

Università degli Studi di Pisa

Laurea Magistrale in Informatica

Advanced Programming

Final Term Paper

Start Date: 12/01/2015
Submission deadline: 1/02/2015 (send a single PDF file to attardi@di.unipi.it)

Rules:

The paper must be produced personally by the student, signed implicitly via his mail address.

You are allowed to discuss with others the general lines of the problems, provided that each student

eventually formulates his own solution. Each student is expected to understand and to be able to explain his

solution.

You are allowed to consult documentation from any source, provided that references are mentioned.

It is not considered acceptable:

 to develop code or pseudo-code with others

 to use code written by others

 to let others use someone’s code

 to show or to examine the work of other students.

Violation of these rules will result in the cancellation of the exam and a report to the Presidente del Consiglio di

Corso di Studio.

For the programming exercises you can choose a programming language among C++, C# and Java.

Introduction

The goal of the project is to develop a Simple Testing Framework (STF). The framework is to be used to

generate and perform unit tests for programs. STF gets input from tables contained in an HTML file. Each table

represents a “fixture” for checking the correctness of a program.

For example, the following fixture provides test cases for a program to compute the product of two numbers:

Product

x y result()

float float float

7.5 42 315

42 -7.5 -315

28.7846 3.14159 90.4294

The first row tells STF the name of the fixture to use for testing. The second row gives headers for the examples,

the third row provides the types of the arguments and result, and the remaining rows provide examples. For

instance, the first example in the first table says that the product of 7.5 and 42 is 315.

The paper must:

1. be in a single PDF file, formatted readably (font size ≥ 9pt with suitable margins), of no more than 10

numbered pages, including code: for each extra page one point will be subtracted from the score.

2. include the student name

3. provide the solution and the code for each exercise separately, referring to the code of other exercise

if necessary.

4. cite references to literature or Web pages from where information was taken.

2

The test is performed using a Fixture like this, which maps the columns in a table to variables and methods and

provides a method check() to perform the test expressed in a row of a table:

public class Product extends ColumnFixture {

 public float x;

 public float y;

 public float result() {

 return x * y;

 }

 public boolean check(Row row) { ... }

 }

STF applies the ColumnFixture to each row in the table and produces a new table that displays the correct

(green) and incorrect (red) outputs, like this:

Product

x y result()

float float float

7.5 42 315

42 -7.5 -315

28.7846 3.14159 90.4283

Exercise 1

Design a set of classes suitable to represent the structure of fixture tables. The classes should provide

polymorphic methods for implementing the framework. In particular design a generic Fixture class and its

specialization ColumnFixture, that implements method execute(Table table), that performs the tests

expressed in a table.

Exercise 2

Implement a recursive descent parser for HTML files containing fixture tables (with no extra markup) producing

a representation with the classes of Exercise 1. Hint: use a tokenizer that returns as individual token objects tags

and text elements.

Exercise 3

Implement a code generator that takes a representation of a table from Exercise 2 and generates:

1. the code for a skeleton of a specialized ColumnFixture for the testing, with an empty body for method

result() to be filled by the programmer;

2. the code for performing the tests and generating the output in HTML, exploiting Table.execute().

The generated code should use polymorphism and should not use Reflection.

Provide the code generated for the example in the Introduction.

Exercise 4

Extend STF with action fixtures, i.e. fixtures that represent a sequence of invocations. As an example of this,

define an action fixture that will test a class for computing the root squares of a set of numbers: a sequence of

invocations is used first to provide the values to square, followed by an invocation of sqrt() to obtain the final

value to be checked.

Action

start Accumulator acc

call product 12 12

result acc add

call product 7 7

result acc add

3

result sqrt

check 13.8924

More precisely:

 action start creates an instance of the named class, to be called with the name in the third column

(e.g. acc).

 action call invokes the method named in the third column on the object named in the first column or a

function if this is empty, with the arguments provided in the following columns.

 action result is similar to call, except that the first argument of the call will be the result of the

previous call.

 action check invokes a method with no argument to check whether the result of the previous call

corresponds to the supplied value.

Provide the code generated for the example above.

Exercise 5

Explain the so called “visitor design pattern”. Explain how it can be implemented in terms of object-oriented

interfaces. In particular explain how it could be applied in the design of the above fixtures. Explain why in

languages that provide multiple method dispatch, implementing the visitor pattern is simpler.

