
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini

Lezione 5
2013

Slides per gentile concessione di Gerard J. Holzmann

 2

a never claim defines an observer process that executes
synchronously with the system

never {
 do
 :: true
 :: (p) -> break
 od;
accept:
 do
 :: (q)
 od
}

!q q q q q !q q q q

!p p !p !p !p !p !p p !p

x xx x x x
true (p) (q) (q) (q) stop

(p)

(q)

true

property:
the truth of p is always followed
within a finite number of steps by
the truth of !q

never claim (negation of property):
the truth of p is not followed
within a finite number of steps by
the truth of !q

 3

never claims

• can be either deterministic or non-deterministic
• should only contain side-effect free expression statements

(corresponding to boolean propositions on system states)
• are used to define invalid execution sequences

– a signature or pattern of invalid system behavior
• truncate (i.e. abort) when they block

– a block means that the behavior expressed cannot be matched
– the never claim process gives up trying to match the current

execution sequence, backs up and tries to match another execution
– pausing in the never claim must be represented explicitly with self-

loops on true
• a never claim reports a violation when:

– closing curly brace of never claim is reached
– an acceptance cycle is closed

• non-progress can be expressed as a never claim, or as part of a
never claim
– a built-in option allows spin to generate a default never claim for

checking non-progress properties, but this is optional

 4

the language intersection picture

Promela
Behavior
Specification

Never
Claim

Specification
(negation of properties:

capturing violations)

Fairness
Constraints

counter-
examples to
correctness
claims

 5

the language intersection picture

Promela
Behavior
Specification

Never
Claim

Specification
INCLUDING

fairness constraints

counter-
examples to
correctness
claims
with fairness

 6

referencing process states
from within never claims

• from within a never claim we can refer to the
control-flow states of any active process

• the syntax of a “remote reference” is:
– proctypename[pidnr]@labelname

• this expression is true if and only if the process
with process instantiation number pidnr is
currently at the control-flow point marked with
labelname in proctypename

• if there is only one process of type user, we can
also omit the [pid] part and use a simpler form:

user[1]@crit

process instantiation number

label name

proctype name

user@crit

it is an error if
process 1 is not of
type user

 7

referencing process states
• an example

mtype = { p, v };
chan sem = [0] of { mtype };

active proctype semaphore()
{
 do :: sem!p ; sem!v od
}

active [2] proctype user()
{ assert(_pid == 1 || _pid == 2);
 do
 :: sem?p ->
crit: /* critical section */
 sem?v
 od
}

remote referencing expressions

can only be used in never claims...

(they are meant to monitor behavior

not to define behavior)

we do not need an accept label in the

never claim in this case

Q1: why not?

Q2: what if we added one anyway?

never {
 do
 :: user[1]@crit && user[2]@crit -> break
 :: else
 od
 /* reaching the end of a never claim is always an error */
}

process instantiation numbers

label names

proctype names

a way to make sure we are

using the right pid numbers in

the claim

using a state label,
instead of a
counter to check
mutual exclusion

pv

assert

crit:

 8

checking when a process has terminated

active proctype runner()
{
 do
 ::
 :: else -> break
 od
}

the expression:

(runner@L)
will be true if and only if the process
reaches label L
once the process reaches this label it can
never proceed beyond it

active proctype runner()
{
 do
 ::
 :: else -> break
 od;
L: (false)
}

make it
visible

another method:
we can also try to use the predefined global variable

_nr_pr
to count how many processes are running...

 9

never claims

• can contain all control flow constructs
– including if, do, unless, atomic, d_step, goto

• should contain only expression statements
– so, q?[ack] or nfull(q) is okay, but not q?ack or q!ack

• the convention is to use accept-state labels only in never
claims and progress and end-state labels only in the
behavior model

• special precautions are needed if non-progress conditions
are checked in combination with never claims
– non-progress is normally encoded in Spin as a predefined

never claim

– you can use progress labels inside a never claim, but only if
you also encode the non-progress cycle check within the
claim....

