)$$

$$S(a) \stackrel{\triangle}{=} H(a) \Rightarrow P(a)$$

$$(\forall a \in A. \ P(a)) \Leftrightarrow (\forall a \in A. \ S(a))$$

$$(1)$$

① 
$$\Rightarrow$$
 ② Assume  $\forall a. \ P(a)$  Take a generic  $a \in A$ 

$$S(a) \equiv (H(a) \Rightarrow P(a)) \equiv (\neg H(a) \lor P(a)) \equiv (\neg H(a) \lor \mathbf{tt}) \equiv \mathbf{tt}$$

## Theorem [w.f. induction]

Let  $\prec \subseteq A \times A$  be w.f.  $S(a) \stackrel{\triangle}{=} H(a) \Rightarrow P(a)$  $H(a) \stackrel{\triangle}{=} \forall b \prec a. \ P(b)$ 

① 
$$(\forall a \in A. P(a)) \Leftrightarrow (\forall a \in A. S(a))$$
 ②

$$\textcircled{2}\Rightarrow \textcircled{1} \equiv \neg \textcircled{1} \Rightarrow \neg \textcircled{2}$$
 Assume  $\exists a \in A. \neg P(a)$ 

Take 
$$Q \stackrel{\triangle}{=} \{q \in A \mid \neg P(q)\} \neq \varnothing$$

Since  $\prec$  is w.f., then Q has a minimal element  $m \in Q$ 

Obviously  $\neg P(m)$  (because  $m \in Q$ )

Since m is minimal,  $\forall b \prec m. \ b \notin Q$ 

i.e. 
$$\forall b \prec m. \ P(b) \equiv H(m)$$

Thus 
$$H(m) \wedge \neg P(m) \equiv \neg (H(m) \Rightarrow P(m)) \equiv \neg S(m)$$

i.e. 
$$\exists a \in A. \ \neg S(a)$$

# w.f. induction principle

a w.f. relation  $\prec \subseteq A \times A$ 

$$\frac{\forall a \in A. \ (\ (\forall b \prec a. \ P(b)) \Rightarrow P(a)\ )}{\forall a \in A. \ P(a)}$$

**Advantage:** when proving P(a) for a generic a, we can exploit the assumption  $\forall b \prec a. \ P(b)!$ 

# Weak mathematical induction

$$\frac{\forall a \in A. \ (\ (\forall b \prec a. \ P(b)) \Rightarrow P(a)\ )}{\forall a \in A. \ P(a)}$$

- if a=0, then there is no  $b \prec 0$ , hence  $(\forall b \prec 0. \ P(b)) \equiv \mathbf{tt}$  and  $((\forall b \prec 0. \ P(b)) \Rightarrow P(0)) \equiv \mathbf{tt} \Rightarrow P(0) \equiv P(0)$
- if a=n+1, then there is only one b such that  $b \prec n+1$ , namely b=n then  $((\forall b \prec n+1.\ P(b)) \Rightarrow P(n+1)) \equiv P(n) \Rightarrow P(n+1)$

# Weak mathematical induction principle

$$\frac{P(0) \qquad \forall n \in \mathbb{N}. \ (P(n) \Rightarrow P(n+1))}{\forall n \in \mathbb{N}. \ P(n)}$$

**Weak:** we can exploit P(n), for proving P(n+1)!

# Strong mathematical induction principle

$$\frac{\forall a \in A. \ (\ (\forall b \prec a. \ P(b)) \Rightarrow P(a)\ )}{\forall a \in A. \ P(a)}$$

$$A = \mathbb{N}$$
 $\prec = <$  (strictly-less-than relation)

- if a=0, as before, then there is no  $b \prec 0$ , hence  $(\forall b \prec 0. \ P(b)) \Rightarrow P(0) \equiv P(0)$
- if a=n+1, then  $(\forall b \prec n+1. \ P(b)) \equiv P(0) \land P(1) \land \cdots \land P(n)$  and  $(\forall b \prec n+1. \ P(b)) \Rightarrow P(n+1) ) \equiv (P(0) \land \cdots \land P(n)) \Rightarrow P(n+1)$

