
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini

Lezione 2
2013

Slides per gentile concessione di Gerard J. Holzmann

 2

process synchronization
with provided clauses

bool toggle = true; /* global variable */
short cnt; /* default initial value 0 */

active proctype A() provided (toggle == true)
{
L: cnt++; /* increment cnt by 1 */

printf(“A: cnt=%d\n”, cnt);
toggle = false; /* yield control to B */
goto L

}

active proctype B() provided (toggle == false)
{
L: cnt--; /* decrement cnt by 1 */

printf(“B: cnt=%d\n”, cnt);
toggle = true; /* yield control to A */
goto L

}

assignment

print statement

assignment

control-flow

$ spin toggle.pml | more
A: cnt = 1

B: cnt = 0
A: cnt = 1

B: cnt = 0
A: cnt = 1

B: cnt = 0
... true == 1

false == 0

- a process can only execute statements if its
provided clause evaluates to true
- the default provided clause is true

 3

basic statements

• basic statements define the primitive state
transformers in Promela

• they end up labeling the edges (transitions) in the
underlying finite state automata

• there is only a very small number of basic statements
in Promela

 states and state transformers

 4

6 types of basic statements

• assignment: x++, x--, x = x+1, x = run P()

• expression statement: (x), (1), run P(), skip, true, else, timeout

• print: printf(“x = %d\n”, x)

• assertion: assert(1+1==2); assert(false)

• send: q!m

• receive: q?m

 5

executability of basic statements

• a Promela statement is either
– executable the statement can be executed, or
– blocked the statement cannot be executed (yet)

• 3 types of basic statements we have already seen
– print statements

• always unconditionally executable, no effect on state

– assignment statements
• always unconditionally executable, changes value of precisely

one variable, specified on the left-hand side of the ‘=‘ operator

– expression statements
• executable only if expression evaluates to non-zero (true)

2 < 3 is always executable

x < 27 executable iff the value of x is less than 27

3 + x executable iff x is not equal to –3

the executability of astatement maydepend on the globalstate of the system

the executability of astatement maydepend on the globalstate of the system

 6

2 levels of nondeterminism:

system level (process selection)

process level (statement selection)

statement interleaving

• processes execute concurrently and asynchronously
– there can be an arbitrarily long pause in between any two statement

executions within a process

• process scheduling decisions are non-deterministic
• statement executions from different processes are arbitrarily

interleaved in time
– basic statements execute atomically

• local choice within processes can also be non-deterministic

a1

a1

a1

a2

a2

a2

b1

b1

b1

b2

b2

b2

a1

a2

b1

b2

X

6 possible interleavings
of a1;a2 and b1;b2

 7

executability

in Promela this becomes:

(x > y) -> y++

where in C one would write:

while (x <= y)
/* wait */;

y++;

expression statements are first-class citizens in Promela
an expression statement can be used as a synchronizer:

it is executable only if it evaluates to non-zero (true)

(x > y)

y++

synchronizer
through executability rule

 8

pseudo statements
• some pseudo-statements:

– skip – always executable, no effect, same as expression (1)
– true – always executable, no effect on state, same as expression (1)

• there is no “run statement” – run is an operator that can appear in
restricted expression statements...

– returns 0 if the max nr of processes would be exceeded by the creation of a
new process (the number of processes is bounded)

– returns the pid of the new process otherwise

int x; /* the default initial value of x is 0 */
proctype A()
{ int y=1;

 skip;
 run B();
 x=2;
 (x>2 && y==1);
 printf(“x %d, y %d\n”, x, y)
}

int x; /* the default initial value of x is 0 */
proctype A()
{ int y=1;

 skip;
 run B();
 x=2;
 (x>2 && y==1);
 printf(“x %d, y %d\n”, x, y)
}

can become executable only if
another process changes the
value of global variable x

executable only if B can be created

 9

run expressions are special

• a run operator can only be used in special expressions
• all run-free expressions in Promela are side-effect free

– they can be evaluated without causing a change of state
– unlike in C, e.g. where one could say: (x++ <= --y)

• there can be only one run operator in an expression and
if there is one, there can be no other clauses; ruling out:
– (run B() && run A()) could fail with partial side-effect

