
Principles for software composition 2020/21
03 - Well founded recursion, posets and semantics

[Ex. 1] Define by well-founded recursion the function vars that, given an
arithmetic expression a, returns the set of identifiers that appear in a. Then,
prove by rule induction that ∀a ∈ Aexp, ∀σ ∈ Σ, ∀n ∈ Z

〈a, σ〉 → n implies ∀σ′. ((∀y ∈ vars(a). σ(y) = σ′(y))⇒ 〈a, σ′〉 → n).

[Ex. 2] Define by well-founded recursion the function vars that, given a
command, returns the set of identifiers that appear on the left-hand side of
some assignment. Then, prove by rule induction that ∀c ∈ Com, ∀σ, σ′ ∈ Σ

〈c, σ〉 → σ′ implies ∀x 6∈ vars(c). σ(x) = σ′(x).

[Ex. 3] Consider the CPO⊥ (℘(N),⊆). Prove that for any set S ⊆ N:

1. the function fS : ℘(N)→ ℘(N) such that fS(X) = X ∩S is continuous.

2. the function gS : ℘(N)→ ℘(N) such that gS(X) = X ∪S is continuous.

[Ex. 4] Prove that any limit-preserving function is monotone.

[Ex. 5] Let D = {n ∈ N | n > 0} ∪ {∞} and v ⊆ (D ×D) such that

• for any n,m ∈ D ∩ N, we let n v m iff n divides m;

• for any x ∈ D, we let x v ∞.

Is (D,v) a CPO⊥? Explain.

[Ex. 6] Define two functions fi : Di → Di over two suitable CPOs Di for
i ∈ [1, 2] (not necessarily with bottom) such that

1. f1 is continuous, has fixpoints but not a least fixpoint;

2. f2 is continuous and has no fixpoint;

[Ex. 7] Let D,E be two CPO⊥s and f : D → E, g : E → D be two
continuous functions between them. Their compositions h = g ◦ f : D → D
and k = f ◦ g : E → E are known to be continuous and thus have least
fixpoints.

D
f

++
h=g◦f 77 E

g

kk k=f◦g
ww

Let e0 = fix(k) ∈ E. Prove that g(e0) = fix(h) ∈ D by showing that

1. g(e0) is a fixpoint for h, and

2. g(e0) is the least pre-fixpoint for h.

