The SPIN Model Checker

Metodi di Verifica del Software

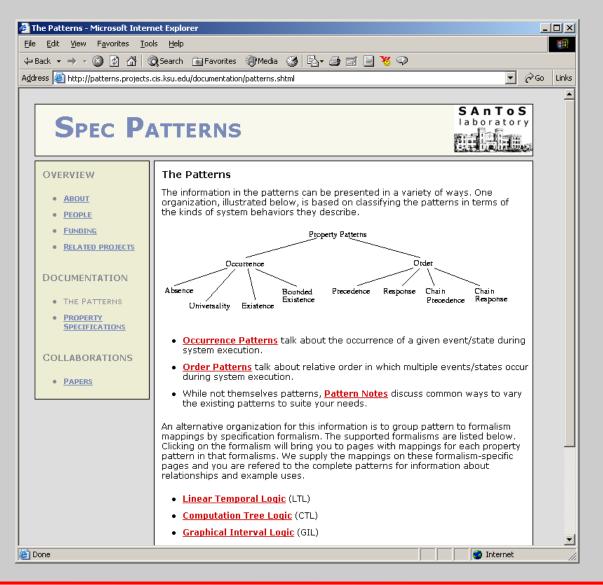
Andrea Corradini – GianLuigi Ferrari

Lezione 6

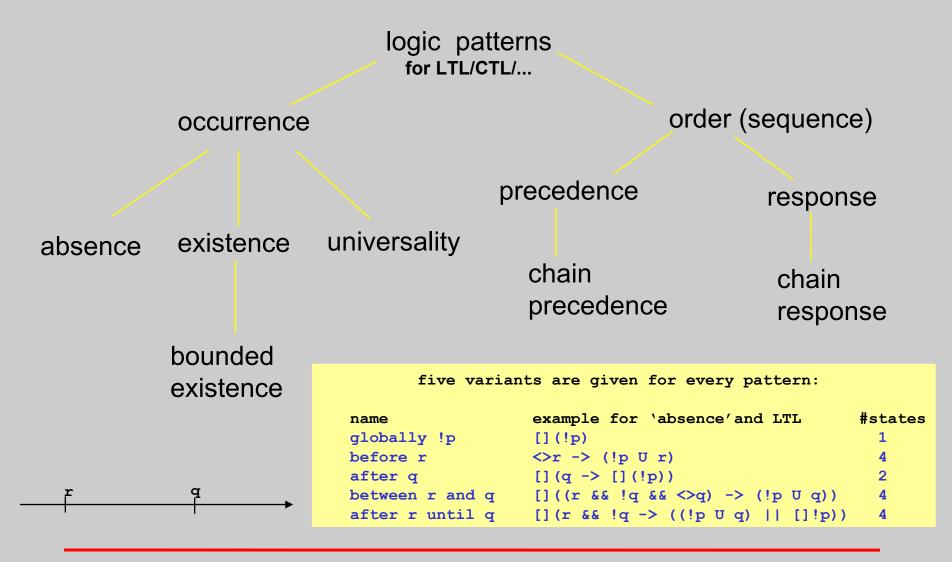
2011

Slides per gentile concessione di Gerard J. Holzmann

help with properties



the temporal logic patterns database http://patterns.projects.cis.ksu.edu/



expressiveness of LTL compared to never claims (cf. book p. 151)

- never-claims can define all ω -regular word-automata
- propositional linear temporal logic (without quantifiers) defines a *subset* of of this language
 - anything expressable in LTL can be expressed as a never claim
 - but, never claims can also express properties that *cannot* be expressed in LTL
- adding a single existential quantifier over 1 propositional symbol to LTL suffices to extend its expressiveness to all ω-regular word-automata:

∃p, [](p -> <> q)

 Kousha Etessami's 'temporal massage parlor' TMP: http://www.bell-labs.com/projects/TMP

omega-regular properties (~p. 150 book)

- something not expressible in pure LTL:
 - (p) can hold after an even number of execution steps, but never holds after an odd number of steps
 - [] X (p) certainly does not capture it:

 p && [](p -> X!p) && [](!p -> Xp) does not capture it either (because now p *must* always hold after all even steps):

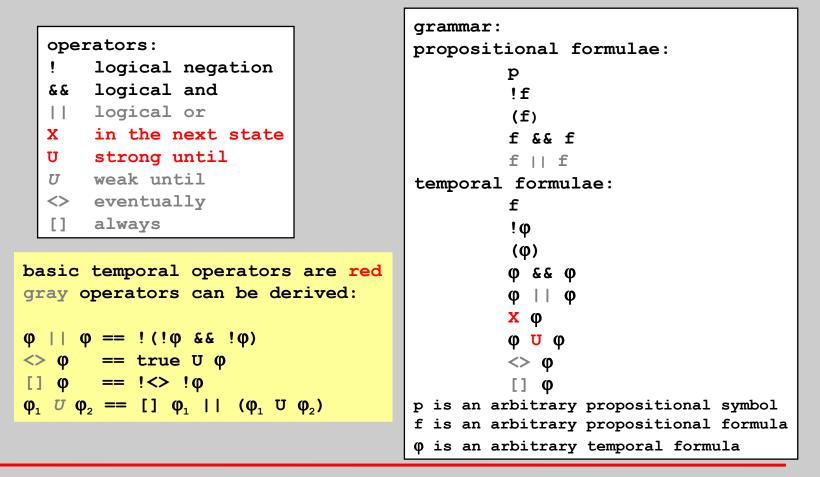
(ltl2ba -f)