 10

the predefined non-progress cycle
detector

• one of the predefined system variables in Promela (similar to
‘timeout’, ‘else’, and ‘_nr_pr’) is np_

• np_ (non-progress state) is defined to be true if and only if none
of the active processes is currently at a state that was marked
with a progress label

• the predefined non-progress cycle detector is the following two-
state never claim, accepting only non-progress cycles (following
any finite prefix)

never {
 do
 :: true
 :: np_ -> break
 od;
accept:
 do
 :: np_
 od
}

np_

np_

true

(non-)progress is a liveness property
captured with an accept state label inside
the never claim
non-progress cycles are therefore internally
captured as acceptance cycles

 11

never claims can also be used to restrict a search for
property violations to a smaller set of executions

• model checking is often an exercise in controlling computational
complexity

• abstraction is the best (and morally right) way to address these
problems, but not always easy

• suppose we have defined a model that is too detailed and therefore
intractable / unverifiable

• we can select interesting behaviors from the system by using a never
claim as a filter

• the model checker will not search executions where the expression
statements in the claim cannot be matched...

• simple example:

never {
 do
 :: atomic { (p || q) -> assert(r)}
 od
}

restrict to behavior whereeither p or q remain true, andcheck assertion r at every step,
but only in those executions

 12

example of a constraint

never {
 do
 :: (x + y < N)
 od
}

restrict the search to only
those executions where x+y < N holds;
place assertions or accept labels
elsewhere

reminder:
if a never claim is present,
and we compile with -DNP,
the never claim is replaced with
the predefined non-progress claim.

if we want to check a progress
condition AND a constraint
simultaneously, we have to define
an explicit constrained NP automaton

never {
 do
 :: true
 :: np_ -> break
 od;
accept:
 do
 :: np_
 od
}

never {
 do
 ::(x+y < N)
 :: np_ && (x+y < N)-> break
 od;
accept:
 do
 :: np_ && (x+y < N)
 od
}

x

 13

scope and visibility

• a never claim in a Spin model is defined globally
• within a claim we can therefore refer to:

– global variables
– message channels (using poll statements)
– process control-flow states (remote reference operations)
– predefined global variables such as timeout, _nr_pr, np_
– but not process local variables

• bummer: in a never claim we cannot refer to events, we can
only reason about properties of states...
– so the effect of an event has to be made visible in the state of the

system to become visible in a never claim
– there is another mechanism available, not yet discussed, that can

be used to reason about a limited subset of events: trace assertions
(which can be used to refer only to send/recv events...)

 14

trace assertions

• trace assertions can be used to reason about valid or
invalid sequences of send and receive statements

mtype = { a, b };

chan p = [2] of { mtype };
chan q = [1] of { mtype };

trace {
 do
 :: p!a; q?b
 od
}

if at least one send (receive) operation
on a channel q appears in the trace
assertion, all send (receive) operations
on that channel q must be covered by
the assertion

this assertion only claims something
about how send operations on channel p
relate to receive operations on channel q

it claims that every send of a message a to p
is followed by a receive of a message b from q

a deviation from this pattern triggers an error

only send and receive statements
can appear in trace assertions

cannot use variables in trace
assertions, only constants,
mtypes or _

can use q?_ to specify an
unconditional receive

 15

notrace assertions

• reverses the claim: a notrace assertion states that a
particular access pattern is impossible

mtype = { a, b };

chan p = [2] of { mtype };
chan q = [1] of { mtype };

notrace {
 if
 :: p!a; q?b
 :: q?b; p!a
 fi
}

this notrace assertion claims that
there is no execution where the send of
a message a to channel p is followed by
the receive of a message b from q, or
vice versa: it claims that there must be
intervening sends or receives to break these
two patterns of access

a notrace assertion is fully matched (producing
and error report) when the closing curly brace
is reached

 16

Spin’s LTL syntax (till v5)

• ltl formula ::=
true, false
any lower-case propositional symbol, e.g.: p, q, r, …
(f) round braces for grouping
unary f unary operators
f1 binary f2 binary operators

binary ::=
U --- strong until
&& --- logical and
|| --- logical or
-> --- logical implication
<-> --- logical equivalence

unary ::=
[] --- always, henceforth

<> --- eventually
X --- next
! --- logical negation

caution (p -> q) is shorthand for: (!p || q)
(p <-> q) is shorthand for: (p -> q) && (q -> p)

 17

Spin’s LTL syntax (from v6)
Grammar:

ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

Operands (opd):

true, false, user-defined names starting with a lower-case letter,

or embedded expressions inside curly braces, e.g.,: { a+b>n }.

