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help with properties
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the temporal logic patterns database
http://patterns.projects.cis.ksu.edu/

logic  patterns
for LTL/CTL/...

absence universalityexistence

bounded
existence

order (sequence)occurrence

precedence response

chain
precedence

chain
response

five variants are given for every pattern:
   name   example for ‘absence’and LTL      #states
   globally !p   [](!p)         1
   before r   <>r -> (!p U r)         4
   after q   [](q -> [](!p))         2
   between r and q   []((r && !q && <>q) -> (!p U q))    4
   after r until q   [](r && !q -> ((!p U q) || []!p))   4

r q
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expressiveness of LTL
compared to never claims

(cf. book p. 151)

• never-claims can define all ω-regular word-automata
• propositional linear temporal logic (without quantifiers) defines 

a subset of of this language
– anything expressable in LTL can be expressed as a never 

claim
– but, never claims can also express properties that cannot be 

expressed in LTL
• adding a single existential quantifier over 1 propositional 

symbol to LTL suffices to extend its expressiveness to all 
ω-regular word-automata:

∃p, [](p -> <> q)
• Kousha Etessami’s ‘temporal massage parlor’ TMP: 

http://www.bell-labs.com/projects/TMP
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omega-regular properties
(~p. 150 book)

• something not expressible in pure LTL:
– (p) can hold after an even number of execution steps, but 

never holds after an odd number of steps
– [] X (p) certainly does not capture it:

– p && [](p -> X!p) && [](!p -> Xp) does not capture it either 
(because now p must always hold after all even steps):

� ∃t, !t && [] (t -> X !t) && [](!t -> Xt) && [](p -> !t)
this formula expresses it correctly

true
p

(ltl2ba -f)
p

!p

true

!p
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LTL compared to other logics

• an LTL formula states a property that must be 
satisfied for all runs starting in the initial system state

operators:
! logical negation
&& logical and
|| logical or
X in the next state
U strong until
U weak until
<> eventually
[] always

grammar:
propositional formulae:

p
!f
(f)
f && f
f || f

temporal formulae:
f
!ϕ
(ϕ)
ϕ && ϕ
ϕ || ϕ
X ϕ
ϕ U ϕ
<> ϕ
[] ϕ

p is an arbitrary propositional symbol
f is an arbitrary propositional formula
ϕ is an arbitrary temporal formula 

basic temporal operators are red
gray operators can be derived:
ϕ || ϕ == !(!ϕ && !ϕ)
<> ϕ   == true U ϕ
[] ϕ   == !<> !ϕ
ϕ1 U ϕ2 == [] ϕ1 || (ϕ1 U ϕ2)
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the logic CTL*
• CTL* is a branching time logic

– introduces explicit path quantifiers ∀ and ∃
– often used in hardware verification
– by convention, one often uses F for <> and G for []

! logical negation
&& logical and
|| logical or
E there exists a path
A for all paths
X in the next state
U until (strong)
F finally (eventually)
G generally (always)

state formulae: p
!f
(f)
f && f
f || f
E ϕ

path formulae: f
!ϕ
(ϕ)
ϕ && ϕ
ϕ || ϕ
X ϕ
ϕ U ϕ
F ϕ
G ϕ

p is a propositional symbol
f is an arbitrary state formula
ϕ is an arbitrary path formula 

the red operator is new
gray operators can be derived:
ϕ || ϕ == !(!ϕ && !ϕ)
A ϕ == !E ! ϕ
F ϕ == true U ϕ 
G ϕ == !F !ϕ
ϕ1 U ϕ2 == G ϕ1 || (ϕ1 U ϕ2)

<>
[]
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the subset CTL
• CTL is the fragment of CTL* in which at most one occurrence of 

the operators X and U can occur within the scope of a path 
quantifier (A or E):

valid CTL formula:
p
!ϕ
ϕ1 && ϕ2

E X f
E(f1 U f2)
A(f1 U f2)

p a propositional symbol
f is a state formula
ϕ a path formula 

derivable:
EF f== E(true U f)
AF f== A(true U f)
EG f== !AF !f
AG f== !EF !f
AX f== !EX !f

p

p

p!p

!p

EG(p)
EXG(!p)

satisfied

satisfied
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comparison

s0

P

in LTL:  <>p
means:   A <>p for all computations starting

at initial state s0 <>p holds

in CTL one can say:
EF(p) there exists a computation

where <>p holds
AF(p) in all computations <>p holds
AG(p) always invariantly p
EG(p) there exists a computation

where p is invariantly true
etc.
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the expressiveness of LTL
compared with CTL* and CTL

(cf. Appendix B)

• CTL* and CTL define subsets of ω-regular tree automata
– tree automata are more expressive than word automata

• a CTL formula is generally satisfied by a tree of possible runs, not a 
single run

– both LTL and CTL can be defined as subsets of CTL*
– but, LTL and CTL are not comparable in expressiveness

• they overlap, but neither includes the other
– LTL can express properties that CTL cannot

• CTL cannot express properties of the type []<>(p)
• []<>p can formalize fairness constraints in LTL

– CTL can express properties that LTL cannot 
• LTL cannot express properties of the type AGEF(p)
• AGEF(p) can formalize reset properties in CTL:
    from every system state it is possible to return to the initial state

LTLCTL
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expressiveness

same box      means ‘equally expressive’
single arrow  means ‘more expressive than’
no arrow       means ‘expressiveness is not comparable’

ω-tree automata

∃ LTL

ω-word automata
Büchi automata
(never claims)

CTL*

CTL LTL

LTL without X

modal μ-calculus


	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11