## Strong mathematical induction

$$\frac{P(0) \quad \forall n \in \mathbb{N}. \ (\ (P(0) \land \dots \land P(n)) \Rightarrow P(n+1)\ )}{\forall n \in \mathbb{N}. \ P(n)}$$

**Strong:** we can exploit more hypotheses than P(n), for proving P(n+1)!

#### Structural induction

## Immediate subterms

a signature 
$$\{\Sigma_n\}_{n\in\mathbb{N}}$$

Take 
$$A = T_{\Sigma}$$
 (closed terms)

$$\prec = \{(t_i, f(t_1, ..., t_n)) \mid f \in \Sigma_n, i \in [1, n]\}$$

(immediate subterm relation)

#### Example

$$\Sigma_0 = \{\mathbf{0}\} \quad \Sigma_1 = \{\mathsf{succ}\} \quad \Sigma_2 = \{\mathsf{plus}\}$$

$$0 \prec \operatorname{succ}(0) \prec \operatorname{plus}(0,\operatorname{succ}(0))$$

$$0 \prec \mathsf{plus}(0,\mathsf{succ}(0))$$

$$0 \not\prec plus(succ(0), succ(0))$$

### Lemma

 $T_{\Sigma}, \prec \text{ is w.f.}$ 

Let  $depth: T_{\Sigma} \to \mathbb{N}$  defined as:

$$depth(c) \stackrel{\triangle}{=} 1 \qquad \text{if } c \in \Sigma_0$$
$$depth(f(t_1, ..., t_n)) \stackrel{\triangle}{=} 1 + \max_{i \in [1, n]} depth(t_i) \quad \text{if } f \in \Sigma_n$$

By definition, if  $t \prec t'$  then depth(t) < depth(t')

Any descending chain in  $\prec$  induces a descending chain in <

Since < is w.f., so is  $\prec$ 

# Structural induction principle

$$\frac{\forall n \in \mathbb{N}. \ \forall f \in \Sigma_n. \ \forall t_1, ..., t_n \in T_{\Sigma}. \ (P(t_1) \land \cdots \land P(t_n)) \Rightarrow P(f(t_1, ..., t_n))}{\forall t \in T_{\Sigma}. \ P(t)}$$

## Corollary

$$T_{\Sigma}, \prec^+$$
 is w.f.

Because  $\prec^+$  is the transitive closure of a w.f. relation

#### Example

$$\begin{split} \Sigma_0 &= \{0\} \quad \Sigma_1 = \{\mathsf{succ}\} \quad \Sigma_2 = \{\mathsf{plus}\} \\ 0 &\prec^+ \mathsf{succ}(0) \prec^+ \mathsf{plus}(0, \mathsf{succ}(0)) \\ 0 &\prec^+ \mathsf{plus}(0, \mathsf{succ}(0)) \\ 0 &\prec^+ \mathsf{plus}(\mathsf{succ}(0), \mathsf{succ}(0)) \end{split}$$

## Termination of arithmetic expressions

$$a ::= x \mid n \mid a \text{ op } a$$

$$x \in \text{Ide} \quad \text{op } \in \{+, \times, -\}$$

$$n \in \mathbb{Z} \quad \mathbb{M} \stackrel{\triangle}{=} \{\sigma \mid \sigma : \text{Ide} \to \mathbb{Z}\}$$

$$\frac{\langle a_0, \sigma \rangle \longrightarrow n_0 \quad \langle a_1, \sigma \rangle \longrightarrow n_1}{\langle a_0 \text{ op } a_1, \sigma \rangle \longrightarrow n_0 \quad op \quad n_1}$$

$$P(a) \stackrel{\triangle}{=} \forall \sigma \in \mathbb{M}. \ \exists m \in \mathbb{Z}. \ \langle a, \sigma \rangle \longrightarrow m$$
  $\forall a. \ P(a) \ ?$ 