Unary Operators (unop):

[], always (the temporal operator always)

<>, eventually (the temporal operator eventually)

! (the boolean operator for negation)

Note that the next operator X is not supported by default
(compile with -DNXT to get it)

 18

Spin’s LTL syntax (from v6)

Binary Operators (binop):

U, until, stronguntil (the temporal operator strong until)

W, weakuntil (the temporal operator weak until

V, release (the dual of U): (p V q) means !(!p U !q))

&& (the boolean operator for logical and)

|| (the boolean operator for logical or)

/\ (alternative form of &&)

\/ (alternative form of ||)

->, implies (the boolean operator for logical implication)

<->, equivalent (the boolean operator for logical equivalence)

 19

semantics

given a state sequence (from a run σ):
s0,s1,s2,s3 …

and a set of propositional symbols: p,q,… such that
∀i,(i ≥ 0) and ∀p, si p is defined

we can define the semantics of the temporal logic formulae:
[]f, <>f, Xf, and e U f

σ f iff s0 f

si []f iff ∀j,(j >= i): sj f

si <>f iff ∃j,(j >= i): sj f

si Xf iff si+1 f

=

==

= =

= =

= =

i.e., the property
holds for the remainder
of run σ, starting at
position s0

s0 si si+1

 20

some standard LTL formulae

 [] p always p invariance

 <> p eventually p guarantee

 p -> (<> q) p implies eventually q response

 p -> (q U r) p implies q until r precedence

 []<> p always, eventually p recurrence (progress)

 <>[] p eventually, always p stability (non-progress)

 (<> p) -> (<> q) eventually p implies eventually q correlation

non-progress

acceptance

dual types of
properties

in every run where p
eventually becomes true
q also eventually becomes
true (though not necessarily
in that order)

 21

the simplest operator: X
(by default not available since Spin v6 [unless -DNXT])

• the next operator X is part of LTL, but should be viewed with
some suspicion
– it makes a statement about what should be true in all

possible immediately following states of a run
– in distributed systems, this notion of ‘next’ is ambiguous
– since it is unknown how statements are interleaved in time, it

is unwise to build a proof that depends on specific
scheduling decisions

• the ‘next’ action could come from any one of a set of active
processes – and could depend on relative speeds of execution

– the only safe assumptions one can make in building
correctness arguments about executions in distributed
systems are those based on longer-term fairness

p

f: X(p)

 22

stutter invariant properties
(cf. book p. 139)

• Let φ = V(σ,P) be a valuation of a run σ for a given set of
propositional formulae P (a path in the Kripke structure)
– a series of truth assignment to all propositional formulae in P, for

each subsequent state that appears in σ
– the truth of any temporal logic formula in P can be determined for a

run when the valuation is given

– we can write φ as a series of intervals: φ1
n1, φ2

n2, φ3
n3, ... where the

valuations are identical within each interval of length n1, n2, n3, ...

• Let E(φ) be the set of all valuations (for different runs) that differ
from φ only in the values of n1, n2, n3, ... (i.e., in the length of the
intervals)
– E(φ) is called the stutter extension of φ

 23

valuations

bit x, y;

byte mutex;

active proctype A() {

 x = 1;
(y == 0) ->
 mutex++;

 printf(“%d\n”, _pid);
 mutex--;

 x = 0

}

bit x, y;

byte mutex;

active proctype A() {

 x = 1;
(y == 0) ->
 mutex++;

 printf(“%d\n”, _pid);
 mutex--;

 x = 0

}

p: (x == mutex)
q: (x != y)

x=1 (y==0) mutex++ print mutex-- x=0

x==0
y==0

mutex==0

x==1
y==0

mutex==0

x==1
y==0

mutex==0

x==1
y==0

mutex==1

x==1
y==0

mutex==1

x==1
y==0

mutex==0

x==0
y==0

mutex==0

n1=1 n2=2 n3=2 n4=1 n5=1

p !p!p !p p p p
!q qq q q q !q

a run σ and
its valuation φ:

p !p!p p p
!q qq q !q

another run in the
same set E(φ)

n3=1n2=1

 24

= =

stutter invariant properties
(cf. book p. 139)

• a stutter invariant property is either true for all members of
E(φ) or for none of them:

∀ σ f ∧ φ = V(σ,P) → ∀ν ∈E(φ), ν f

• the truth of a stutter invariant property does not depend on
‘how long’ (for how many steps) a valuation lasts, just on the
order in which propositional formulae change value

• we can take advantage of stutter-invariance in the model
checking algorithms to optimize them (using partial order
reduction theory)...

