
Web Services

Giuseppe Attardi

Università di Pisa

Overview

 From COMponents to .NET

Web Services Architecture

 Demo

 Reflection and Metadata

 2-Way Web

 Open Issues

Software Components

 COM class: body of source code that
implements COM interfaces

 provides real functions in any supported
programming language for each interface
method it supports

 each COM class has a unique identifier
(CLSID)

 client asks COM to create an object and
return interface pointer

 client applications interact with COM
objects through interface pointers

COM Classes and Servers

 client not dependent on implementation details of
COM

 COM servers:

– in-process server: DLL loaded into client
process calls go directly to object created in
the client's process

– out-of-process server: separate executable,
either on same machine as a client or on
remote machine; calls go first to an in-process
proxy which uses RPC; in the server, stub
object receives each incoming call and
dispatches to appropriate COM object

 ActiveX control is in-process COM server object

Class

Factory

COM

2. Find the server
3. Load DLL or launch EXE
4. Retrieve Class Factory

5. Ask Factory to create

6. Invoke request directly

Server

1. Create an object

Object
Client

Object Creation

Engine

Factory

Engine_2

ClassesInterfaces

IEngine

IUnknownEngine_1

IEngine

IUnknown

IEngine

Start()
Stop()
AddFuel()
GetType()
ChangeSpeed()

Implements

IUnknown

QueryInterface()
AddRef()
Release()

Inherits

from

Engine Class

IUnknown

impl.

IEngine

Impl.

Objects

Interfaces, Classes and Factories

 COM interface defines behavior or

capabilities of software component

as a set of methods and properties

 interface is contract that guarantees

consistent semantics

 each COM object must support at

least one interface (IUnknown)

COM Interfaces

COM pros/cons

 PROs

– Access to OS functionality

– Faster and easier to write apps

– Third-party COM components

 CONs

– Requires infrastructure and tools

– Client/server kept separate (e.g.

different strings implementations)

– DLL hell

History of Distributed Object Models

Communication Protocol Models:

– Message passing/queueing (DCE)

– Request/response (RPC)

 1980 model based on network

layer (NFS, DCE RPC)

 1990 object-oriented RPC, to link

objects

CLIENT

client stub

wire

protocol

server stub

wire

protocol

Network

SERVER
operation()

reply

Middle layer

Bottom layer

Top layer

Remote Procedure Call

ORPC

 ORPC codify mappings between objects at

language level

 Server-side middleware locate and

instantiate object in target process

 Microsoft DCOM and CORBA IIOP were

dominating ORPC protocols

CORBA

 OMG’s specification for

interoperability between distributed

computing nodes

 Goal: heterogeneous environments

communicating at the object level,

regardless of implementation of

endpoints

 ORB: middleware that establishes

requestor-provider relationship

ORB

 Receives invocation message to

invoke specified method for

registered object

 Finds object, unmarshals

parameters, invokes method,

marshals and returns results

 Requester needs not to be aware of

location, language or OS of object

CORB Architecture

Interface Definition Language

 Language neutral specification

interface Polynomial : MathObject {

sequence<Monomial> monomials;

int rank;

Polynomial add(in Polynomial p);

};

 Mappings to several languages

 Tools (compilers) generate stubs and
skeletons in various languages

Note. No way to know at run-time which
interfaces an objects provides: IDL gets
compiled away

 DCOM distributed extension to COM

 builds an ORPC layer on top of DCE
RPC

 COM server can create object
instances of multiple object classes

 COM object supports multiple
interfaces, representing different
view or behavior of the object

 interface consists of a set of
functionally related methods

DCOM

 interfaces described using MIDL

MIDL compiler generates proxy and

stub code in C or C++ from interface

definition

 generated proxy code provides

client-side API

 stub objects decode incoming client

requests and deliver to appropriate

object in the server

DCOM Interfaces

 COM client interacts with COM object by
acquiring a pointer to an object's interface
and invoking methods through that
pointer, as if the object resides in the
client's address space

 interfaces follow standard memory layout,
same as C++ vtable

 specification at binary level

 integration of binary components in
different languages (C++, Java, Visual
Basic)

DCOM Architecture

 proxy and stub code interact with appropriate
runtime libraries to exchange requests and
responses

 each interface has UUID

 QueryInterface method of IUnknown

 QueryInterface returns an interface pointer

 interface pointer points to COM binary data
structure

 client application must know CLSID and IID for an
interface

 standard dictates interface functions calling
conventions

DCOM Overview

CORBA / COM interoperability

 Naming of communication
endpoints:

