
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini – GianLuigi Ferrari

Lezione 6
2011

Slides per gentile concessione di Gerard J. Holzmann

 2

help with properties

 3

the temporal logic patterns database
http://patterns.projects.cis.ksu.edu/

logic patterns
for LTL/CTL/...

absence universalityexistence

bounded
existence

order (sequence)occurrence

precedence response

chain
precedence

chain
response

five variants are given for every pattern:
 name example for ‘absence’and LTL #states
 globally !p [](!p) 1
 before r <>r -> (!p U r) 4
 after q [](q -> [](!p)) 2
 between r and q []((r && !q && <>q) -> (!p U q)) 4
 after r until q [](r && !q -> ((!p U q) || []!p)) 4

r q

 4

expressiveness of LTL
compared to never claims

(cf. book p. 151)

• never-claims can define all ω-regular word-automata
• propositional linear temporal logic (without quantifiers) defines

a subset of of this language
– anything expressable in LTL can be expressed as a never

claim
– but, never claims can also express properties that cannot be

expressed in LTL
• adding a single existential quantifier over 1 propositional

symbol to LTL suffices to extend its expressiveness to all
ω-regular word-automata:

∃p, [](p -> <> q)
• Kousha Etessami’s ‘temporal massage parlor’ TMP:

http://www.bell-labs.com/projects/TMP

 5

omega-regular properties
(~p. 150 book)

• something not expressible in pure LTL:
– (p) can hold after an even number of execution steps, but

never holds after an odd number of steps
– [] X (p) certainly does not capture it:

– p && [](p -> X!p) && [](!p -> Xp) does not capture it either
(because now p must always hold after all even steps):

� ∃t, !t && [] (t -> X !t) && [](!t -> Xt) && [](p -> !t)
this formula expresses it correctly

true
p

(ltl2ba -f)
p

!p

true

!p

 6

LTL compared to other logics

• an LTL formula states a property that must be
satisfied for all runs starting in the initial system state

operators:
! logical negation
&& logical and
|| logical or
X in the next state
U strong until
U weak until
<> eventually
[] always

grammar:
propositional formulae:

p
!f
(f)
f && f
f || f

temporal formulae:
f
!ϕ
(ϕ)
ϕ && ϕ
ϕ || ϕ
X ϕ
ϕ U ϕ
<> ϕ
[] ϕ

p is an arbitrary propositional symbol
f is an arbitrary propositional formula
ϕ is an arbitrary temporal formula

basic temporal operators are red
gray operators can be derived:
ϕ || ϕ == !(!ϕ && !ϕ)
<> ϕ == true U ϕ
[] ϕ == !<> !ϕ
ϕ1 U ϕ2 == [] ϕ1 || (ϕ1 U ϕ2)

 7

the logic CTL*
• CTL* is a branching time logic

– introduces explicit path quantifiers ∀ and ∃
– often used in hardware verification
– by convention, one often uses F for <> and G for []

! logical negation
&& logical and
|| logical or
E there exists a path
A for all paths
X in the next state
U until (strong)
F finally (eventually)
G generally (always)

state formulae: p
!f
(f)
f && f
f || f
E ϕ

path formulae: f
!ϕ
(ϕ)
ϕ && ϕ
ϕ || ϕ
X ϕ
ϕ U ϕ
F ϕ
G ϕ

p is a propositional symbol
f is an arbitrary state formula
ϕ is an arbitrary path formula

the red operator is new
gray operators can be derived:
ϕ || ϕ == !(!ϕ && !ϕ)
A ϕ == !E ! ϕ
F ϕ == true U ϕ
G ϕ == !F !ϕ
ϕ1 U ϕ2 == G ϕ1 || (ϕ1 U ϕ2)

<>
[]

 8

the subset CTL
• CTL is the fragment of CTL* in which at most one occurrence of

the operators X and U can occur within the scope of a path
quantifier (A or E):

valid CTL formula:
p
!ϕ
ϕ1 && ϕ2

E X f
E(f1 U f2)
A(f1 U f2)

p a propositional symbol
f is a state formula
ϕ a path formula

derivable:
EF f== E(true U f)
AF f== A(true U f)
EG f== !AF !f
AG f== !EF !f
AX f== !EX !f

p

p

p!p

!p

EG(p)
EXG(!p)

satisfied

satisfied

 9

comparison

s0

P

in LTL: <>p
means: A <>p for all computations starting

at initial state s0 <>p holds

in CTL one can say:
EF(p) there exists a computation

where <>p holds
AF(p) in all computations <>p holds
AG(p) always invariantly p
EG(p) there exists a computation

where p is invariantly true
etc.

 10

the expressiveness of LTL
compared with CTL* and CTL

(cf. Appendix B)

• CTL* and CTL define subsets of ω-regular tree automata
– tree automata are more expressive than word automata

• a CTL formula is generally satisfied by a tree of possible runs, not a
single run

– both LTL and CTL can be defined as subsets of CTL*
– but, LTL and CTL are not comparable in expressiveness

• they overlap, but neither includes the other
– LTL can express properties that CTL cannot

• CTL cannot express properties of the type []<>(p)
• []<>p can formalize fairness constraints in LTL

– CTL can express properties that LTL cannot
• LTL cannot express properties of the type AGEF(p)
• AGEF(p) can formalize reset properties in CTL:
 from every system state it is possible to return to the initial state

LTLCTL

 11

expressiveness

same box means ‘equally expressive’
single arrow means ‘more expressive than’
no arrow means ‘expressiveness is not comparable’

ω-tree automata

∃ LTL

ω-word automata
Büchi automata
(never claims)

CTL*

CTL LTL

LTL without X

modal μ-calculus

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11