• theorem: X-free temporal logic formulae are stutter invariant
– temporal logic formula that do contain X can also be stutter-

invariant, but this isn’t guaranteed and can be hard to show
– the morale: avoid the next operator in correctness arguments

example: [](p -> X (<>q))
is a stutter-invariant LTL formula
that contains a X operator

 25

from logic to automata
(cf. book p. 141)

• for any LTL formula f there exists a Büchi automaton that accepts
precisely those runs for which the formula f is satisfied

• example: the formula <>[]p corresponds to the non-deterministic
Büchi automaton:

• from Spin v6, it is sufficient to include the ltl formula in the Promela
model, and Spin will generate automatically the automaton

• in previous versions, the ltl formula had to be converted into a never
claim representing the automaton (as shown next)

p s1
ptrue s0

 26

!<>[]p

<>[]P

using Spin to do
the negations and the conversions
$ spin -f ‘<>[]p’
never { /* <>[]p */
T0_init:
 if
 :: ((p)) -> goto accept_S4
 :: (true)-> goto T0_init
 fi;
accept_S4:
 if
 :: ((p)) -> goto accept_S4
 fi;
}

p
p

S4true T0_init

$ spin -f ‘!<>[]p’
never { /* !<>[]p */
T0_init:
 if
 :: (! ((p))) -> goto accept_S9
 :: (true) -> goto T0_init
 fi;
accept_S9:
 if
 :: (true) -> goto T0_init
 fi;
}

!p
s9true T0_init

true

 27

syntax rules

$ spin -f ‘([] p -> <> (a+b <= c))’
tl_spin: expected ‘)’, saw ‘+’
tl_spin: ([] p -> <> (a+b <= c))
------------------------^
$

$ spin -f ‘[] (p -> <> q)’
never { /* [](p -> <> q) */
T0_init:
 if
 :: (((! ((p))) || ((q)))) -> goto accept_S20
 :: (1) -> goto T0_S27
 fi;
accept_S20:
 if
 :: (((! ((p))) || ((q)))) -> goto T0_init
 :: (1) -> goto T0_S27
 fi;
accept_S27:
 if
 :: ((q)) -> goto T0_init
 :: (1) -> goto T0_S27
 fi;
T0_S27:
 if
 :: ((q)) -> goto accept_S20
 :: (1) -> goto T0_S27
 :: ((q)) -> goto accept_S27
 fi;
}

$

#define q (a+b <= c)

define lower-case
propositional symbols
for all arithmetic and
boolean subformulae

Not necessary if the ltl
formula is in-line in the
Promela model
(since Spin v6)

beware of operator
precedence rules..

$ ltl2ba -f '[] (p -> <> q)'
never { /* [] (p -> <> q) */
accept_init:
 if
 :: (!p) || (q) -> goto accept_init
 :: (1) -> goto T0_S2
 fi;
T0_S2:
 if
 :: (1) -> goto T0_S2
 :: (q) -> goto accept_init
 fi;
}

there is no minimization algorithm
for non-deterministic Büchi automata.
sometimes alternative converters can
produce smaller automata:

 28

JSpin
alternative
front-end
(Java)

ltl2ba
alternative
LTL parser

and converter

?

spin structure

ispin
front-end
(Tcl/Tk)

verifier
generator
(spin –a)

syntax
errors

(-a and –A)

random/
interactive/

guided
simulation

Promela
parser

LTL parser
and converter

counter-examples
to logic properties

model-specific
ANSI C code

for model checker

executable
verifier
(pan)

ispin
front-end
(Tcl/TK)

trail
files

omega automata
definitions
(pan –d)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