– !(run B()) same as expr: (_nr_pr >= 255)

– run B() && (a > b) could start an arbitrary number of

copies of B() while (a <= b)

• it is typically a modeling error if run can ever return 0

 10

another type of basic statement (#4)

• assert(expression)
– an assertion statement is always executable and has no effect on

the state of the system when executed
– Spin reports a error if the expression can evaluate to zero (false),
– the assertion statement can be used to check safety properties

(properties of local process states or global system states)

int n;

active proctype invariant()
{

assert(n <= 3)
}

int n;

active proctype invariant()
{

assert(n <= 3)
}

this process has only one executable
statement – because it is an asynchronous
process, this statement might be executed
at any time – it need not execute immediately
this is precisely the capability we want in
verification, when checking a system
invariant condition: it should hold no matter
when the assertion is checked
the model checker will make sure this is true

 11

bool busy; /* signal entering/leaving the section */
byte mutex; /* counts # procs in critical section */

proctype P(bit i)
{ (!busy)-> busy = true;
 mutex++;
 printf("P%d in critical section\n", i);
 mutex--;
 busy = false;
}

active proctype invariant()
{ assert(mutex <= 1);
}

init {
 atomic { run P(0); run P(1) }
}

example: mutual exclusion
allow only 1 process in a critical section at a time
without relying on a hardware test&set instruction

start two instances of P atomically

a potential race condition:
both processes can evaluate
(!busy) before setting it to false

/* wait for busy to be false, then set it to true */

no loop required

 12

a model checking run
$ spin -a mutex1
$ gcc -DSAFETY -o pan pan.c
$./pan
pan: assertion violated (mutex<=1) (at depth 10)
pan: wrote mutex1.trail
(Spin Version 4.1.1 -- 2 January 2004)
Warning: Search not completed
 + Partial Order Reduction

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 cycle checks - (disabled by -DSAFETY)
 invalid end states +

State-vector 24 byte, depth reached 19, errors: 1
 73 states, stored
 32 states, matched
 105 transitions (= stored+matched)
 1 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
$

 13

guided simulation of
the counter-example that was generated

$ spin -t -p mutex1
 1: proc 1 (:init:) line 17 "mutex1" (state 1) [(run P(0))]
 2: proc 1 (:init:) line 17 "mutex1" (state 2) [(run P(1))]
 3: proc 3 (P) line 6 "mutex1" (state 1) [(!(busy))]
 4: proc 2 (P) line 6 "mutex1" (state 1) [(!(busy))]
 5: proc 3 (P) line 6 "mutex1" (state 2) [busy = 1]
 6: proc 2 (P) line 6 "mutex1" (state 2) [busy = 1]
 7: proc 2 (P) line 7 "mutex1" (state 3) [mutex = (mutex+1)]
 P0 in critical section
 8: proc 2 (P) line 8 "mutex1" (state 4) [printf('P%d in critical section\\n',i)]
 9: proc 3 (P) line 7 "mutex1" (state 3) [mutex = (mutex+1)]
spin: line 14 "mutex1", Error: assertion violated
spin: text of failed assertion: assert((mutex<=1))
 10: proc 0 (invariant) line 14 "mutex1" (state 1) [assert((mutex<=1))]
spin: trail ends after 10 steps
#processes: 4
 busy = 1
 mutex = 2
 10: proc 3 (P) line 8 "mutex1" (state 4)
 10: proc 2 (P) line 9 "mutex1" (state 5)
 10: proc 1 (:init:) line 17 "mutex1" (state 4) <valid end state>
 10: proc 0 (invariant) line 15 "mutex1" (state 2) <valid end state>
4 processes created
$

 14

Peterson’s algorithm (1981)

mtype = { A_Turn, B_Turn };

 bool x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section */
mtype turn = A_Turn; /* who's turn is it? */

active proctype A()
{ x = true;
 turn = B_Turn;
 (!y || turn == A_Turn) ->
 mutex++;

 /* critical section */
 mutex--;
 x = false;
}

active proctype invariant()
{ assert(mutex <= 1);
}

mtype = { A_Turn, B_Turn };

 bool x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section */
mtype turn = A_Turn; /* who's turn is it? */

active proctype A()
{ x = true;
 turn = B_Turn;
 (!y || turn == A_Turn) ->
 mutex++;

