
 

Università degli Studi di Pisa 

Laurea Specialistica in Informatica 

 

Advanced Programming 

Final Term Paper 
Copyright © 2017, Giuseppe Attardi. 
Only copies for strictly personal use, in order to prepare the submission, are allowed. Any other use is 
forbidden and will be persecuted. 

Start Date: 28/06/2017 
Submission deadline: 20/07/2017 (send a single PDF file to attardi@di.unipi.it) 
 
Rules: 
The paper must be produced personally by the student, signed implicitly via his mail address. 

You are allowed to discuss with others the general lines of the problems, provided that each student 
eventually formulates his own solution. Each student is expected to understand and to be able to explain his 
solution. 

You are allowed to consult documentation from any source, provided that references are mentioned. 
It is not considered acceptable: 
• to consult or setup an online forum, to request help of consultants in producing the paper 
• to develop code or pseudo-code with others 
• to use code written by others 
• to let other students use someone’s code 
• to show or to examine the work of other students. 

Violation of these rules will result in the cancellation of the exam and a report to the Presidente del Consiglio di 
Corso di Studio. 

For the programming exercises you can choose a programming language among C++, C# and Java.  

 

Introduction 
In this project, you will develop a Cloud Deployment Engine (CDE), used to deploy applications to a cloud 
provider. The provider can be asked to provision a VM (called an agent below) of a given kind, or to terminate a 
VM. The engine reads a declarative specification of the services to be deployed, that includes relations among 
the agents. The description is expressed in a Yaml file like this: 

 
services: 
  moodle: 
    units: 1 
  database: 
    units: 1 
agents: 
  moodle: 
    class: Moodle 

The paper must: 
1. be in a single PDF file, formatted readably (font size ≥ 10 pt with suitable margins, single column), 

of no more than 10 numbered pages, including code: for each extra page one point will be 
subtracted from the score. 

2. include the student name 
3. provide the solution and the code for each exercise separately, referring to the code of other 

exercises if necessary. 
4. cite references to literature or Web pages from where information was taken. 



2 

    events: 
      init: 
        handler: install 
      connect: 
        after: [init, db_available] 
        handler: connect 
   start: 
        after: [connect] 
     handler: start 
    requires: [db] 
  database: 
 class: Mysql 
    events: 
      init: 
      handler: install 
   start: 
        after: [init] 
     handler: start 
    provides: [db] 
relations: 

- [moodle: db_available, database: init] 

The application consists of two services (moodle and database), each one in a single instance (units). The 
two services are described in the agents section. It specifies the class that implements the service and the events 
that may occurr during the lifetime of the service. 

Events are triggered when all the precondition events in the after clause have been handled, and cause the 
action named in the handler parameter. Actions are performed asynchronously and the agent communicates back 
to the CDE when it is completed. For example, the connect event, specifies the handler connect, which must 
be triggered when both the init and db_available events have been handled. The db_available event is 
triggered explicitly by the CDE to establish the relation between two agents, listed in the relations section. 

[moodle: db_available, database: init] specifies that the db_available condition can be met 
for the moodle agent after the init event has been handled by the database. 

The CDE keeps information about the state of services. When given a description of the services to deploy, 
the CDE compares the required state with the current one, and determines the actions to perform to achieve that 
state. For example, initially there will be no services running, so it will determine that it needs to create one 
instance each of the agents moodle and database. It then determines which events can be triggered and 
invokes their handlers. 

The cloud provider receives requests for instantiating an agent of a given kind and creates instances that 
communicate back to the CDE, notifying when an event has been handled. Each agent should run in its own 
thread. 

Exercise 1 
Design a set of classes to represent the syntactic constructs of CDE Yaml definitions (e.g. Services, Relations, 
Agents, etc.). 

Exercise 2 
Implement a recursive descent parser for CDE without using external libraries or parser generators. Split the 
parser into a lexical analyzer and a syntax analyzer, as presented in the slides of the course. 

Exercise 3 
Implement the cloud provider. 

Exercise 4 
Implement the CDE as an event driven applications that accepts deployment requests and notifications from 
agents. Use a generator for producing the list of events that must be triggered at each time. 

Perform a simulation of the example in the introduction, assuming that the handlers have a random time 
duration and print the list the events triggered in a sample run. 

Exercise 5 
Extend the CDE so that if given a new description, will perform the necessary actions to reach the required state. 
For example, if the number of units is increased, it will create the additional units and create the additional 
relations among the new agents. If units decrease, the extra ones should be terminated. 



3 

Exercise 6 
Explain the notion of lexical closure and list some programming languages that support them. Explain the 
relations between lexical closures and C# delegates and methods in Java inner classes. Provide an example of a 
realistic use of a closure in JavaScript in an AJAX application.  
. 
  


