Chapter 5

A short note on Google Go

Google Go (http://golang.org/) is an open source programming language designed
to facilitate building reliable, and efficient software. It is a compiled language, stati-
cally typed, garbage collected, concurrent and dynamic, originally developed by Ken
Thompson, Rob Pike, and Robert Griesemer. Google Go comes with functional and OO
features, together with a powerful and light type system.

Compiled, statically-typed languages (like C, C+ +, Java) require too much typing (in
the sense of writing code) and too much typing (in the sense of writing explicit types):
they tend to be verbose, with lots of repetition. Also they have poor concurrency.

Dynamic languages (like Python, JavaScript) fix some problems (no more types, no
compiler) but introduce others: there are many errors at run time that should be caught
statically, and no compilation means slower code.

Go tries to take the best of the two worlds: it is compiled to machine code, has static types
with some type inference (not full, as in ML), and most of all it has nice concurrency
primitives.

The Go project starts at Google in 2007 (by Griesemer, Pike, Thompson), and the first
open source release is in November 2009 (more than 250 contributors). Version 1.0 has
been released in May 2012 and the current Version 1.4 is from December 2014.

5.1 Concurrency in Google Go

A function can be launched in a separate lightweight thread

go £(x)

49



50 CHAPTER 5. GOOGLE GO

Goroutines run in the same address space and basic synchronization primitives such
as mutual exclusion locks are provided by the package sync, but programmers are
encouraged to use higher-level synchronization, which is better done via channels and
communication. The concurrency primitives of Google Go are inspired by those of the
n-calculus. The key idea is:

Do not communicate by sharing memory
instead, share memory by communicating

Channels can be created and then passed to concurrently executed functions:

ch = make(chan int) // creates a channel for transmitting integers
chl = ch // chl and ch access the same channel

go f(ch)

go g(ch)

Channels are always created bidirectional, but channel types can be annotated with
directionality:

var rCh <-chan int // rCh can only be used to receive integers
var sCh chan<- int // sCh can only be used to send integers
rCh = ch // channels can be assigned to unidirectional ones

The communication primitives are written:

ch <- 2 // sends 2 on ch
v = <- ch // receives from ch and assign value to v
<- ch // receives from ch and throws the value away

By default the communication is synchronous: receive and send are blocking. Asyn-
chronous channels can be created by allocating a buffer of fixed size to the channel

ch = make(chan int, 100) // creates an async. channel of size 100

Receive over an asynchronous channel is of course blocking, but send is blocking only
when the buffer is full. Note that there is no dedicated type for asynchronous channels:
buffering is a property of values not of types.

Channels can be sent over channels (like in the 7-calculus)

cch = make(chan chan int)
cch <- ch // sends channel ch over cch

Channels can be closed by the sender and the receive can test them for closure!

close(cch) // closes cch

'In Google Go functions can return tuples of values.



5.1. CONCURRENCY IN GOOGLE GO 51

v, ok = <- ch // either value,true or 0, false

The select primitive allows to choose between different options.

select {
case X = <-chl: { ... }
case y = <- ch2: { ... }
default: { ... }

3

The selection is made pseudo-randomly among the enabled cases. If no case is enabled,
then the default choice is selected. If no case is enabled and there is no default option,
the select blocks until (at least) one case is enabled.

For example, a non-blocking receive can be written as

select {
case Xx = <-ch: { ... } // receives on x from ch, if data available
default: { ... } // otherwise proceeds



	Lecture 1
	The course
	Exam
	Objective
	References
	About you
	Syntax and semantics
	Syntax
	Semantics

	A survey of semantics methods
	Numerals vs numbers
	Concrete and abstract syntax
	An informal semantics
	A small-step operational semantics
	A big-step operational semantics (or natural semantics)
	A denotational semantics
	Semantic equivalence

	Induction and recursion
	Semantic domains
	Transition systems
	Applications of semantics

	Unification
	Signatures and terms
	Substitutions
	Unification problem

	Lambda notation
	-calculus: main ideas
	-calculus: booleans and Church numerals
	Alpha-conversion, free variables and capture-avoiding substitution
	Beta-rule
	Exercises

	CCS
	Congruence property of strong bisimilarity w.r.t. choice
	From imperative languages to CCS
	Modelling (shared) variable
	Termination
	Variable allocation
	Assignment
	Skip
	Sequential composition
	Conditional statement
	Iteration
	Concurrent execution
	Optimization


	Google Go
	Concurrency in Google Go