 $\exists t, !t \&\& [] (t \rightarrow X !t) \&\& [](!t \rightarrow Xt) \&\& [](p \rightarrow !t)$

this formula expresses it correctly

LTL compared to other logics

an LTL formula states a property that must be satisfied for *all* runs starting in the initial system state



the logic CTL

- CTL* is a *branching* time logic
 - introduces explicit path quantifiers \forall and \exists
 - often used in hardware verification
 - by convention, one often uses F for <> and G for []

state formulae: р !f logical negation ļ (f) 88 logical and f && f logical or Ε there exists a path $f \mid f$ for all paths Α ΕΦ in the next state Х path formulae: f until (strong) U !Φ finally (eventually) F **(**φ**)** generally (always) G φ & & φ $\varphi \mid \mid \varphi$ the red operator is new Хφ gray operators can be derived: φυφ $\varphi \mid \mid \varphi == ! (!\varphi \& !\varphi)$ Fφ $A \phi == !E ! \phi$ GΦ $\mathbf{F} \mathbf{\Phi} == \text{true } \mathbf{U} \mathbf{\Phi}$ p is a propositional symbol $G \Phi == !F !\Phi$ f is an arbitrary state formula $\boldsymbol{\Phi}_1 \quad \boldsymbol{U} \quad \boldsymbol{\Phi}_2 == \mathbf{G} \quad \boldsymbol{\Phi}_1 \quad | \mid \quad (\boldsymbol{\Phi}_1 \quad \mathbf{U} \quad \boldsymbol{\Phi}_2)$ ϕ is an arbitrary path formula

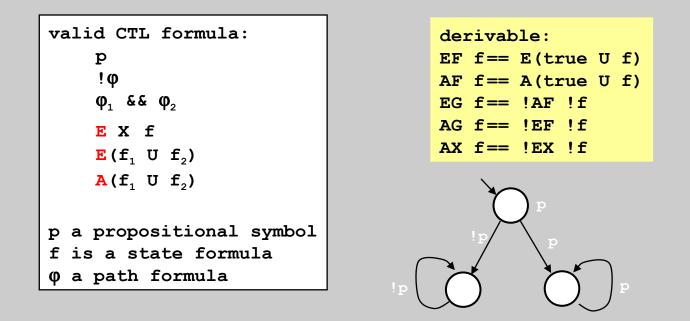
the subset CTL

CTL is the fragment of CTL* in which at most one occurrence of the operators X and U can occur within the scope of a path quantifier (A or E):

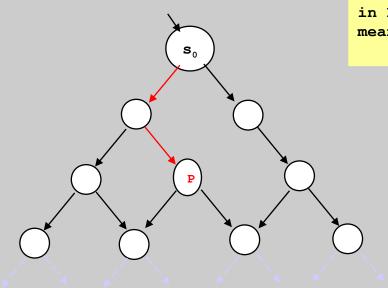
EG(p)

EXG(!p)

8



comparison

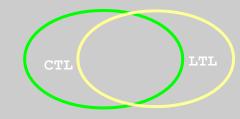


- in CTL one can say:
- EF(p) there exists a computation
 where <>p holds
- AF(p) in all computations <>p holds
- AG(p) always invariantly p

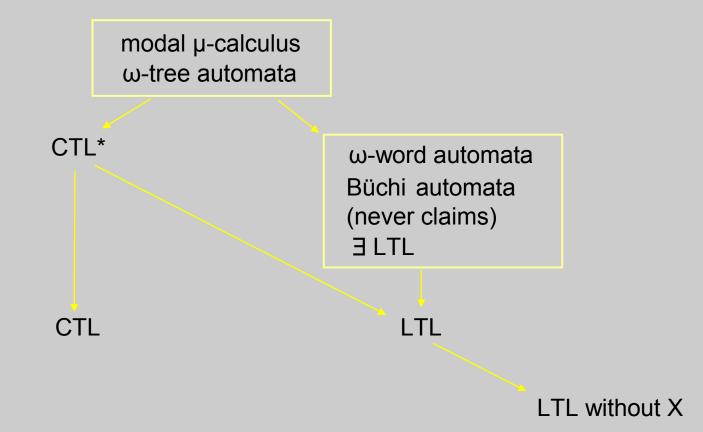
EG(p) there exists a computation where p is invariantly true etc.

the expressiveness of LTL compared with CTL⁺ and CTL

- CTL* and CTL define subsets of ω -regular tree automata
 - tree automata are more expressive than word automata
 - a CTL formula is generally satisfied by a *tree* of possible runs, not a single run
 - both LTL and CTL can be defined as subsets of CTL*
 - but, LTL and CTL are not comparable in expressiveness
 - they overlap, but neither includes the other
 - LTL can express properties that CTL cannot
 - CTL cannot express properties of the type []<>(p)
 - []<>p can formalize *fairness* constraints in LTL
 - CTL can express properties that LTL cannot
 - LTL cannot express properties of the type AGEF(p)
 - AGEF(p) can formalize *reset* properties in CTL: from every system state it is *possible* to return to the initial state



expressiveness



11

same box means 'equally expressive'single arrow means 'more expressive than'no arrow means 'expressiveness is not comparable'