
Building a Runnable Program

Corso di Programmazione Avanzata

Giuseppe Attardi

attardi@di.unipi.it

Compiler Architecture

Example: GCD

program gcd(input, output);

var i, j : integer;

begin

read(i, j);

while i <> j do

if i > j then i := i – j

else j := j – i;

writeln(i)

end.

Syntax tree

Control Flow Graph

Intermediate Form

 gcc back end for several processors

 GNU Register Transfer Language

 RTL expressions

– Linked to each other

– Instruction Codes:

• insn

• jump_insn

• call_insn

• code_label

• barrier

• note

Generating Code

void emit(enum code_ops operation, int arg)
{

code[code_offset].op = operation;

code[code_offset++].arg = arg;

}

void back_patch(int addr, enum code_ops
operation, int arg) {

code[addr].op = operation;

code[addr].arg = arg;

}

YACC

exp : NUMBER { emit(LDI, $1); }

| IDENTIFIER { context_check(LD, $1); }

| exp '<' exp { emit(LT, 0); }

| exp '=' exp { emit(EQ, 0); }

| exp '>' exp { emit(GT, 0); }

| exp '+' exp { emit(ADD, 0); }

| exp '-' exp { emit(SUB, 0); }

| exp '*' exp { emit(MULT, 0); }

| exp '/' exp { emit(DIV, 0); }

| '(' exp ')'

Example

 Generation for: (a + b) x (c – d/e)

LD 0 -- a

LD 1 -- b

ADD -- a + b

LD 2 -- c

LD 3 -- d

LD 4 -- e

DIV -- d/e

SUB -- c – d/e

MUL -- (a + b) x (c – d/e)

GNU RTL

Representation for: d = (a + b) * c

(insn 8 6 10 (set (reg:SI 2)

(mem:SI (symbol_ref:SI (“a”)))))

(insn 10 8 12 (set (reg:SI 3)

(mem:SI (symbol_ref:SI (“b”)))))

(insn 12 10 14 (set (reg:SI 2) (plus:SI (reg:SI 2) (reg:SI 3))))

(insn 14 12 15 (set (reg:SI 3)

(mem:SI (symbol_ref:SI (“c”)))))

(insn 15 14 17 (set (reg:SI 2) (mult:SI (reg:SI 2) (reg:SI 3))))

(insn 17 15 19 (set (mem:SI (symbol_ref:SI (“d”)))

(reg:SI 2)))

Object File Format

 import table Identifies instructions that
refer to named locations whose addresses
are unknown, but are presumed to lie in other
files yet to be linked to this one

 relocation table Identifies instructions
that refer to locations within the current file,
but that must be modified at link time to
reflect the offset of the current le within the
final, executable program

 export table Lists the names and
addresses of locations in the current file that
may be referred to in other files

Program segments

 uninitialized data May be allocated at load time or on demand in
response to page faults. Usually zero-ed, both to provide repeatable
symptoms for programs that erroneously read data they have not yet
written, and to enhance security on multi-user systems, by preventing a
program from reading the contents of pages written by previous users.

 stack May be allocated in some fixed amount at load time.
More commonly, is given a small initial size, and is then extended
automatically by the operating system in response to (faulting)
accesses beyond the current segment end.

 heap Like stack, may be allocated in some fixed amount at
load time. More commonly, is given a small initial size, and is then
extended in response to explicit requests (via system call) from heap-
management library routines.

 Files In many systems, library routines allow a program to
map a file into memory. The routine interacts with the operating system
to create a new segment for the file, and returns the address of the
beginning of the segment. The contents of the segment are usually
fetched from disk on demand, in response to page faults.

COFF

Structure Located Purpose

File Header Beginning of file Overview of the file; controls

layout of other sections

Optional Header Follows file header For executables, used to store

the initial %eip

Section Header Follow optional header;

count determined by file

header

Maintain location and size

information about code and data

sections

Section Data pointer in section

header

Contains code and data for the

program

Relocation Directives pointer in section

header

Contain fixup information

needed when relocating a

section

Line Numbers pointer in section

header

Hold address of each line

number in code/data sections

Symbol Table pointer in file header Contains one entry for each

symbol this file defines or

references

String Table Follows symbol table Stores symbol names; first four

bytes are total length

http://www.delorie.com/djgpp/doc/coff/filhdr.html
http://www.delorie.com/djgpp/doc/coff/opthdr.html
http://www.delorie.com/djgpp/doc/coff/scnhdr.html
http://www.delorie.com/djgpp/doc/coff/reloc.html
http://www.delorie.com/djgpp/doc/coff/lineno.html
http://www.delorie.com/djgpp/doc/coff/symtab.html
http://www.delorie.com/djgpp/doc/coff/strtab.html