– CORBA: Interoperable Object Reference

– DCOM: OBJREFs (include reference
counting)

 Support for multiple interfaces (only
in DCOM)

 Format of payload parameter values:

– DCOM: Network Data Representation

– CORBA: Common Data Representation

ActiveX

COM client

OLE
Automation

OSA

COM

The object bridge

COM

OSA

CORBA

OSA

CORBA object

CORBA IIOPCORBA

Translate call

Machine 1 Machine 2

COM-CORBA Interoperation

CORBA and DCOM limitations

 DCOM platform limitation

 CORBA, subtle incompatibilities

require ORB from same vendor

 Reliance on closely administered

environments

– IIOP must cross firewalls

 Programming difficulties in data

alignment and data types

Quest for Net Objects

1993 COM

1996 Java

1997 Mary Kirtland’s articles in MS
System Journal present first
sketch (COM+)

1997 Sun vs Microsoft over Java
licensing

1999 Java 1.2

2000 MS announces .NET, CLR, C#

Web Computing

 Programming with distributed

components on the Web:

– Heterogeneous

– Distributed

– Multi-language

Beyond browsing

 Access and act on information

More control, better decision-making

and easier collaboration

 Optimal support for different devices

 Open to partners: each can build its

portion of the application

Classes of Use

Web Services

 2-way Web

– Full interactive capabilities of desktop

applications

Web Services

Web Service: Definitions

 Component for Web Programming

 Self-contained, self-describing,

modular component that can be

published, located, and invoked

across the Web

Web Services: Properties

 can be used either internally or

exposed externally over the Internet

 accessible through a standard

interface

 allows heterogeneous systems to

work together as a single web of

computation

Properties

 Loosely coupled

 Ubiquitous communication

 Universal data format

Service-Oriented Architecture

Service

Broker

Service

User

Service

Provider

Find

Web Service Scenario

 Provider builds and defines the

service in WSDL

 Provider registers the service in

UDDI

 User finds the service by searching

UDDI registry

 User application binds to the Web

service and invokes its operations

via SOAP

Web Service Architecture

Service

Broker

Service

User

Service

Provider

UDDI/WSDL

Find

Communication: HTTP

Data: XML

Interactions: SOAP

Discovery

Let me talk to you (SOAP)

Web Services Protocols

How do we talk? (WSDL)

Web
Service

Web
Service

Consumer

UDDI

Find a Service

return service response (XML)

http://yourservice.com/svc1

return service descriptions (XML)

http://yourservice.com/?WSDL

HTML with link to WSDL

http://yourservice.com

http://www.uddi.org

Link to discovery document

Infrastructure Elements

Directories
central location to locate Web Services
provided by other organizations (e.g. UDDI
registry)

Discovery
locating WSDL for a particular Web
Service

Description
defines what interactions the Web
Service supports

Wire Formats
enable universal communication (e.g. SOAP)

SOAP

Wire-protocol based on XML and HTTP

that consists of:

– an envelope for describing what is in a

message and how to process it

– a set of encoding rules for expressing

instances of application-defined data

types

– a convention for representing remote

procedure calls and responses

Sample SOAP request

POST /CurrencyServer/CurrencyExchange.asmx HTTP/1.1

Host: theseus

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: http://di.unipi.it/webservices/Euro

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns:soap=http://schemas.xmlsoap.org/soap/envelope>

<soap:Body>

<Euro xmlns=http://di.unipi.it/webservices>

<currency>string</currency>

</Euro>

</soap:Body>

</soap:Envelope>

http://di.unipi.it/webservices/Euro
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://di.unipi.it/webservices

Sample SOAP reply

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns:soap=http://schemas.xmlsoap.org/soap/envelope>

<soap:Body>

<EuroResponse xmlns=http://di.unipi.it/webservices>

<EuroResult>double</EuroResult>

</EuroResponse>

</soap:Body>

</soap:Envelope>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://di.unipi.it/webservices

Other .NET Wire-Protocols

 HTTP GET

 HTTP POST

 SMTP

… customized

Web Service Description Language

http://alltheweb.com/go/1/IB/img/http/www.museumcopy.com/products_lg/tal327_799.html

WSDL Structure

Types Data type definitions

Message Signature of request and

reply for each method (≈ IDL)