# Structural induction principle

$$\forall x \in \mathsf{Ide.}\ P(x) \qquad \forall n \in \mathbb{Z}.\ P(n)$$
 $\forall a_0, a_1.\ P(a_0) \land P(a_1) \Rightarrow P(a_0 \ \mathsf{op}\ a_1)$ 
 $\forall a.\ P(a)$ 

### Base case

 $\forall x \in \mathsf{Ide}.\ P(x)$  Take a generic  $x \in \mathsf{Ide}$ 

We want to prove  $P(x) \stackrel{\triangle}{=} \forall \sigma. \; \exists m. \; \langle x, \sigma \rangle \longrightarrow m$ 

Take a generic  $\sigma \in \mathbb{M}$  and consider the goal  $\langle x, \sigma \rangle \longrightarrow m$ 

By rule  $\frac{}{\langle x,\sigma\rangle\longrightarrow\sigma(x)}$  we have  $\langle x,\sigma\rangle\longrightarrow m\nwarrow_{[m=\sigma(x)]}\square$ 

And we are done (taking  $m = \sigma(x)$ )

### Base case

 $\forall n \in \mathbb{Z}. \ P(n)$ 

Take a generic  $n \in \mathbb{Z}$ 

We want to prove  $P(n) \stackrel{\triangle}{=} \forall \sigma. \; \exists m. \; \langle n, \sigma \rangle \longrightarrow m$ 

Take a generic  $\sigma \in \mathbb{M}$  and consider the goal  $\langle n, \sigma \rangle \longrightarrow m$ 

By rule  $\frac{}{\langle n,\sigma\rangle\longrightarrow n}$  we have  $\langle n,\sigma\rangle\longrightarrow m\nwarrow_{[m=n]}\square$ 

And we are done (taking m = n)

### Inductive case

$$\forall a_0, a_1. \ P(a_0) \land P(a_1) \Rightarrow P(a_0 \text{ op } a_1)$$

Take generic  $a_0, a_1$ 

We assume 
$$P(a_0) \stackrel{\triangle}{=} \forall \sigma. \ \exists m_0. \ \langle a_0, \sigma \rangle \longrightarrow m_0$$
  
 $P(a_1) \stackrel{\triangle}{=} \forall \sigma. \ \exists m_1. \ \langle a_1, \sigma \rangle \longrightarrow m_1$ 

We want to prove  $P(a_0 \text{ op } a_1) \stackrel{\triangle}{=} \forall \sigma. \ \exists m. \ \langle a_0 \text{ op } a_1, \sigma \rangle \longrightarrow m$ 

## Inductive case (ctd)

Take a generic  $\sigma \in \mathbb{M}$  and consider the goal  $\langle a_0 \text{ op } a_1, \sigma \rangle \longrightarrow m$ 

By rule 
$$\frac{\langle a_0, \sigma \rangle \longrightarrow n_0}{\langle a_0 \text{ op } a_1, \sigma \rangle \longrightarrow n_0} \frac{\langle a_1, \sigma \rangle \longrightarrow n_1}{op n_1}$$
 we have

$$\langle a_0 \text{ op } a_1, \sigma \rangle \longrightarrow m \nwarrow_{[m=m_0 opm_1]} \langle a_0, \sigma \rangle \longrightarrow m_0, \langle a_1, \sigma \rangle \longrightarrow m_1$$

By inductive hypotheses, there are  $m_0, m_1$  s.t.

$$\langle a_0, \sigma \rangle \longrightarrow m_0 \text{ and } \langle a_1, \sigma \rangle \longrightarrow m_1$$

And we are done (taking  $m=m_0\ op\ m_1$ )