 /* critical section */
 mutex--;
 x = false;
}

active proctype invariant()
{ assert(mutex <= 1);
}

active proctype B()
{ y = true;
 turn = A_Turn;
 (!x || turn == B_Turn) ->
 mutex++;

 /* critical section */
 mutex--;
 y = false;
}

 15

basic data types
 (book, Table 3.1 p. 41)

the default initial value of all data objects (global and local) is zero

all variables (local and global) must be declared before they are used

a variable declaration can appear anywhere…

Type Typical Range Sample Declaration

bit 0..1 bit turn = 1;
bool false..true bool flag = true;
byte 0..255 byte cnt;
chan 1..255 chan q;
mtype 1..255 mtype msg;
pid 0..255 pid p;
short -215..215-1 short s = 100;
int -231..231-1 int x = 1;
unsigned 0..2n-1 unsigned u : 3;

3 bits of storage
range 0..7

note: there are no reals, floats, or pointers

deliberately: verification models are meant to

model coordination not computation

 16

mtype declarations
(originally used for: message type declarations)

• a way to introduce symbolic constant values
• mtype declaration:

• declaring variables of type mtype:

mtype = { apple, pear, banana, cherry };
mtype = { ack, msg, err, interrupt }; /* up to 255 names total */

mtype a; /* uninitialized, value 0 */
mtype b = pear; /* value always non-zero */

 17

expression evaluation
• all expressions are evaluated in the widest type (int)
• in assignments and message passing operations, the resulting

value is mapped (truncated) to the target type after evaluation
– the Spin simulator warns if there is loss of information

– the Spin parser rejects only grievous type errors

mtype = { apple, pear };

active proctype tryme()
{ byte x;
 short y = 1024;
 chan a, b;
 mtype p;

a = a+b; /* no good -- error */
x = 257; /* information loss -- warning */
x = y; /* information loss -- warning */
p = y/8; /* dubious, but no warning... */

}

 18

arrays and user-defined data types

one-dimensional arrays:

byte a[27];
bit flags[4] = 1;

all array elements are initialized to the same value
(default 0)

as in C, array indices start at 0

one-dimensional arrays:

byte a[27];
bit flags[4] = 1;

all array elements are initialized to the same value
(default 0)

as in C, array indices start at 0

user-defined data types:

typedef record {
 short f1;
 byte f2 = 4;
}

record rr;
rr.f1 = 5

user-defined data types:

typedef record {
 short f1;
 byte f2 = 4;
}

record rr;
rr.f1 = 5

name of user-defined data type

keyword

reference to a structure element

declaration of a variable of the
newly defined type

default initial value is again 0

 19

an indirect way to define
multi-dimensional arrays

with typedefs and macros

typedef array { byte b[4]; }
array a[4];

a[3].b[2] = 1;

the standard C preprocessor is used
to preprocess all models before parsing

supports:
#define
#if ..
#ifdef ..
#ifndef ..
#include “...”

etc.

or alternatively:

#define ab(x,y) a[x].b[y]

ab(3,2) = ab(2,3) + ab(3,2)

 20

the last two types of basic statements:
send and receive

sender

s2r

r2s

s2r!msg msg

ack

s2r?msg

r2s!ack

r2s?ack

CSP-like notation:
! is for send
? is for receive

receiver

2 variants:buffered ornon-buffered

 21

message channels

• message passing takes place via channels (bounded queues/buffers)
either buffered (asynchronously) or unbuffered (by synchronous
rendezvous handshake)

• sample channel declaration: chan x = [10] of {int, short, bit};

structure of messages that can be sent through the channel
a list of type names: one for each field in the message

chan a;
chan c = [0] of {bit};
chan toR = [2] of {mtype, bit, chan};
chan line[2] = [1] of {mtype, record};

an array of 2 channels a user-defined type

uninstantiated channel variable a

channels can be sent
across channels

maximum nr of msgs the channel can store
zero defines a rendezvous channel

a rendezvous channel c

type name variable name initializer

 22

send and receive

send: ch!expr1, … exprn

• values of expri correspond to the types from the chan declaration
• executable if the target channel is not full

receive: ch?const1 or var1, … constn or varn

• vari fields are set to the value from the corresponding field in the message

• consti fields are constraints on the corresponding fields that must be matched

• executable when the target channel is not empty and the first message
matches all constant fields in the receive

example:
#define ack 5
chan ch = [N] of { int, bit };
bit seqno;
ch!ack,0;

 ch?ack,seqno

alternatively:
ch!ack(0);
ch?ack(seqno)

