The SPIN Model Checker

Metodi di Verifica del Software

Andrea Corradini — GianLuigi Ferrari

Lezione 6
2011

Slides per gentile concessione di Gerard J. Holzmann

help with properties

_inix]
Eile Edit Wiew Favorites Tools Help ﬁ
=Back ~ = - @ (3] ﬁ-| QiSearch [GelFavorites @iMedia £ | BE-Ss 5% D
Address I-&ﬂ http:/{patterns, projects, cis. ksu, edufdocument ationfpatterns shkml j G0 | Liniks

SAnToS

laboratory
w g

s

The Patterns
The infarmation in the patterns can be presented in a variety of ways, One

organization, ilustrated below, is based on classifying the patterns in terms of
the kinds of system behaviors they describe,

Propetty Patterns

/

/‘OUCUHBHOB /Ordcr\
A bsehoe / \ Bounded Ptecedence Respohse Chain Chain
Existence Ptecedence Respohse

Umiversality Existence

« Occurrence Patterns talk about the occurrence of a given eventfstate during
system execution.

« Order Patterns talk about relative order in which multiple events/states ocour
during system execution.

« ‘While not themselves patterns, Pattern Notes discuss common ways to vary
the existing patterns to suite your needs,

An alternative organization for this information is to group pattern to formalism
mappings by specification formalism, The supported formalisms are listed below,
Clicking on the formalism will bring you to pages with mappings for each property —
pattern in that formalisms. We supply the mappings on these formalism-specific
pages and you are refered to the complete patterns for information about
relationships and example uses.

e Linear Temporal Logic (LTL)
« Computation Tree Logic (CTL)
e Graphical Interval Logic (GIL)

[&] Done ’_ l_ ’_ |4 mternet

| EN

the temporal logic patterns database
http://patterns.projects.cis.ksu.edu/

logic patterns

for LTL/CTL/...
occurrence order (sequence)
precedence response
absence existence universality
chain chain
precedence response
bounded
existence five variants are given for every pattern:
name example for ‘absence’and LTL #states
globally !'p [1('p) 1
before r <>r -> (!'p U r) 4
after gq [1(a -> [1('p)) 2
E g _ between r and q [1((r && 'q && <>q) -> ('p U q)) 4
! ' - after r until q [1(r && 'g -> (('p U Q) || [1'P)) 4

3

expressiveness of LTL
compared to never claims

never-claims can define all W-regular word-automata

propositional linear temporal logic (without quantifiers) defines
a subset of of this language

anything expressable in LTL can be expressed as a never
claim

but, never claims can also express properties that cannot be
expressed in LTL

adding a single existential quantifier over 1 propositional
symbol to LTL suffices to extend its expressiveness to all

w-regular word-automata:

I:p= [](p -2 <>q)

Kousha Etessami’s ‘temporal massage parlor’ TMP:
http://www.bell-labs.com/projects/TMP

omega-regular properties

something not expressible in pure LTL:

(p) can hold after an even number of execution steps, but
never holds after an odd number of steps

[] X (p) certainly does not capture it:

O O

p && [l(p -> X!p) && [[('p -> Xp) does not capture it either
(because now p must always hold after all even steps):

O O

[, 't && [] (t-> X 1t) && [1('t-> Xt) && [1(p ->'t)
this formula expresses it correctly

O O

LTL compared to other logics

an LTL formula states a property that must be
satisfied for all runs starting in the initial system state

operators:
! logical negation
&& logical and

X in the next state
U strong until

basic temporal operators are red
operators can be derived:

o b == '('0 && ')
¢ == true U ¢
¢ == 1<>1¢
¢, U, == [1 ¢, |I (¢, U 9,)

grammar:
propositional formulae:
P
£
(£)
f && £

temporal formulae:

f

'$

(9)
¢ && ¢
¢ ¢
X ¢
¢U¢

¢

¢

P is an arbitrary propositional symbol
f is an arbitrary propositional formula

¢ is an arbitrary temporal formula

6

the logic CTL

CTL* is a branching time logic

introduces explicit path quantifiers [and [
often used in hardware verification
by convention, one often uses F for <> and G for []

state formulae: p
! logical negation 'f
&& logical and (£)
f && £
E there exists a path
: E ¢
X in the next state path formulae: £
U until (strong) 'd
()]
¢ && ¢
red ¢ ¢
operators can be derived: X ¢
d 11 & =10 s ') U ¢
= 1E ! ¢ ¢
== true U ¢ ¢
= IF 1 P is a propositional symbol
b, b, ==c d, Il b, U, f is an arbitrary state formula
¢ is an arbitrary path formula

7

the subset CTL

CTL is the fragment of CTL* in which at most one occurrence of
the operators X and U can occur within the scope of a path
quantifier (A or E):

valid CTL formula: derivable:
P EF f== E(true U f£f)
' AF f== A(true U f)
¢, && ¢, EG f== !AF 'f
E X f AG f== |EF !f
E(f, U £,) AX f£f== EX 'f
A(f, U £))

p a propositional symbol
f is a state formula

¢ a path formula <:j[:]

EG(p)

EXG ('p)

O

\Q/

comparison

A <>p for all computations starting
at initial state s, <>p holds

in CTL one can say:

EF (p) there exists a computation
where <>p holds

AF (p) in all computations <>p holds
AG (p) always invariantly p
EG(p) there exists a computation

where p is invariantly true
etc.

the expressiveness of LTL
compared with CTL and CTL

CTL* and CTL define subsets of W-regular tree automata

tree automata are more expressive than word automata

a CTL formula is generally satisfied by a tree of possible runs, not a
single run

both LTL and CTL can be defined as subsets of CTL*
but, LTL and CTL are not comparable in expressiveness
they overlap, but neither includes the other
LTL can express properties that CTL cannot
CTL cannot express properties of the type [[<>(p)
[]<>p can formalize fairness constraints in LTL
CTL can express properties that LTL cannot
LTL cannot express properties of the type AGEF(p)
AGEF(p) can formalize reset properties in CTL:
from every system state it is possible to return to the initial state

10

expressiveness

modal p-calculus
w-tree automata

CTL*® w-word automata

Buchi automata
(never claims)
OLTL

CTL LTL

LTL without X

same box means ‘equally expressive’
single arrow means ‘more expressive than’
no arrow means ‘expressiveness is not comparable’

11

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11