Port Type <service, protocol> 

operations

Operation method  messages

Binding Protocol and data-format

specification

Service { Port  binding }

Port Address (≈ URL)

WSDL example

 Currency Exchange Service

Methods
double Rate(String From, String To)

double Euro(String Currency)

 Service URL
http://theseus/CurrencyServer/CurrencyExchange.asmx

http://theseus/CurrencyServer/CurrencyExchange.asmx

WSDL example

<message name="RateSoapIn">

<part name="parameters" element="s0:Rate" />

</message>

<message name="RateSoapOut">

<part name="parameters" element="s0:RateResponse" />

</message>

<message name="EuroSoapIn">

<part name="parameters" element="s0:Euro" />

</message>

<message name="EuroSoapOut">

<part name="parameters" element="s0:EuroResponse" />

</message>

<message name="RateHttpGetIn">

<part name="from" type="s:string" />

<part name="to" type="s:string" />

</message>

<message name="RateHttpGetOut">

<part name="Body" element="s0:double" />

</message>

<message name="EuroHttpGetIn">

<part name="currency" type="s:string" />

</message>

<message name="EuroHttpGetOut">

<part name="Body" element="s0:double" />

</message>

<message name="RateHttpPostIn">

<part name="from" type="s:string" />

<part name="to" type="s:string" />

</message>

<message name="RateHttpPostOut">

<part name="Body" element="s0:double" />

</message>

<message name="EuroHttpPostIn">

<part name="currency" type="s:string" />

</message>

<message name="EuroHttpPostOut">

<part name="Body" element="s0:double" />

</message>

…

http://theseus/CurrencyServer/CurrencyExchange.asmx
http://microsoft.com/net
http://theseus/CurrencyServer/CurrencyExchange.asmx
http://microsoft.com/net
http://www.ibm.com/websphere
http://java.sun.com/j2ee
http://theseus/SearchForm/SearchForm.aspx
http://www.uddi.org/
http://www.dnjonline.com/articles/essentials/iss24_essentials.html
http://www.ibm.com/websphere
http://java.sun.com/j2ee

Building A Server

 Simplicity
– Source file (plain text = notepad

accessible)

– Compiled at run-time similar to ASP.NET

pages

– Just hit save

– File extension is .asmx

 File can be inline or in separate

assembly

Building TRUST

 CLR exposes its elements

 Users can create elements directly

 Even when using tools, you can look

at their output and change it

 <%@ WebService class=“[class]" %>

– Names the class and/or language used

 using System.Web.Services;

– Required namespace

 [WebMethod]

– Method is ‘web callable’

 Optional: WebService base class

– Access ASP.NET intrinsics

Building A Server

Creating Web Service Clients

1. Grab WSDL from Web Service

2. Create proxy from WSDL

3. Execute methods against proxy,

passing input parameters
 Proxy calls Web Service on your behalf

 Web Service returns results to proxy

4. Retrieve results from proxy

5. Display results

ASP.NET Client

 Uses proxy and SOAP protocol to

communicate with Web Service

 Steps:

1. Use wsdl utility to create local proxy

2. Compile proxy using vbc or csc

 Place compiled proxy assembly in bin folder

of Web

3. Create client

 Import proxy namespace, code to proxy’s

properties and methods

Using SOAP toolkit (no .NET)

// allocate a new SoapClient pointer

m_pClient = new ISOAPClient;

// create the SoapClient pointer

m_pClient->CreateDispatch("MSSOAP.SoapClient")

// initialize it

m_pClient->mssoapinit("http://www.MyService.com/Calc.wsdl",

"Calc", "CalcPortType", NULL);

// perform addition

double ISOAPClient::Add(double dblA, double dblB, DISPID

dispid)

{

double result;

static BYTE parms[] = VTS_R8 VTS_R8;

InvokeHelper(dispid, DISPATCH_METHOD, VT_R8,

(void*)&result, parms, dblA, dblB);

return result;

}

Client Side?

 Use HTTP GET

– handle XML yourself

 Use wsdl.exe, generate client-side

program, invoke it through Jscript

 Use ActiveX or Java

Microsoft .NET

 A software platform for XML Web

Services

Personal Remarks

 .NET provides plumbing for interesting
new developments

 Opportunity for experimenting with new
programming languages

 We can start asking questions:
– what new higher-level facilities can be

designed

– how can we contribute: improvements,
extensions, applications

 Not PDC Questions:
– when it will be available?

– Will it have this feature?