 23

asynchronous and synchronous
message passing

m1

m2

m3

q!m1

q!m2

q!m3 q?m1

q?m2

q?m3

asynchronous
messages can be buffered for
later retrieval – up to the capacity
of the channel
sender blocks when channel is full
receiver blocks when channel
is empty

synchronous
with channel capacity 0, as in:

chan ch = [0] of { mtype };
can only perform an rv handshake
not store messages
sender blocks until matching receiver
is available and vice versa

q!m1

q!m2

q!m3

q?m1

q?m2

q?m3

 24

rendezvous channels

• rendezvous message passing
– the size of the channel is declared to be zero
– a send operation is enabled (a send offer) iff there is a

matching receive operation that can be executed
simultaneously, with all constant fields matching

– on a match, both send and receive are executed atomically
• example:

chan ch = [0] of {bit, byte};

– P offers: ch!1,3+7
– Q accepts: ch?1,x
– after the rendezvous handshake completes, x has value 10

message must match value 1
in the first message field,
but can accept any value in the
second message field (x)

 25

example: modeling a semaphore

mtype = { P, V };

chan sema = [0] of { mtype };

active proctype semaphore()
{
L: sema!P -> sema?V; goto L
}

active [5] proctype user()
{
L: /* non-critical */

sema?P ->
/* critical */
sema!V;
goto L

}

!P?V

P – passeren (Dutch)
V - vrijgeven

 26

other operations on channels

• len(q) returns the number of messages in q
• empty(q) true when q is currently empty
• full(q) true when q is filled to capacity

• nempty(q) added to support optimization

• nfull(q) added to support optimization

used instead of !empty(q) or !full(q)
the parser makes this easy to remember:
it rejects the negated forms

 27

brackets, braces
channel poll

• q?[n,m,p]
– is now a side-effect free Boolean expression
– evaluates to true precisely when q?n,m,p is executable, but

has no effect on n,m,p and does not change contents of q

• q?<n,m,p>
– is executable iff q?n,m,p is executable; has the same effect

on n,m,p as q?n,m,p, but does not change contents of q

• q?n(m,p)
– alternative notation for standard receive; same as q?n,m,p

– sometimes useful for separating type from args

 28

the scope of a chan declaration

• the name of a channel can be local or global, but the
channel itself is always a global object....

• this makes obscure things like this work:

chan x = [3] of { chan }; /* global handle, visible to both A and B */

active proctype A()
{ chan a; /* uninitialized local channel */

x?a; /* get channel id, provided by process B */
a!x /* and start using b’s channel! */

}

active proctype B()
{ chan b = [2] of { chan }; /* initialized local channel */

x!b; /* make channel b available to A */
b?x; /* value of x doesn’t really change */
0 /* avoid death of B, or else b dissappears */

}

chan x = [3] of { chan }; /* global handle, visible to both A and B */

active proctype A()
{ chan a; /* uninitialized local channel */

x?a; /* get channel id, provided by process B */
a!x /* and start using b’s channel! */

}

active proctype B()
{ chan b = [2] of { chan }; /* initialized local channel */

x!b; /* make channel b available to A */
b?x; /* value of x doesn’t really change */
0 /* avoid death of B, or else b dissappears */

}

 29

macros – the cpp preprocessor

• all Spin models are by default processed by the standard C
preprocessor for file-inclusion and macro expansion

