
Chapter 2

A short note on unification

2.1 Signatures and terms

Let us consider:

• an infinite set of variables X = { x, y, z, ... },
• a set of function symbols ⌃ = { c, f , g, ... }, called a signature, such that each

symbol in ⌃ is assigned an arity, that is the number of arguments it takes; a symbol
with arity zero is called a constant; a symbol with arity one is called unary; a
symbol with arity two is called binary, etc.

• the set of terms T⌃,X of terms over ⌃ and X, i.e., the set of all terms generated
according to the following rules:

– each variable x 2 X is a term (i.e., x 2 T⌃,X),

– each constant c 2 ⌃ is a term (i.e., c 2 T⌃,X),

– if f 2 ⌃ is a function symbol whose arity is n, and t1, ..., tn

are terms (i.e.,
t1, ..., tn

2 T⌃,X, then also f (t1, ..., tn

) is a term (i.e., f (t1, ..., tn

) 2 T⌃,X).

We denote by vars(t) the set of variables occurring in t.

For example, take ⌃ = { 0, succ, plus } with 0 a constant, succ unary and plus binary.
Then all the following are terms:

• 0

• x

• succ(0)

31



32 CHAPTER 2. UNIFICATION

• succ(x)

• plus(succ(x), 0)

• plus(plus(x, succ(y)), plus(0, succ(x)))

The set of variables of the above terms are respectively:

• vars( 0 ) = ;
• vars( x ) = { x }
• vars( succ(0) ) = ;
• vars( succ(x) ) = { x }
• vars( plus(succ(x), 0) ) = { x }
• vars( plus(plus(x, succ(y)), plus(0, succ(x))) ) = { x, y }

Instead succ(plus(0), x) is not a term: can you see why?

2.2 Substitutions

A substitution ⌧ : X ! T⌃,X is a function assigning terms to variables.

Since the set of variables is infinite while we are interested only in terms with a finite num-
ber of variables, we consider only substitutions that are defined as identity everywhere
except on a finite number of variables. Such substitutions are written

⌧ = [ x1 = t1 , ... , x

n

= t

n

]

meaning that

⌧(x) =
(

t

i

if x = x

i

x otherwise

We denote by t⌧ the term obtained from t by simultaneously replacing each variable x

with ⌧(x).

For example, for t = plus(succ(x), succ(y)) and ⌧ = [ x = succ(y) , y = 0 ] we get

t⌧ = plus(succ(x), succ(y))[ x = succ(y) , y = 0 ] = plus(succ(succ(y)), succ(0))

We say that the term t is more general than the term t

0 if there exists a substitution ⌧ such
that t⌧ = t

0.
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We say that the substitution ⌧ is more general than the substitution ⌧0 if there exists a
substitution ⇢ such that for any variable x we have that ⇢(⌧(x)) = ⌧0(x) (i.e., ⌧(x) is more
general that ⌧0(x) as witnessed by ⇢).

2.3 Unification problem

The unification problem, in its simplest formulation (syntactic, first-order unification),
consists of finding a substitution ⌧ that identifies some terms.

Formally, given a set of potential equalities

G = { l1
?
= r1, ..., ln

?
= r

n

}

where l

i

, r
i

2 T⌃,X, we want to find the most general substitution ⌧ such that

8i 2 [1, n]. l
i

⌧ = r

i

⌧

We denote by vars(G) the set of variables occurring in G, i.e.:

vars({ l1
?
= r1, ..., ln

?
= r

n

}) =
n[

i=1

(vars(l
i

) [ vars(r
i

))

Note that the solution does not necessarily exists, and when it exists it is not necessarily
unique.

The first unification algorithm was given by Robinson in 1965, but was rather ine�-
cient.

Linear-time algorithms were discovered independently by Martelli and Montanari in
1976 and by Paterson and Wegman in 1978.

Below we report a description of Martelli-Montanari’s algorithm.

The algorithm take as input a set of potential equalities G as the one above and applies
some transformations until:

• either it terminates (no transformation can be applied any more) after having
transformed the set G to an equivalent set of equalities

{ x1
?
= t1, ..., xk

?
= t

k

}

where x1, ..., xk

are all distinct variables and t1, ..., tk

are terms where x1, ..., xk

do
not occur, i.e., such that {x1, ..., xk

} \Sk

i=1 vars(t
i

) = ;
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• or it fails, meaning that the potential equalities cannot be unified.

In the following we denote by G⌧ the set of potential equalities obtained by applying the
substitution ⌧ to all terms in G. Formally:

{ l1
?
= r1, ..., ln

?
= r

n

}⌧ = { l1⌧
?
= r1⌧, ..., ln

⌧
?
= r

n

⌧ }

The unification algorithm tries to apply the following steps (the order is not important),
to transform G:

delete : G [ { t ?
= t } is transformed to G

decompose : G[{ f (t1, ..., tm

) ?
= f (u1, ..., um

) } is transformed to G[{ t1
?
= u1, ..., tm

?
= u

m

}

swap : G [ { f (t1, ..., tm

) ?
= x } is transformed to G [ { x ?

= f (t1, ..., tm

) }

eliminate : G[ { x ?
= t } is transformed to G[x = t][ { x ?

= t } if x 2 vars(G)^ x < vars(t)

conflict : G [ { f (t1, ..., tm

) ?
= g(u1, ..., uh

) } leads to failure if f , g _ m , h

occur chek : G [ { x ?
= f (t1, ..., tm

) } leads to failure if x 2 vars( f (t1, ..., tm

) )

For example, if we start from

G = { plus(succ(x), x) ?
= plus(y, 0) }

by applying rule decompose we obtain

{ succ(x) ?
= y , x

?
= 0 }

by applying rule eliminate we obtain

{ succ(0) ?
= y , x

?
= 0 }

finally, by applying rule swap we obtain

{ y ?
= succ(0) , x

?
= 0 }

Since not further transformation is possible, we conclude that

⌧ = [ y = succ(0) , x = 0 ]

is the most general unifier for G
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