COFF: File Header

typedef struct {

unsigned short f_magic; /* magic number */

unsigned short f_nscns; /* number of sections */

unsigned long f_timdat; /* time & date stamp */

unsigned long f_symptr; /* file pointer to symtab
*/

unsigned long f_nsyms; /* number of symtab
entries */

unsigned short f_opthdr; /* sizeof(optional hdr) */

unsigned short f_flags; /* flags */

} FILHDR;

COFF: Section Header

typedef struct {

char s_name[8]; /* section name */

unsigned long s_paddr; /* physical address */

unsigned long s_vaddr; /* virtual address */

unsigned long s_size; /* section size */

unsigned long s_scnptr; /* file ptr to raw data for section */

unsigned long s_relptr; /* file ptr to relocation */

unsigned long s_lnnoptr; /* file ptr to line numbers */

unsigned short s_nreloc; /* number of relocation entries */

unsigned short s_nlnno; /* number of line number entries */

unsigned long s_flags; /* flags */

} SCNHDR;

COFF: Typical Sections

 TEXT: executable code

 DATA: initialized data

 BSS: non initialized data (no data

stored in file)

COFF: Relocation Directives

typedef struct {

unsigned long r_vaddr; /* address of

relocation */

unsigned long r_symndx; /* symbol

we're adjusting for */

unsigned short r_type; /* type of

relocation */

} RELOC;

Linking

Dynamic Linking

Dynamic Linking

 Allows sharing a single copy of the

library

 Each DLL has its own code and data

segments

 Each program has private copy of

data segment, shares code segment

 DL library must either:

– be located at fixed address

– have no relocatable words in code

Position Independent Code

 Generating PIC requires:

1. use PC-relative addressing, rather than jumps to absolute
addresses, for all internal branches.

2. similarly, avoid absolute references to statically allocated
data, by using displacement addressing with respect to
some standard base register. If the code and data
segments are guaranteed to lie at a known offset from one
another, then an entry point to a shared library can
compute an appropriate base register value using the PC.
Otherwise the caller must set the base register as part of
the calling sequence.

3. use an extra level of indirection for every control transfer
out of the PIC segment, and for every load or store of static
memory outside the corresponding data segment. The
indirection allows the (non-PIC) target address to be kept in
the data segment, which is private to each program
instance.

Linking DLL (MIPS)

GOT (Global Offset Table)

 Linker creates a GOT with pointers to
all global data

 GOT referred through register (EBX)

 The function prologue of every
function needs to set up this register
to the correct value

 Code to load EBX:
call .L2 ;; push PC on stack

.L2: popl %ebx; PC into register EBX

addl $_GLOBAL_OFFSET_TABLE+[.-.L2],%ebx
;; adjust ebx to GOT address

Referencing global variables

static int a; /* static */

extern int b; /* global */

a = 1;

movl $1, a@GOT(%ebx)

b = 2;

movl b@GOT(%ebx), %eax

movl $2, (%eax)

PLT (Procedure Linkage Table)

 Indirection for functions similar to

GOT for data

 Lazy procedure linkage

PLT structure (x86)

;; special first entry:

PLT0: pushl GOT+4

jmp *GOT+8

;; regular entry for proc1

PLT1: jmp *GOT+m(%ebx)

push #reloc_offset

jmp PLT0

PLT

 Initially GOT+m(%ebx) contains

address of PLT1+1

 Code there pushes relocation offset

for the symbol proc1 and then

 Jumps to PLT0 to perform resolution

and linkage for proc1

PLT operation

 Dynamic linker places two values in

the GOT:

GOT+4 code identifying library

GOT+8 address of linker symbol

resolution routine

Lazy procedure linkage

 The first time the program calls a PLT entry, the
first jump in the PLT entry does nothing, since
the GOT entry through which it jumps points back
into the PLT entry

 Then the push instruction pushes the offset value
which indirectly identifies both the symbol to
resolve and the GOT entry into which to resolve
it, and jumps to PLT0

 The instructions in PLT0 push another code that
identifies the library and then jumps into stub
code in the dynamic linker with the two
identifying codes at the top of the stack

 It is a jump, rather than a call: above the two
identifying words just pushed is the return
address back to the routine that called into the
PLT

Linker symbol resolution routine

 Uses the two parameters to find the library's
symbol table and the routine's entry in that
symbol table

 Looks up the symbol value using the
concatenated runtime symbol table, and stores
the routine's address into the GOT entry

 Then the stub code restores the registers, pops
the two words that the PLT pushed, and jumps off
to the routine

 The GOT entry having been updated, subsequent
calls to that PLT entry jump directly to the routine
itself without entering the dynamic linker

Exploit by viruses

Malicious virus code can exploit DL

to get access to functions external to

the host file

 http://downloads.securityfocus.com/l

ibrary/subversiveld.pdf

Runtime loading

 Stub subroutine for foo:

t9 := (gp + k) -- lazy linker entry point

t7 := ra

t8 := n -- index of stub

call *t9 -- overwrites ra

