

Università degli Studi di Pisa

Laurea Specialistica in Informatica

Laurea Specialistica in Informatica e Networking

Advanced Programming

Final Term Paper

Copyright © 2014, Giuseppe Attardi.

Only copies for strictly personal use, in order to prepare the submission, are allowed. Any other use is

forbidden and will be persecuted.

Start Date: 8/01/2014
Submission deadline: 14/02/2014 (send a single PDF file to attardi@di.unipi.it)

Rules:

The paper must be produced personally by the student, signed implicitly via his mail address.

You are allowed to discuss with others the general lines of the problems, provided that each student

eventually formulates his own solution. Each student is expected to understand and to be able to explain his

solution.

You are allowed to consult documentation from any source, provided that references are mentioned.

It is not considered acceptable:

 to consult or setup an online forum, to request help of consultants in producing the paper

 to develop code or pseudo-code with others

 to use code written by others

 to let others use someone’s code

 to show or to examine the work of other students.

Violation of these rules will result in the cancellation of the exam and a report to the Presidente del Consiglio di

Corso di Studio.

For the programming exercises you can choose a programming language among C++, C# and Java.

Introduction

In this project, you will develop a DSL for expressing ORM mappings, similar to JPA (Java Persistence API) or

Doctrine2. The PAORM language provides an XML notation for defining entities and their mappings to

database tables. Here is an example:

<entities>

 <entity class="Book">

 <attributes>

 <id name="id">

 </id>

 <basic name="title" type="String">

 <column length="80" />

The paper must:

1. be in a single PDF file, formatted readably (font size ≥ 10 pt with suitable margins, single column),

of no more than 10 numbered pages, including code: for each extra page one point will be

subtracted from the score.

2. include the student name

3. provide the solution and the code for each exercise separately, referring to the code of other

exercises if necessary. Do not include in an exercise code only needed for a later exercise.

4. cite references to literature or Web pages from where information was taken.

2

 </basic>

 <many-to-one name="publisher" target-entity="Publisher" />

 </attributes>

 </entity>

 <entity class="Publisher">

 <attributes>

 <id name="id" type="String">

 <column length="80"/>

 </id>

 <one-to-many name="books" target-entity="Book"

 mapped-by="publisher"/>

 </attributes>

 </entity>

</entities>

The PAORM generator will produce both class definitions and a SQL schema like these:

public class Book {

 public integer id;

 public String title;

 public Publisher publisher;

}

public class Publisher {

 public String name;

 public List<Books> books;

}

Exercise 1

Design a set of classes to represent PAORM entity definitions.

Exercise 2

Implement a recursive descent parser for PAORM, using if needed a streaming XML reader like XmlTextReader

or XmlStreamReader. Ensure that each parser method returns a proper object representing the input it has

analyzed.

Exercise 3

Write two generators for producing respectively the code for the entities and the SQL schema. Ensure to use

polymorphism in the implementation of the generator.

Exercise 4

Design and implement an IEntityManager class, providing the following interface:

interface IEntityManager<T> {

 void persist(T entity);

 void remove(T entity);

 T find(Object primaryKey);

}

Method persist() serializes the entity and inserts it in the appropriate tables. For example, an instance of

Book must store a row in table Book as well as one in the in the Publisher table corresponding to the book

publisher attribute object. Method remove() instead will just perform the removal of the row in the Book

table.

Method find() should retrieve and deserialize the object Book with the given key as well as the

corresponding Publisher object from the Publisher table.

In order to access the database the IEntityManager should use suitable SQL queries: write a generator for

such queries.

Show the SQL queries produced for the example in the introduction.

3

Exercise 5

Extend the IEntityManager interface to include the following method:

 Query createQuery(String query);

where parameter query is a string expressing a SQL query and the Query implements this interface:

interface IQuery<T> {

 List<T> getResultList();

 void execute();

}

The method getResultList() performs the query and “hydrates” (i.e. deserializes into objects) the result

set into a list of objects.

The method execute() is used to perform update or delete SQL queries.

Show an example of the generated SQL query.

Exercise 6

Explain what is an Object-Relational Mapping and discuss and compare Linq and JPA as techniques to facilitate

access to data in databases. In particular compare the expressiveness of logical operator available in Linq with

respect to those of SQL based ORMs.

Exercise 7 (for students of Laurea Specialistica in Tecnologie Informatiche)

Consider the addition of mapping between two tables through a join table, for example a table BooksAuthors

to model the many-to-many relationship between authors and books:

<entity class="Book">

 <attributes>

 …

 <many-to-many name="BooksAuthors" target-entity="Author"

 join-column="author"

 inverse-join-column="book" />

 </attributes>

</entity>

The generator should produce a new table definition like this:

 create table BooksAuthors (

 id integer,

 book integer,

 author integer,

 primary key (id)

);

 alter table BooksAuthors

 add constraint FK33F1

 foreign key (book)

 references Book;

 alter table BooksAuthors

 add constraint FK33F2

 foreign key (author)

 references Author;

Extend the parser and the generators to deal with this notation.