Commercial Offerings

.NET http://microsoft.com/net

WebSphere

http://www.ibm.com/websphere

J2EE http://java.sun.com/j2ee

http://microsoft.com/net
http://www.ibm.com/websphere
http://java.sun.com/j2ee

Role of CLR

 Robustness

– more and more programs run on server

– avoid memory leaks

 Simplifies programming

– Avoid burden of reference counting

 Reduce incompatibilities

– Objects are remotely accessible

– More easily reproduced if built on same

basic elements

Reflection

 Avoids IDL

– Slight incompatibilities in CORBA

 Avoids type libraries

 Provides for dynamic invocation

 Allows customization

– e.g. serialization

Processing inside SOAP Client

WSDL WSML

WSDLReader
load()

WSDLOperation object
GetOperationParts()

Num. 3

Num. 4

Num. 7

Add(3, 4)

Sum

Serializer

Reader

SOAP

Connector

SOAP request

SOAP reply

Server-side SOAP

WSDL WSML

WSDLReader
ParseRequest | load()

WSDLOperation object
ExecuteOperation | GetOperationParts()

Num. 3

Num. 4

Num. 7

Add(3, 4)

Sum
Serializer

SOAP request

SOAP reply

SoapReader
load()

Reflection in Web Services

 SOAP proxy performs:
– Invoke(m, new object[] {arg1, arg2});

 SOAP message dispatcher:

– parses request

– creates parameter objects

– determines object requested

– instantiates object

– gets requested method

– invokes method with built parameters

Reflection: Apache SOAP

 SOAP requests addressed to:

server:8080//soap/servlet/rpcrouter/method

 Servlet performs:
– Call c = extractCallFromEnvelope(ServiceManager

sm, Envelope e, SOAPContext ctx);

– Response invoke(DeploymentDescriptor dd, Call c,

Object o, SOAPContext reqCtx, SOAPContext resCtx)

{ …

m = MethodUtils.getMethod(o, call.getMethodName(),

argTypes);

return

new Bean(m.getReturnType(), m.invoke(o, args));

}

Meta Data

 Reflection extracts metadata (no

need for separate type library)

 Attributes: turned into metadata

stored within IL

Metadata accessible at runtime

 New attributes can be defined, for

program use

int (*fun)(int, char);

fun f = someFunction;

f(3,’a’);

someFunction(3,’a’);

apply(fun f, void* args) {

f(args);

switch (args.lentgh) {

case 1: return f(args[0]);

case 2: return f(args[0], args[1]);

…

}

Use of Reflection

 Building a high performance search

engine

 Need way to store and retrieve

objects from relational table

 Need reflection to serialize objects

 Solution before .NET: template

metaprogramming

Music Portal

Customer

performs title
search

Service Broker

Portal invokes

search

Web Service

DJInterpool

DeadVinyl

FunkFactory

Service Broker
invokes search
services

Services
respond
with search
results

Deployment Scenario

Dynamic Objects (.NET)

 Dynamic class creation

 Dynamic class loading

 Needed for interactive SQL

interpreter

Two-Way Web

Current Web Limitations

 Thin but weak:

– Not real-time

– Not productive

– Not interactive

 Client cannot initiate actions

 Browser pull: waste bandwidth

 Java, ActiveX: maintainability and

security restrictions

Current SOAPs

 SOAP 1.1 specifications

 Implementations:

– MS SOAP Toolkit 2.0

– Apache SOAP 2.2  AXIS (= SOAP 3.0)

– SOAP::Lite for Perl

– pocketSOAP

– GSoap for C++

 Apache and MS are working on

incompatibilities

Conclusions

Web Services are quite promising

 Still missing:

– some plumbing, interoperability

– 2-way interactivity

– unified multistage programming

 Issues:

– no more DLL Hell

– but maybe, Namespace Hell

References

Standards

SOAP http://www.w3.org/TR/SOAP

WSDL http://www.w3.org/TR/WSDL

UDDI http://www.uddi.org

Papers
1. Close up on .NET, DNJ,

http://www.dnjonline.com/articles/essentials/iss24_essentials.html

2. M. Kirtland, Object-Oriented Software Development Made Simple with COM+

Runtime Services, MSDJ,

http://www.microsoft.com/msj/defaultframe.asp?page=/msj/1197/complus.htm&na

v=/msj/1197/newnav.htm

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/WSDL
http://www.uddi.org/
http://www.dnjonline.com/articles/essentials/iss24_essentials.html