• typical uses

– constants

– macros

– conditional

 code

#define RESET(a) \
 atomic { a[0]=0; a[1]=0; a[2]=0; a[3]=0 }

#define LOSSY 1
...
#ifdef LOSSY
 active proctype Daemon() { /* steal messages */ }
#endif
...
#if 0

comments
#endif

#define MAXQ 2
chan q = [MAXQ] of { mtype, chan };

or:

spin -DMAXQ=2 model

 30

the scope of a data object

• there are only two levels of scope:
– global (data visible to all active processes)
– local (data visible to only the process that contains

the declaration)
• there is no sub-scope (e.g., for blocks or inlines)
• the scope of a local variable is always the complete

proctype body

active proctype main()
{ int x, y; /* x and y declared in outer block */

{ /* a block: a statement sequence */
int y, z; /* error, redeclaration of y */
x++; y++; z++ /* original y is used */

}; /* note semi-colon placements */

/* variable z remains in scope! */
printf(“y = %d, z = %d\n”, y, z) /* prints: 1, 1 */

}

active proctype main()
{ int x, y; /* x and y declared in outer block */

{ /* a block: a statement sequence */
int y, z; /* error, redeclaration of y */
x++; y++; z++ /* original y is used */

}; /* note semi-colon placements */

/* variable z remains in scope! */
printf(“y = %d, z = %d\n”, y, z) /* prints: 1, 1 */

}

 31

defining control flow
• 5 ways to define control flow structures in proctypes:

– the obvious: semi-colons, gotos and labels
– structuring aids:

• inlines
• macros

– atomic sequences, making things indivisible:
• atomic { ... }
• d_step { ... }

– non-deterministic selection and iteration
• if .. fi
• do .. od

– escape sequences, for error handling/interrupts:
• { ... } unless { ... }

 32

non-deterministic selection

• if at least one guard is executable, the if statement is executable
• if more than one guard is executable, one is selected non-deterministically
• if none of the guard statements is executable, the if statement blocks
• any type of basic or compound statement can be used as a guard

if
:: guard1 -> stmnt1.1; stmnt1.2; stmnt1.3; …
:: guard2 -> stmnt2.1; stmnt2.2; stmnt2.3; …
:: …
:: guardn -> stmntn.1; stmntn.2; stmntn.3; …
fi

inspired by Dijkstra’s guarded command language,
but the semantics differ: the if does not abort when all guards are unexecutable:

it blocks execution instead
Recommded reading:E.W. Dijkstra,Guarded commands, nondeterminacy, and formal derivation of programs.

Comm. ACM, Aug. 1975, Vol. 18, No. 8, pp. 453-457.

 33

the if-statement

 the else guard is executable iff none
of the other guards is executable.

/* pick a number 0..3 */
if
:: n=0
:: n=1
:: n=2
:: n=3
fi

non-deterministically assigns

a value to n in the range 0..3

if
:: (n % 2 != 0) -> n = 1
:: (n >= 0) -> n = n-2
:: (n % 3 == 0) -> n = 3
:: else /* -> skip */
fi

underlying
non-deterministic

automaton

/* find the max of x and y */
if
:: x >= y -> m = x
:: x <= y -> m = y
fi

 34

the predefined expression ‘else’

where in C one writes:

if (x <= y)
x = y-x;

y++;

i.e., omitting the ‘else’

in Promela this is written:

if
:: (x <= y) -> x = y-x
:: else
fi;
y++

i.e., the ‘else’ part cannot be omitted

x <= y else

x = y-x

y++

in this case ‘else’ evaluates to:
!(x <= y)

the else clause always has to
be explicitly present
without it, the if- statement would
block until (x<=y) becomes true
(it then gives only one option for behavior)

no need to add
“-> skip”

 35

timeout

if
:: q?msg -> ...
:: q?ack -> ...
:: q?err -> ...
:: timeout -> ...
fi

wait until
an expected

 message

arrives, or
 recover wh

en the syst
em

as a whole
gets stuck

(e.g., due
to

message los
s)

Q: could you use ‘else’
instead of ‘timeout’
in this context?

checking for bad timeouts:
 spin –Dtimeout=true model

 36

timeout and else

• timeout and else are strangely related
– both are predefined Boolean expressions
– they evaluate to true or false, depending on context

• else is true iff
 no other statement in the same process is executable

• timeout is true iff
 no other statement in the same system is executable

• a timeout can be seen as a system level else
– else cannot be combined with other conditionals
– timeout can be combined, e.g. as in (timeout && a > b)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

